Supplementary Material

New-fashioned $MnO_x/g-C_3N_4@ZIF-8$ catalyst for the liquid-phase selective oxidation of toluene in the absence of solvent and additives conditions

Sihang Lu^a, Wenkai Chen^{b,c}, Gui Chen^{a,d*}, Shaobin Deng^a, Dexuan Xiang^{a,d}, Haizhou Zhang^{a,d}, Yuanxiang Li^{a,d}, Bailin Xiang^{a,d}, Ye Yuan^{a,*}

^a College of Chemistry and Materials, Huaihua University, Huaihua 418000, P. R. China
 ^b China Coal Research Institute Corporation Ltd., Beijing 100013, China
 ^c National Energy Technology & Equipment Laboratory of Coal Utilization and Emission Control, Beijing 100013, China
 ^d Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Materia, Huaihua University, Huaihua 418000, P. R.

China

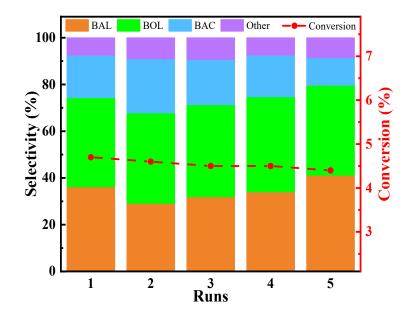
* Corresponding author

Tel.: +86-745-2851014.

E-mail address: cg@hhtc.edu.cn (G. Chen); yuanye@hhtc.edu.cn (Y. Yuan)

1. Experimental

1.1. Reagents and instrument


Melamine (AR, 99.0%) and zinc nitrate hexahydrate (AR, 99.0%) were obtained from Tianjin Komeo Chemical Reagent Co., Ltd, China. 2methylimidazole (AR, 99.0%) was purchased from Rohn Reagent Co., Ltd, China. 50% manganese nitrate (AR, 99.0%) was afforded by Chengdu Jinshan Chemical Reagent Co., Ltd, China. The other reagents were purchased from the market. Micro high-pressure reactor (BE100) was provided by Shanghai LABE Instrument Co., Ltd, China. The products were analyzed by a gas chromatography (Agilent 7890B GC-FID).

2.2. Catalyst characterization

FT-IR spectrum was recorded using the Nicolet-380 in the 4000-400 cm⁻¹ range. SEM images were taken with a Sigma HD, Carl Zeiss (FE-SEM). XRD analyses were performed using the Rigaku Ultima IV X-ray powder diffractometer. XPS analyses were recorded using a 250Xi analyzer (Al K α (1486.6 eV)). The textural properties of the samples were analyzed by N₂ physisorption at 77 K in Quantachrome NOVA-2200e. The elemental content of all samples was analysed on a Thermo Scientific iCAP 7400 ICP-OES.

Catalyst	Solvent/	Oxidizer	Tem.	Time	Con.		Sel. (%)		– Ref.
	(Initiator)		(°C)	(h)	(%)	BAL	BOL	BAC	
$VO(acac)_2$	Glacial acid	H_2O_2	90	4.0	19.8	50	6.1	22.2	[1]
Mn ₃ O ₄ /CNTs-3	TBHP	O ₂	90	12.0	24.63	43.5 1	46.98	-	[2]
CeMnO _x	-	molecular oxygen	180	4.0	7.0	51.1		44.5	[3]
Pt/ZrO ₂	-	O_2	90	3.0	37.2	19.6	6.5	70.4	[4]
Pd@C-GluA-550	-	molecular oxygen	160	7.0	-	51.0	-	-	[5]
[TPPFe ^{III}] ₂ O	-	molecular oxygen	165	3.75	7.36	59.06		-	[6]
Mn@ZIF-8	-	molecular oxygen	180	2.5	6.5	31.6	38.7	24.8	[7]
$MnO_x/g-C_3N_4@ZIF-8$	-	molecular oxygen	180	2.0	4.7	36.2	38.1	18.2	This work

 Table S1 Comparison of catalytic performance of some different types of catalysts.

Fig. S1 Recycling results of $MnO_x/g-C_3N_4@ZIF-8$ catalysts.

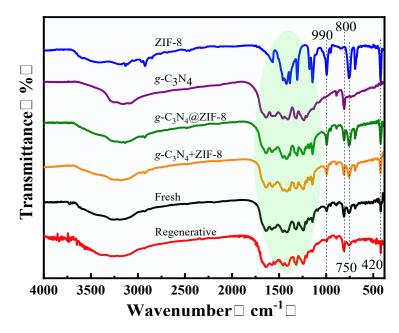


Fig. S2 FT-IR spectra of different samples.

References

- [1] X. Wang, J. Wu, M. Zhao, Y. Lv, G. Li, and C. Hu, J. Chem. Phys., 2009, 113, 14270-14278.
- [2] Y. Feng, and A. Zeng, Catalysts, 2020, 10, 623-635.
- [3] G. Chen, K. You, F. Zhao, Z. Chen, and H. Luo, *Res. Chem. Intermediat.*, 2022, 48, 2593-2606.
- [4] P. Zhang, Y. Gong, H. Li, Z. Chen, and Y. Wang, Nat. Commun., 2013, 4, 1593-1604.
- [5] N. Kumar, K. Naveen, A. Bhatia, S. Muthaiah, V. Siruguri, and A. Paul, *React. Chem. Eng.*, 2020, 5, 1264-1271.
- [6] M. Ilyas, and M. Sadiq, Catal. Lett., 2009, 128, 337-342.
- [7] S. Deng, G. Chen, C. Liang, L. Wang, and B. Xiang, Arab. J. Chem., 2023, 16, 104666.