

First-Principles Screening of Dopants for High-Conductivity Graphene/Copper Interfaces- Supplementary Material

Xinsi Zhao,^a Boan Zhong,^a Baixue Bian,^{*a} Jiamiao Ni,^a Mingyu Gong,^{*ab} Yue Liu,^{*a} Tongxiang Fan^a

^aState Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^bInstitute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China

Author to whom correspondence should be addressed: baixuebian@sjtu.edu.cn (B.B.); mingyugong@sjtu.edu.cn (M.G.)
and yliu23@sjtu.edu.cn (L.L.);

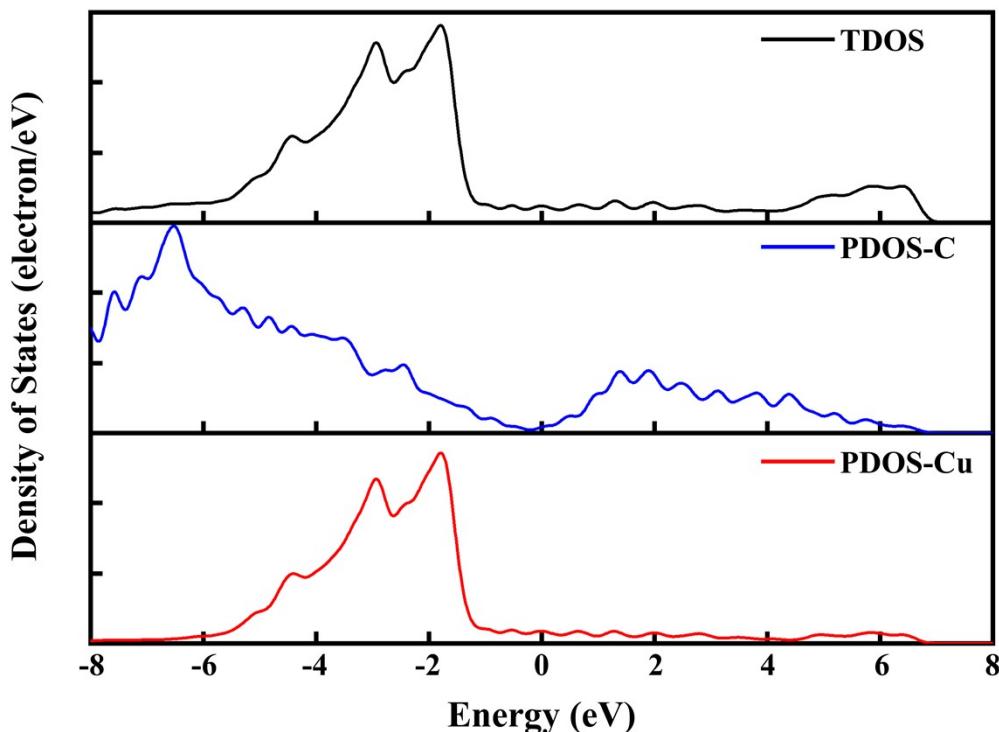


Fig. S1. The DOS of the Gr/Cu interface.

derivation of equation

$$E_F = \hbar v_F \sqrt{\pi n} \quad (\text{eq.1})$$

For two-dimensional material like suspended Gr, it has a zero bandgap and linear dispersion relation

$$E(k) = \hbar v_F k \quad (\text{eq.2})$$

The electrons are all in a plane of radius k in k-space. The degeneracy of Gr is 4, which from spin degeneracy and valley degeneracy. Thus the number of states is

$$\begin{aligned} N(E) &= 4 \cdot \frac{S}{(2\pi)^2} \cdot \pi k^2 \\ &= \frac{2SE^2}{\pi \hbar^2 v_F^2} \end{aligned} \quad (\text{eq.3})$$

The number of states per unit energy interval is

$$D(E) = \frac{dN(E)}{dE} = \frac{d\left(\frac{2SE^2}{\pi \hbar^2 v_F^2}\right)}{dE} = \frac{2SE}{\pi \hbar^2 v_F^2} \quad (\text{eq.4})$$

The number of states per unit area is

$$g(E) = \frac{2E}{\pi \hbar^2 v_F^2} \quad (\text{eq.5})$$

The electron distribution near the Fermi level follows the Fermi-Dirac statistics

$$f(E) = \frac{1}{e^{\frac{E - E_F}{k_B T}} + 1} \quad (\text{eq.6})$$

Simplifying this equation, when there are electrons, $f(E)=1$; when there are unoccupied, $f(E)=0$.

The carrier concentration can be calculated by

$$n = \int_0^{E_F} g(E)f(E)dE = \int_0^{E_F} \frac{2E}{\pi \hbar^2 v_F^2} dE = \frac{E_F^2}{\pi \hbar^2 v_F^2} \quad (\text{eq.7})$$

Which can be written as

$$E_F = \hbar v_F \sqrt{\pi n} \quad (\text{eq.1})$$

$$n = \frac{m^*}{\pi\hbar^2} \Delta E \quad (\text{eq.8})$$

When doping in Gr of Gr/Cu composite induced bandgap opening, the linearity may be disrupted. The same derivation is used to derive the equation for the carrier concentration under the parabolic band.

The relationship between energy ($E(k)$) and wave vector (k) is

$$E(k) = \frac{\hbar^2 k^2}{2m^*} \quad (\text{eq.9})$$

The number of states is

$$\begin{aligned} N(E) &= 2 \cdot \frac{S}{(2\pi)^2} \cdot \pi k^2 \\ &= 2 \cdot \frac{S}{(2\pi)^2} \cdot \pi \cdot \frac{2m^* E}{\hbar^2} \\ &= \frac{Sm^* E}{\pi\hbar^2} \end{aligned} \quad (\text{eq.10})$$

The number of states per unit energy interval is

$$D(E) = \frac{dN(E)}{dE} = \frac{d(\frac{Sm^* E}{\pi\hbar^2})}{dE} = \frac{Sm^*}{\pi\hbar^2} \quad (\text{eq.11})$$

The number of states per unit area is

$$g(E) = \frac{m^*}{\pi\hbar^2} \quad (\text{eq.12})$$

The carrier concentration can be calculated by

$$n = \int_0^{E_F} g(E)f(E)dE = \int_0^{E_F} \frac{m^*}{\pi\hbar^2} dE = \frac{m^*}{\pi\hbar^2} E_F \quad (\text{eq.13})$$

Which can be written as

$$n = \frac{m^*}{\pi\hbar^2} \Delta E \quad (\text{eq.8})$$