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Fig. S1: "TH NMR spectra of final compound 10a
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Fig. S2: "H NMR spectra of final compound 10b
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Fig. S3: 'TH NMR spectra of final compound 10¢
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Fig. S4: "TH NMR spectra of final compound 10d
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Fig. S5: 'TH NMR spectra of final compound 10e
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Fig. S7: 'TH NMR spectra of final compound 10g
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Fig. S9: 'TH NMR spectra of final compound 10i
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Fig. S11: "TH NMR spectra of final compound 11b
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Fig. S12: 'H NMR spectra of final compound 11¢
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Fig. S13: 'TH NMR spectra of final compound 11d
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Fig. S14: Mass spectra of final compound 10a
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Fig. S15: Mass spectra of final compound 10b

AR i cl
74.3 N~ S
1.00e6 @’ f\ﬂ g \J(N/Ql

dy2

8.00e51 Chemical Formula: C1gH;5CINgO,S
- Molecular Weight: 426.88
& 6.00e51 P11 403.8
>
k7]
C ~
g 4.00e5- [96.0

100 200 300 400 500 600

Fig. S16: Mass spectra of final compound 10c

7.0e5 -
6.0e5
5 0e5 - 423 .4
w
8 1 N=N o)
- 4.0e5- g [o]
E O~
§  3.0e5- HyCO i H
c : dy3
2.0e5+ Chemical Formula: CaoH;gNgO3S
] Moledular Weight: 422.46
1.0e54_1145 262.3
| | 210.6 | 343.3
0.0 e e
200 300 400 500 600
m/z, Da

11| Page



Fig. S17: Mass spectra of final compound 10d

5 466 453.4
2.0eb
| s \,,1'{ OCH;
4.0e6 ,Q/ ‘N
@ | HiCO™™y H
(]
__E-; 3.0e6 - dy4
@ ]
£ 5 pes- Chemical Formula: Ca4H54Ng0,4S
] Molecular Weight: 452.49
S 274.6
{-114.4 248.3. E 338.5 447 3
D.D’J'm—"—"—l—‘—“—"l'—‘hlhﬂ—l*“'—“—l—h—"'
200 300 400
m/z. Da

Fig. S18: Mass spectra of final compound 10e
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Fig. S19: Mass spectra of final compound 10f
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Fig. S21: Mass spectra of final compound 10h
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Fig. S23: Mass spectra of final compound 11a
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Fig. S26: Mass spectra of final compound 11d
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Fig. S27: IR spectra of final compound 10a
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Fig. S28: IR spectra of final compound 10b
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Fig. S29: IR spectra of final compound 10c
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Fig. S30: IR spectra of final compound 10d
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Fig. S32: IR spectra of final compound 10f
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Fig. S33: IR spectra of final compound 10g
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Fig. S34: IR spectra of final compound 10h
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Fig. S39: IR spectra of final compound 11d
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Fig. S40: 3C NMR spectra of final compound 10a
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Fig. S41: 13C NMR spectra of final compound 10b
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Fig. S42: 13C NMR spectra of final compound 10c
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Fig. S43: 13C NMR spectra of final compound 10d
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Fig. S44: 13C NMR spectra of final compound 10e
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Fig. S45: 13C NMR spectra of final compound 10f
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Fig. S46: 13C NMR spectra of final compound 10g
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Fig. S47: 3C NMR spectra of final compound 10h
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Fig. S48: 13C NMR spectra of final compound 10i
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Fig. S49: 13C NMR spectra of final compound 11a
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Fig. S50: 13C NMR spectra of final compound 11b
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Fig. S52: 3C NMR spectra of final compound 11d
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Table S1: Minimum inhibitory concentration (MIC; pg/mL) of the most active derivatives ®
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MIC (Mean + SEM) (ng/mL)

