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1. Mechanism of Conductive network Formation

The Figure S1 depicts the hybrid conductive network and polymer-filler interactions in the
composite. The PVDF-HFP matrix provides a ferroelectric, polar environment rich in -CF, dipoles,
while PMMA domains enhance blend compatibility and regulate dielectric loss through dipole-
dipole interactions between PMMA carbonyl (C=0O) groups and PVDF-HFP chains. MXene
sheets, decorated with surface terminations (-O, -OH, -F), interact strongly with the polymer chains
via hydrogen bonding and -electrostatic interactions, ensuring good interfacial adhesion.
MWCNTs, with their high aspect ratio, act as 1D conductive bridges between MXene sheets,

suppressing MXene restacking and enabling the formation of a 3D percolative conductive network.

Figure S1. This schematic provides polymer-filler interactions which strengthens the mechanistic

interpretation of the experimental results.



2. Functionalization of Ti;C,T, MXene & MWCNTs

The XRD, FT-IR and Raman patterns of Ti;C, Ty MXenes are shown in Figure S2(a-c),
respectively. In our earlier research, we had previously addressed the characteristics of MXene [1].
The new peaks were simultaneously found at 20 of 8.9° and 18.5°, indicating that F had been added
to the interlayer of MXenes. Additionally, a novel peak at 27.54° was found and identified as
Ti3C,(OH), [2]. In accordance with these results, the surfaces were modified with -OH and -F
functional groups followed by HF etching. Broad absorption is facilitated by the stretching of O-
H from surface functional groups at about 3446 cm-!. There is a peak at about 1624 cm! (H-O-H
bending), and bands at approximately 600-800 cm™! reflect Ti-O and Ti-C vibrations. Strong peaks
that represent Ti, C, and surface terminations are located between 200 and 800 cm™. There are
noticeable peaks at approximately 271 cm™! and 600 cm! that are related to Ti-C vibrations. Figure
S2(d) displays surface images of as obtained pure Ti;C,T, MXenes. A comparable two-
dimensional layered structure was developed by removing an Al atom from Tiz;AlC, after HF
etching. The characteristics of f-MWCNTs are depicted in Figure S2(e-h). The XRD pattern, which
displays the strongest peak at ~26.2° corresponding to C (002) planes, a characteristic of highly
graphitic nature, has been used to demonstrate the structural phase of the MWCNTSs. The
absorption bands in FT-IR spectra are induced by the existence of C=0 (1632 cm™!), and O-H
(3456 cm™!). These are related to the presence of water adsorbed on the surface and hydroxyl
groups created during the oxidation of nanotubes. The three primary characteristic bands of Raman
spectra D (1354 cm™!, symmetric), G (1588 cm™!, asymmetric), and 2D (2650 cm™!, symmetric),
which confirm the formation of top-notch MWCNTs [3-4]. As depicted FESEM image, the tubes
are several microns long and between 50-100 nm thickness. Additionally, MWCNTs are spherical

structures with individual carbon nanotubes interconnected within themselves.
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Figure S2. (a-d) XRD, FT-IR, Raman and FESEM of Ti;C,Tx MXene, respectively (e-h) XRD,
FT-IR, Raman and FESEM of f-MWCNTs, respectively.
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Figure S3. Raman spectra of pure blend and 4 wt.% filler loaded composite film, showing

characteristic MXene vibrational modes.
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Figure S4. Temperature dependent (a) €, and (b) o, at different frequency for PNC films.



Table S1. Various fitting parameters used in the Nyquist plot.

Sample C, (F) Q (CPE) n R, (QY) G, (F) R, (©)
Name (F.s™h)
Pure blend 1.05E-6 1.02E-8 0.89 1.98E-4 9.30E-8 1.305E-7
0.5 2.041E-6 1.73E-8 0.83 1.29E-4 2.187E-8 2.05E-6
1.0 1.481E-8 1.241E-7 0.77 1.283E-6 1.931E-7 1.551E-4
2.0 1.0915E-6  2.395E-7 0.75 1.246E-8 2.475E-8 2.421E-6
4.0 2.87E-7 1.86E-7 0.71 2.501E-5 2.854E-6 1.359E-6
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Figure S5. (a, b) AC conductivity (o,.) plots and (c, d) dielectric loss tangent (tan d) of the 4 wt.%
composite film in the X-band (8-12 GHz) and Ku-band (12-18 GHz), respectively.



Table S2. Comparison of the EMI shielding effectiveness (SEt) of various polymer composites

incorporating conductive fillers.

Polymer ) . Thickness Frequency SEr
Fill trat Ref.
Matrix iller Concentration i) (GHz) (dB) e
PVDF MWCNTs/rGO/FeCo 10 wt% 5 12 41.2 5
. 344
PVDF Bulk Ti;C, Ty 50 wt% 1 8-12 9 6
50 MHz-
0 -
PMMA MWCNT 40 wt.% 13.5 GHz 27 7
PVDF foam -G Swt.% - 8-12 20 8
PVDF CNT/BT-GO 3wt.%/5vol.% 1 8-18 31 9
PVDF MWCNT - 0.9 8-12 -8 10
PVDF Carbonyl Fe powder 50 vol.% 1.2 8.2-12.4 20 11
16.5
CoFe,04 and o 9 and
PVDF BaFe,O, 33.33 wt.% 2 8-12 123 12
3
PVA MX-Ti;C, Ty 13.9 0.025 12-18 37.1 13
PMMA
wrapped MWCNT 3 5.6 8-18 32 14
PVDF/ABS
PVA MWCNT-Graphene 10 1 1-2 32.8 15
MXene-
CNT MXene + CNT - - 8-12 40 16
(gradient)
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Figure S6. Charging and discharging curves of the pure PVDF-HFP/PMMA blend.
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