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Supplementary Equations:

The absorption rate (α) of sample was calculated as follows:

                                          (1)

𝛼 =  

2500𝑛𝑚

∫
200𝑛𝑚

[1 ‒ 𝑅(𝜆)]𝑆(𝜆)𝑑𝜆

2500𝑛𝑚

∫
200𝑛𝑚

𝑆(𝜆)𝑑𝜆

Where  is the reflectance of the absorber at wavelength , and  is the 𝑅(𝜆)  𝜆 𝑆(𝜆)

solar spectral irradiance (W m-2 nm-1) referred to as solar radiant flux density per unit 

area.

The evaporation rate of the sample was calculated as follows:

                                                        (2)
𝜈 =  

 Δ𝑚
𝑆 ∙ 𝑡

The solar-to-vapor conversion efficiency (η, %) of the sample was calculated as 

follows:

                                                      (3)
𝜂 =

𝑉 ∙ ℎ𝐿𝑉

𝐶𝑜𝑝𝑡 ∙ 𝑞𝑖

Where ∆m, s, t, hLV, Copt and qi are the water mass reduction during the evaporation 
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time (kg), evaporator area (m2), evaporation time (h), water evaporation enthalpy (kJ 

kg-1), the optical concentration and the solar irradiation intensity (1 kW m-2), 

respectively.

Supplementary Figures:

Fig. S1. TG curves of lignin and petroleum asphalt.

Fig. S2. True densities of F-F3 samples
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Fig. S3. Infrared spectrogram of F-F3 samples.

Fig. S4. (a) Contact angle test for F sample; (b) Contact angle test for F1 sample; 

(c) Contact angle test for F2 sample; (d) Contact angle test for F3 sample.
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Fig. S5. Thermal conductivity of F-F3 samples.

F F1 F2 F3
0
1
2
3
4
5
6
7
8
9

10

C
om

pr
es

si
ve

 st
re

ng
th

 (M
pa

)

Fig. S6. Compression strength of F-F3 samples.

Fig. S7. The phenomenon of salt deposition on the surface of F-F3 samples.
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Fig. S8. EDS maps of F2 and CF2 samples
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Fig. S9. True densities of CF1, CF2 samples

Fig. S10. (a) XRD spectra of CF1 and CF2 samples; (b) Raman spectra of CF and 

CF2 samples.

Fig. S11. Compression strength of CF1 and CF2 samples.
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Supplementary Figures:

Table S1. Thermal conductivity of different materials for solar steam generation.

No. Material
Thermal 

Conductivity
(W m-1 k-1)

Reference

1 Aerogel-based evaporator 0.066-0.058 1
2 Carbonized corncobs evaporator 0.317 2
3 Carbonized pomelo peel evaporator 0.323 3
4 Lignocellulosic biomass-based evaporator 0.06 4
5 Hydrophilic porous carbon foam evaporator 0.068 5

6 Lignin-based carbon foam (ACF) solar 
interface evaporator 0.023 6

7 Mesoporous cellulose-based hydrogel 0.719 7

8 Lignin-petroleum asphalt composite carbon 
foam (CF1, CF2) 0.093-0.1 This 

study

Table S2. Evaporation rate of water under standard sunlight in interfacial solar 
seawater desalination with different materials.

No. Material
Evaporation 

rate
 (kg m-2 h-1)

Reference

1 sunflower heads solar interface evaporator 1.51 8
2 loofah (CL) solar interface evaporator 1.72 9

3 carbonized banana foam (CBF) solar interface 
evaporator 1.51 10

4 MOF solar interface evaporator 1.97 11
5 CuS–CF solar interface evaporator 1.90 12
6 bamboo-based solar interface evaporator 1.63 13
7 3D fabric-base solar interface evaporator 1.57 14
8 corn cob-base solar interface evaporator 1.68 15

9 Lignin-based carbon foam (ACF) solar 
interface evaporator 2.11 6

10 Lignin-petroleum asphalt composite carbon 
foam (CF2) 2.04 This 

study
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