Gram Positive Bacteria | Gram-Negative Bacteria Fungi
S. aureus B. subtilis P'. E. coli A. flavus C.albicans
aeruginosa
R R I I I S
27853
10a 6.72+0.31 | 296+0.08 | 3.77+0.03 | 551+031 | 6.31+0.05 | 9.92+0.12
10b 431+0.56 | 3.63+0.02 | 421+0.06 | 6.76+0.12 | 790+ 0.08 | 6.61 £0.21
10c 505+0.21 | 590+0.06 | 456+0.05 | 9.72+0.21 | 5.56+0.02 | 5.53+0.33
10d 525+0.87 | 7.24+0.06 | 6.21+0.02 | 8.70+0.27 | 7.21£0.06 | 11.21 £0.15
10e 7.10+0.64 | 9.61£0.05 | 596+0.01 | 5.69+0.56 | 13.10+0.05 | 13.16 £0.25
10f 6.63+0.88 | 6.31+0.09 | 7.92+0.05 | 4.61+0.78 | 10.90+0.02 | 8.20+0.20
10g 11)'2811 * 323+£0.05 | 8.24+0.05 | 390+£0.62 | 521+£0.07 | 6.64+0.40
10h 161'3045i 4.51+0.08 | 4.67+0.08 | 467025 | 7.89+0.06 | 585+0.16
101 534+0.57 | 10.23+£0.05| 555+0.06 | 9.12+0.33 | 11.58 £0.08 | 19.22+0.26
11a 3.85+£090 | 1.89+0.05 | 241+£0.02 | 2.76 £0.40 | 3.31+0.06 | 4.61 +0.35
11b 439+0.53 | 856+0.07 | 9.31+£0.08 | 852+0.61 | 921+0.09 | 7.54 +0.64
l1c 854+0.61 | 9.41+£0.08 | 16.22+0.07 | 11.32£0.50 | 8.54+0.01 | 10.78 £0.42
11d 890+0.72 | 12.50+£0.06 | 6.33+0.08 | 7.61+0.84 | 434+0.03 | 12.25+0.29
Ciprofloxacin | 5.85+0.13 | 290+0.02 | 2.90+0.04 | 2.90 £0.25 - -
Griseofulvin - - - - 425+0.05 | 12.5+0.15

aData were expressed as mean + SD of three experiments, - represents no activity®

Table S2. The antitumor activities of the tested compounds expressed as IC50 values

and compared with reference standard drugs evaluated on breast and liver cancer cell lines?
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ICS50 values (ng/mL) against tumor cell lines
Comp.

MCF-7 HepG2
10a 151.3+0.5 29.1+£0.5
10b 16.1£0.5 >200
10c 6.8+ 0.4 21+0.6
10d 96.6 £ 0.5 175+0.2
10e >200 22.9+0.5
10f 49.6 £0.5 >200
10g 85.2+0.5 39+0.5
10h >200 164 + 0.8
101 69.2 £0.5 >200
l1a 58+0.2 42+0.7
11b 1349 +0.5 36.9+0.5
l1c 109.8 £0.5 89.1+0.2
11d >200 >200
Pyridyl 6.5+0.5 51+0.2
cyanoguanidine

Data were expressed as mean = SD of three experiments?

Table S3: Molecular docking results of synthesized pyrazole-oxadiazole hybrids (10a-i, 11a-
d) and reference drugs (Erlotinib and Doxorubicin) against EGFR kinase domain (PDB:

3W2Q), displaying binding affinity scores and critical amino acid interactions.
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Docking

Compound Score Hydroph.oblc Polan: Hydrogen Bonds Other Interactions
Interactions Interactions
(Kcal/mol)
VAL?726,
PHE723,
?J/Igg ; 1686 ’ GLU758 (charged
AL A743, negative), GLU762
10a -5.186 MET793, THR854, LYS745 (H-bond (charged negative),
' LEU792, GLN791 donor/acceptor) ASP855 (charged
MET790, negative), LYS745
LEU844, ILE759 (charged positive)
GLY796,
GLY857
LEU718,
ALA743,
1}\)/111{3(%;?? GLU762 (charged
LEU792, negative), ASP855
10b -5.394 MET?790, THRS54 LYS745 (H-bond (charged negative),
VAL726 donor/acceptor) LYS745 (charged
’ positive), n-w stacking
PHEg}?\’{;]gS > interaction with PHE723
MET766,
LEU844
ILE759,
ALATSS,
ALA743,
{;i[i;;?é, GLU758 (charged
PHE723’ LYS745 (multiple negative), ASP855
10c -5.570 MET766, GLN791 . H-bonds with (charged negative),
LEUS44 ligand carbonyl and GLU762 (charged
MET790, nitrogen) negative), LYS745
LEU792 , (charged positive)
MET793,
PRO794,
GLY796
LRUTIS, ARGR841 (charged
VALT726, positive), ASP837
PRO79%4, . .
MET793 GLN791, | LYS743 (H-bond (charged negative),
’ with nitrogen), ASP855 (charged
10d 713 LEU792 ASN842, .
’ THRS854 ASP855 (H-bond negative), GLU762
MET790, with NH group) (charged negative),
ALA7A, LYS745 (charged
11\441555222, positive)
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GLY796
PHE723,
VALT726,
LEU718,
ALAT7S55,
ALA743, GLU758 (charged
ILE759, LYS745 (H-bond negative), GLU762
106 5,400 GLY796, GLN791, with nitrogen), (charged negative),
’ PRO794, THR854 GLU762 (H-bond ASP855 (charged
MET793, with ligand) negative), LYS745
LEU792, (charged positive)
MET790,
LEUS844,
GLY857,
PHES856
LEUS844,
MET790, ARGR841 (charged
LEU792, .
MET793, THR854 (H-bond p?lsmvz)’ ASP855
PRO794, GLN791, with carbonyl (856*‘3766 211(60:%12?%()1’
10f 5.572 LEU71S, ASN842, | oxygen), MET793 . ge
GLY796, THRS854 (H-bond nefatwed)’ LYS745
et | i,
ALA743, .
VAL726, substituents
MET766
ILE759,
ALAT7SS,
GLY857,
PHE356, GLU758 (charged
LEUS844, .
MET790 negative), GLU762
LEUT792 ’ LY.S745. (H-bond (charged negative),
10g 5707 METT9 3’ GLN791, with nitrogen), ASP$55 (charged
PRO79 4’ THRS854 GLU762 (H-bond negative), LYS745
’ with NH group) (charged positive),
GLY796, Halogen bonds with Cl1
LEU718, .
ALA743, substituents
MET766,
PHE723,
VAL726
ILE759, GLU758 (charged
ALATSS, LYS745 (H-bond negative), GLU762
L0k 560 GLY857, GLN791, with nitrogen), (charged negative),
' PHES56, THR854 GLU762 (H-bond ASP855 (charged
LEUg44, with NH group) negative), LYS745
MET790, (charged positive),
LEU792, Halogen bonds with Cl
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MET793, substituents on both
PRO794, phenyl rings
GLY796,
LEU718,
ALA743,
MET766,
PHE723,
VAL726
PROS877, LYS875 (charged
GLY857, positive), ARG858
ALA743, (charged positive),
VAL726, Lﬁgﬁg;gnd GLU762 (charged
LEUS844, GLN791, ASP855 (multip,le negative), ASP837
101 -5.779 LEU718, THR854, H-bonds), MET793 (charged negative),
GLY796, ASNg42 (H—l;on d ASP855 (charged
PRO794, . . negative), LYS745
MET793, interaction) (charged positive),
LEU792, Halogen bonds with F
MET790 and Cl substituents
I;llEg Z%% Iéif H:N group.with
ILE 759, VAL resisélizugi&gmal GLU762 (charged
726, PHE 723, bonds v’vith ASP negative), ASP855
I1a -5.330 MET 790, MET THR 854 255. THR 854 (charged negative),
793, PRO 794, LYS7’ 45 (rnultip:le LYS745 (charged
ALA 743, CYS H-bonds with positive)
797, GLY 796, ligand nitrogen)
GLY 857
GLU762 (charged
LEU 792, LEU negative), ASP855
718, LEU 844, .
) (charged negative),
ILE 759, ALA LYS745 (mul.tlple GLU758 (charged
755, PHE 723, THR 854, H-bonds with .
11b -5.530 : negative),
VAL 726, MET GLN 791 ligand carbonyl and
790, MET 793, nitrogen) LYS745 (charged
ALA 743, GLY positive)
796, GLY 857
LEU 792, LEU
718, LEU 844,
VAL 726, PHE GLU762 (charged
723, PHE 856, negative), ASP855
e 760 MET 790, MET | THR 854, | GLU762 (H-bond (charged negative),
’ 793, MET 766, GLN 791 with NH group)
PRO 794, ALA LYS745 (charged
743, CYS 797, positive)
GLY 796, GLY
857
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GLU762 (charged

LEU 792, LEU negative), ASP855
\7/281: I;I;g I%I?]é (charged negative),
723, PHE 856, LYS745 (multiple LYS728 (charged
11d 25,099 MET 790, MET THR 854, H-bonds with positive),
' 793, MET 766, GLN 791 ligand carbonyl and LYS745 (charged
PRO 794, ALA nitrogen) .
743, CYS 797, positive)
GLY 796, GLY
857
LEU 792, LEU GLU762 (charged
718, LEU 844, negative), ASP855
charged negative),
VALTIOPHE | g sy | Lysyas gmaiple |
Erlotinib -5.292 ’ ’ GLN 791, H-bonds with LYS745 (charged
MET 790, MET ASN 842 Oxygen) positive)
793, MET 766,
PRO 794, ALA
743, CYS 775
GLU762 (charged
. negative), ASP855
LEU 792, LEU LYS745 (rnul'tlple (charged negative),
718. LEU 844 H-bonds with
' ’ Oxygen atom), LYS745 (charged
VAL 726, PHE THR 854, ASN 842 ( H-bond Positive),
Doxorubicin -6.588 723, PHE 856, GLN 791, .
MET 766, ALA | ASN 842 with Oxygen ARG841 (charged
atom), GLU 762 .
743, GLY 796, (H-bond with negative)
GLY 857

nitrogen atom)

35| Page




Molecular Docking (3W2Q)
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PHE MET
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792 H
793 / \
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791 =" 790 E
LEU
844 THR e
857
854 N Asp
) Charged (negative) Polar ~- Distance —= Pi-cation
W) Charged (positive) W Unspecified residue —= H-bond — Salt bridge
Glycine Water —* Halogen bond Solvent exposure
Hydrophobic Hydration site —  Metal coordination
) Metal X, Hydration site (displaced) s—e Pi-Pi stacking
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) Charged (negative) Palar - Distance —e Pi-cation
W) Charged (positive) ) Unspecified residue —+ H-bond — Salt bridge
Glycine Water = Halogen bond Solvent exposure
Hydrophobic Hydration site —  Metal coordination
) Metal X Hydration site (displaced) ®—e Pi-Pi stacking
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Metal ¥ Hydration site (displaced) ®—e Pi-Pi stacking
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Figure S53. 2D and 3D Molecular docking diagram 3W2Q
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Table S4: Molecular docking results of synthesized pyrazole-oxadiazole hybrids (10a-1, 11a-

d) and reference drugs (Ciprofloxacin and Griseofulvin) against EGFR kinase domain (PDB:

4QGG), displaying binding affinity scores and critical amino acid interactions.

Docking Score Hydrophobic Polar .
Compound (Kcal/mol) Interactions Interactions Hydrogen Bonds Other Interactions
ASP91(charged negative),
GLUI11 (charged negative),
PRO10, VALS51, SER13, ARG92 (H-bond GLU37 (charged negg‘qve),
10a 5522 LEUS2, ILE47, SER69 donor/acceptor ARG36(charged positive),
’ ILE143, PRO38, THR1 6’ with O) ARGH48 (charged positive),
PHE66 LYS15 (charged positive),
LYS144 (charged positive),
ARG92 (charged positive)
GLUI11 (charged negative),
SER13, GLU37 (charged negative),
PROI0, VALSI, SER69, ASN145 (H-bond ARG?36 (charged positive),
10b -5.072 LEUS52, LEUG65, o
ILE47. ILE143. PHE66 THRI16, carbonyl O) ARGH48 (charged pOS}t}Ve),
’ ’ ASN145 LYSI15 (charged positive),
LYS144 (charged positive)
ARG36 (charged positive),
PRO38, VALS], GLU37 (H-bond | ““RG48 (charged positive),
SER69, . ARG70 (charged positive),
10c -5.607 LEUS52, ILE47, PHEG66, GLN101 with N); GLN101 ARG105 (charged positive)
TYR100, PHE159 (H-bond with N) GLU37 (charged negative),
GLUG62 (charged negative)
ARG36 (charged positive),
PROJS,VALSL | oo ARGTO (charged positive),
LEUS52, PHE66, ’ GLN101 (H-bond charged postuve),
10d -4.661 TYR93. TYR100 SER97, with O) ARGI105 (charged positive),
PI—fEl 59 ’ GLN101 GLU37 (charged negative),
GLU45 (charged negative),
GLUG62 (charged negative)
ASP91 (H-bond ARG36(charged positive),
PRO10, VALS1, SER13 with -NH), ARG48 (charged positive),
10e 5.198 LEUS2, ILE47, SER6 9’ ARG92 (H-bond LYS15(charged positive),
’ LEU65, PHEG66, THR1 6’ with Carbonyl C), LYS144 (charged positive),
ILE143 GLY 12 (H-bond GLU1 I(charged negative),
with O) GLU37 (charged negative)
ARG36 (charged positive),
ILE47, VALSI, SER13, ARQ48 (H bond ARG48 (charged pOS'lt‘IVC),
with N atom) LYS15 (charged positive),
10f -5.785 LEU52, PHE66, SER69, o
ILE143. PRO3S THRI6 ARG92 (H-bond LYS144 (charged p0s1t.1ve),
’ ’ with carbonyl C) GLU11(charged negative),
GLU37 (charged negative)
ASP91(charged negative),
GLU11 (charged negative),
PRO38, ILE47, GLU37 (Hbond | OLU37(charged negative),
SER69, . GLUG62 (charged negative),
VALS1, LEUS2, with -NH atom) o
10g -5.017 SER 96, ARG?36 (charged positive),
PHE66, TYR100, GLN101 (H-bond Iy
PHE159 GLNI101 with N atom) ARGH48 (charged positive),
ARGT70 (charged positive),
ARG92 (charged positive),
ARG105 (charged positive)
SER 96 ASP156 (charged negative),
10h 4784 PHEG66, TYR100, SER 97’ GLN101 (H-bond GLU11 (charged negative),
’ PHE159 GLNI Oi with N atom) GLU37 (charged negative),

GLUG62 (charged negative),
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ARGT70 (charged positive),
ARG92 (charged positive),
ARGI105 (charged positive),
ARGI151 (charged positive),

ASPI1 (charged negative),
GLU11 (charged negative),
GLU37 (charged negative),

PRO10, PRO38, SER13, ARG48 (H bond o
10i -5.460 ILE47, VAL, THRIG, with N atom), igggi Eﬁﬁiﬁiﬁﬁ EEZEXZ%
’ LEUS2, LEU65, SER69, ASN145 (H bond NS
PHE66 ASN145 with O atom) ARG36 (charged positive),
LYS15 (charged positive),
LYS144 (charged positive),
GLUI11 (charged negative),
GLU37 (charged negative),
SER13, o
ARG70 (charged positive),
THRIS, ARG92 (charged positive)
1a 5942 PHE66, TYR100, SER96, GLN101 (H-bond ARG105 (charged positive)’
’ TYR93, ILE143 SER97, with N atom) NG
LYSI15 (charged positive),
GLN101, LYS144 (charged positive)
ASN145 ’
GLUI11 (charged negative),
GLU37 (charged negative),
18“11?1%1136’ GLN101 (H-bond ARG70 (charged positive),
PRO10, ILE143, SEROC. with O g to'm‘)’n ARG92 (charged positive),
11b -5.890 TYR100, TYRO3, ’ ’ ARG105 (charged positive),
PHEG66 SERY7, G.L Ul1 (H-bond LYSI15 (charged positive),
GLNI10L, =) with -NH2 atom) | 1 y.¢144" charged positive)
ASN145 ’
GLU11 (charged negative),
GLU37 (charged negative),
SER13, ASP91 (charged negative),
THRI16, ARG70 (charged positive),
e 4918 ,[1,)51%186 H,Ef}i{%’ SER96, ASN145 (H-bond ARG92 (charged pos?t@ve),
’ PHiE 66 ’ SER97, with O atom) ARG?36 (charged positive),
GLN101, LYS15 (charged positive),
ASN145 LYS144 (charged positive),
ARG48 (charged positive)
GLUI11 (charged negative),
SER13, GLU37 (charged negative),
ILE143, TYR100, THRI16, GLNIOI (H-bond ARG70 (charged pos%t?ve),
11d 5.672 TYRO3. PHE66 SER96, with O atom), ARG92 (charged pOS'lt}Ve),
PHl’El 59 ’ SER97, GLUI11 (H-bond LYS15 (charged positive),
GLN101, with -NH2 atom) LYS144 (charged positive),
ASN145 ARGI105 (charged positive),
ASPI1 (charged negative),
GLU37 (charged negative),
PRO38, ILE47, SER69, ARG48 (H bond ARG70 (charged positive),
Griseofulvin -3.817 VALS1, LEUS2, SER96, with O atom), ARG92 (charged positive),
LEU65, TYR93 ARG?36 (charged positive),
ARGA48 (charged positive
PRO38, VALSI, SER69, ARG48 (H bond GLU37 (charged negative),
Ciprofloxacin -6.747 LEUS52, PHEG66, SER96, with O atom), ARG70 (charged positive),
TYR100 SER97, ARG92 (H-bond ARG92 (charged positive),
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GLNI101,

with O)

ARG?36 (charged positive),
ARGH48 (charged positive
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Figure S54. 2D and 3D Molecular docking diagram 4QGG

48 |Page




Table S5. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10a)

Sr.no Atom Charge (Q/e)
1 C -0.21063
2 C -0.16062
3 C -0.1248
4 C -0.17213
5 C -0.09089
6 C 0.30826
7 N -0.78379
8 C 0.604418
9 (0] -0.42618
10 C -0.72479
11 C -0.09236
12 C -0.16636
13 C -0.12243
14 C -0.16853
15 C -0.10656
16 C 0.268015
17 N -0.79136
18 C 0.60372
19 C -0.12251
20 N -0.23884
21 N 0.059177
22 C -0.56561
23 C 0.30224
24 (0] -0.46553
25 C 0.209148
26 N -0.24557
27 N -0.19183
28 S 0.315321
29 H 0.170047
30 H 0.155923
31 H 0.156204
32 H 0.152452
33 H 0.216563
34 H 0.36762
35 H 0.276612
36 H 0.256826
37 H 0.190036
38 H 0.163951
39 H 0.162886
40 H 0.162039
41 H 0.190804
42 H 0.209528
43 H 0.253438
44 H 0.216053
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Table S6. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10b)

| Sr.no | Atom | Charge (Q/e) |
1 C -0.16728
2 C -0.10936
3 C -0.22214
4 C -0.1263
5 C -0.09763
6 C 0.311985
7 N -0.77287
8 C 0.546203
9 o -0.44645
10 C -0.56358
11 C -0.08461
12 C -0.14767
13 C -0.10144
14 C -0.14777
15 C -0.10048
16 C 0.290597
17 N -0.72125
18 C 0.504968
19 C 0.020598
20 N -0.26028
21 N 0.037085
22 C -0.44561
23 C 0.35157
24 o -0.48747
25 C 0.204272
26 N -0.3632
27 N -0.21131
28 S 0.429492
29 Cl 0.055225
30 H 0.162974
31 H 0.160197
32 H 0.158683
33 H 0.192616
34 H 0.399637
35 H 0.222433
36 H 0.224287
37 H 0.17363
38 H 0.146555
39 H 0.142311
40 H 0.143156
41 H 0.148209
42 H 0.175032
43 H 0.180546
44 H 0.194394
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Table S7. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10c)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.20973 25 C 0.207438
2 C -0.16075 26 N -0.24551
3 C -0.12505 27 N -0.19261
4 C -0.17218 28 S 0.314343
5 C -0.09079 29 o -0.51629
6 C 0.30777 30 C -0.29518
7 N -0.78386 31 H 0.170613
8 C 0.604696 32 H 0.155922
9 (0] -0.42636 33 H 0.155851
10 C -0.72557 34 H 0.151812
11 C -0.07952 35 H 0.215681
12 C -0.18012 36 H 0.368003
13 C 0.260531 37 H 0.277387
14 C -0.17861 38 H 0.256375
15 C -0.09965 39 H 0.186761
16 C 0.266729 40 H 0.18131
17 N -0.79055 41 H 0.180025
18 C 0.60079 42 H 0.186387
19 C -0.12014 43 H 0.209204

20 N -0.24047 44 H 0.250505
21 N 0.057545 45 H 0.215402
22 C -0.56601 46 H 0.207358
23 C 0.302208 47 H 0.188167
24 (0] -0.46564 48 H 0.185784
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Table S8. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10d)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)

1 C 0.21087 27 N -0.1775

2 C -0.17347 28 S 0.370962
3 C 0.252531 29 o -0.52425
4 C -0.17967 30 o -0.51494
5 C -0.09279 31 C -0.29568
6 C 0.305134 32 C -0.29029
7 N -0.79705 33 H 0.182083
8 C 0.591076 34 H 0.169146
9 (0] -0.41702 35 H 0.167903
10 C -0.73351 36 H 0.21458

11 C -0.0808 37 H 0.407631
12 C -0.17823 38 H 0.257157
13 C 0.260665 39 H 0.258129
14 C -0.17864 40 H 0.189279
15 C -0.096 41 H 0.183401
16 C 0.269666 42 H 0.180267
17 N -0.78972 43 H 0.178423
18 C 0.617653 44 H 0.21833

19 C -0.14028 45 H 0.219067
20 N -0.24106 46 H 0.231063
21 N 0.063464 47 H 0.209081
22 C -0.56359 48 H 0.188801
23 C 0.296702 49 H 0.186143
24 (0] -0.46188 50 H 0.197462
25 C 0.240022 51 H 0.180894
26 N -0.33074 52 H 0.181257
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Table S9. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10e)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.21102 25 C 0.239761
2 C -0.17344 26 N -0.33002
3 C 0.25252 27 N -0.17675
4 C -0.17953 28 S 0.372475
5 C -0.09264 29 o -0.5242
6 C 0.305333 30 C -0.29035
7 N -0.7972 31 H 0.181756
8 C 0.591058 32 H 0.169117
9 (0] -0.41662 33 H 0.1681
10 C -0.73354 34 H 0.214675
11 C -0.0941 35 H 0.407461
12 C -0.1643 36 H 0.257255
13 C -0.12227 37 H 0.258581
14 C -0.16825 38 H 0.192788
15 C -0.10229 39 H 0.166264
16 C 0.270835 40 H 0.165143
17 N -0.79043 41 H 0.162787
18 C 0.622286 42 H 0.182365
19 C -0.14327 43 H 0.219562
20 N -0.23937 44 H 0.221048
21 N 0.065596 45 H 0.232365
22 C -0.56507 46 H 0.197569
23 C 0.297337 47 H 0.180966
24 (0] -0.46176 48 H 0.181402

53| Page



Table $10. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10f)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.211 25 C 0.239245
2 C -0.1732 26 N -0.32718
3 C 0.253177 27 N -0.17375
4 C -0.17953 28 S 0.376732
5 C -0.09234 29 Cl 0.05506
6 C 0.305294 30 Cl 0.057067
7 N -0.7972 31 o -0.52387
8 C 0.591634 32 C -0.29058
9 (0] -0.4153 33 H 0.180501
10 C -0.73365 34 H 0.16966
11 C -0.07503 35 H 0.168752
12 C -0.06173 36 H 0.215258
13 C -0.2019 37 H 0.406502
14 C -0.24394 38 H 0.260012
15 C 0.001638 39 H 0.257095
16 C 0.299875 40 H 0.206939
17 N -0.80049 41 H 0.203074
18 C 0.631012 42 H 0.219863
19 C -0.14766 43 H 0.221325

20 N -0.23364 44 H 0.227462
21 N 0.068973 45 H 0.238557
22 C -0.57171 46 H 0.198192
23 C 0.299492 47 H 0.181643
24 (0] -0.46201 48 H 0.181432
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Table S11. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10g)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.211 23 C 0.302763
2 C -0.16051 24 o -0.46509
3 C -0.12422 25 C 0.211039
4 C -0.17255 26 N -0.24465
5 C -0.09032 27 N -0.18906
6 C 0.307539 28 S 0.320701
7 N -0.78238 29 Cl 0.05237
8 C 0.603815 30 Cl 0.05292
9 (0] -0.42676 31 H 0.169798
10 C -0.72376 32 H 0.156689
11 C -0.07301 33 H 0.157528
12 C -0.06407 34 H 0.154723
13 C -0.20055 35 H 0.216917
14 C -0.24342 36 H 0.36668
15 C -0.00411 37 H 0.275488
16 C 0.296382 38 H 0.258048
17 N -0.80162 39 H 0.204775
18 C 0.608361 40 H 0.201361
19 C -0.12382 41 H 0.229482

20 N -0.23278 42 H 0.20932
21 N 0.061702 43 H 0.263181
22 C -0.56813 44 H 0.219828
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Table $12. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10h)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.217 23 C 0.299083
2 C -0.05874 24 o -0.46044
3 C -0.28666 25 C 0.241456
4 C -0.06833 26 N -0.33301
5 C -0.08919 27 N -0.17339
6 C 0.314619 28 S 0.38399
7 N -0.80034 29 Cl -0.02982
8 C 0.593751 30 Cl 0.055695
9 (0] -0.40549 31 Cl 0.058649
10 C -0.73565 32 H 0.191254
11 C -0.07457 33 H 0.186539
12 C -0.06142 34 H 0.184978
13 C -0.20199 35 H 0.225272
14 C -0.24381 36 H 0.410308
15 C 0.001055 37 H 0.260348
16 C 0.299953 38 H 0.263676
17 N -0.80063 39 H 0.207653
18 C 0.631472 40 H 0.203861
19 C -0.14749 41 H 0.219392

20 N -0.23338 42 H 0.222827
21 N 0.070204 43 H 0.227376
22 C -0.56977 44 H 0.237197
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Table S13. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 10i)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.18209 25 C 0.242377
2 C -0.1954 26 N -0.34101
3 C 0.462048 27 N -0.17659
4 C -0.42553 28 S 0.382164
5 C 0.022963 29 o -0.51436
6 C 0.307208 30 F -0.31822
7 N -0.80148 31 Cl 0.02974
8 C 0.594542 32 C -0.29593
9 (0] -0.40433 33 H 0.197857
10 C -0.73642 34 H 0.187266
11 C -0.07825 35 H 0.251729
12 C -0.17871 36 H 0.414685
13 C 0.261586 37 H 0.260339
14 C -0.17862 38 H 0.263882
15 C -0.09462 39 H 0.18871
16 C 0.266226 40 H 0.184427
17 N -0.78942 41 H 0.181114
18 C 0.620373 42 H 0.178134
19 C -0.14271 43 H 0.220048

20 N -0.24114 44 H 0.219856
21 N 0.065906 45 H 0.230448
22 C -0.56331 46 H 0.209973
23 C 0.298765 47 H 0.189314
24 (0] -0.46004 48 H 0.186495
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Table S14. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 11a)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.18234 25 C 0.261939
2 C -0.19592 26 N -0.35623
3 C 0.459047 27 N -0.27046
4 C -0.42364 28 S 0.373402
5 C 0.019898 29 F -0.32037
6 C 0.308335 30 Cl 0.027736
7 N -0.8024 31 Cl 0.004681
8 C 0.591436 32 N -0.48384
9 (0] -0.4087 33 H 0.18915
10 C -0.73597 34 H 0.180906
11 C -0.08078 35 H 0.252463
12 C -0.16357 36 H 0.41516
13 C -0.01891 37 H 0.254987
14 C -0.34293 38 H 0.255594
15 C 0.006926 39 H 0.198567
16 C 0.278581 40 H 0.176176
17 N -0.79254 41 H 0.199506
18 C 0.628055 42 H 0.217265
19 C -0.11861 43 H 0.218745
20 N -0.32 44 H 0.218945
21 N 0.057196 45 H 0.248321
22 C -0.57774 46 H 0.343778
23 C 0.475839 47 H 0.336975

24 N -0.60466
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Table S15. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 11b)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)

1 C -0.25547 25 C 0.312083
2 C -0.19388 26 N -0.45682
3 C -0.2031 27 N -0.40369
4 C -0.20463 28 S 0.50825
5 C -0.18466 29 N -0.48877
6 C 0.374832 30 Cl 0.122486
7 N -1.05989 31 H 0.218647
8 C 0.788325 32 H 0.195903
9 (0] -0.60327 33 H 0.194933
10 C -0.6583 34 H 0.199021
11 C -0.13752 35 H 0.279934
12 C -0.21248 36 H 0.487719
13 C -0.13219 37 H 0.255463
14 C -0.34369 38 H 0.259245
15 C -0.10452 39 H 0.256266
16 C 0.348624 40 H 0.230779
17 N -0.96311 41 H 0.249658
18 C 0.572867 42 H 0.264142
19 C -0.02612 43 H 0.192384
20 N -0.37782 44 H 0.200178
21 N 0.096162 45 H 0.252836
22 C -0.43815 46 H 0.375118
23 C 0.698112 47 H 0.375043
24 N -0.86094
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Table S16. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 11c)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.16737 25 C 0.226967
2 C -0.10986 26 N -0.38307
3 C -0.22177 27 N -0.31746
4 C -0.12666 28 S 0.417142
5 C -0.0988 29 Cl 0.049251
6 C 0.313946 30 N -0.45248
7 N -0.77518 31 Cl 0.09438
8 C 0.54313 32 H 0.154914
9 (0] -0.45135 33 H 0.153086
10 C -0.56181 34 H 0.157527
11 C -0.07689 35 H 0.192791
12 C -0.14711 36 H 0.401029
13 C -0.07462 37 H 0.217177
14 C -0.27238 38 H 0.216424
15 C -0.06225 39 H 0.179584
16 C 0.300375 40 H 0.156879
17 N -0.72834 41 H 0.171459
18 C 0.513292 42 H 0.177566
19 C 0.052906 43 H 0.173232
20 N -0.34602 44 H 0.177033
21 N 0.036163 45 H 0.220621
22 C -0.46227 46 H 0.347581
23 C 0.469969 47 H 0.329803
24 N -0.60855
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Table S17. Mulliken Atomic Charges of Selected Atoms in the Optimized Structure (Compound 11d)

Sr.no Atom Charge (Q/e) Sr.no Atom Charge (Q/e)
1 C -0.212 27 N -0.2716
2 C -0.17404 28 S 0.362392
3 C 0.250368 29 o -0.52647
4 C -0.17836 30 N -0.48502
5 C -0.09526 31 Cl 0.002663
6 C 0.306488 32 C -0.28987
7 N -0.79856 33 H 0.173666
8 C 0.587832 34 H 0.16274
9 (0] -0.42108 35 H 0.167143
10 C -0.733 36 H 0.214952
11 C -0.08159 37 H 0.408985
12 C -0.16368 38 H 0.251981
13 C -0.0197 39 H 0.249855
14 C -0.34257 40 H 0.198352
15 C 0.006953 41 H 0.175124
16 C 0.279248 42 H 0.198434
17 N -0.79269 43 H 0.21769
18 C 0.625779 44 H 0.216956
19 C -0.11689 45 H 0.218652
20 N -0.32022 46 H 0.250348
21 N 0.054874 47 H 0.342267
22 C -0.57799 48 H 0.335808
23 C 0.474096 49 H 0.195929
24 N -0.60426 50 H 0.180556
25 C 0.260454 51 H 0.181086

26 N -0.34699
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Figure S55. HOMO-LUMO energy level distribution and energy gap (AE) diagrams of
compounds 10a—10d, showing electron density localization in frontier molecular orbitals. The
visualized HOMO and LUMO surfaces reveal charge-transfer regions, highlighting the

electronic transitions that govern molecular reactivity and stability.
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Figure S56. HOMO-LUMO energy level distribution and energy gap (AE) diagrams of
compounds 10e—10h, illustrating the spatial electron density distribution in the frontier
molecular orbitals. The visualization highlights intramolecular charge-transfer pathways that

influence the electronic properties, reactivity, and stability of the compounds.
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Figure S57: HOMO-LUMO electron density clouds and energy gaps (AE) for compounds 10i-
11d, showing charge distribution and reactivity differences.

10a

10b

63| Page



10c

10d

64| Page



10e

10f

65| Page



10h

66| Page



10i

11a

67| Page



11b

11c

68| Page



11d

Figure S58 : 10a-1 &11a-d ESP
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