Supporting Information

Synthesis of nanoporous poly(2-chloro-2-propen-1-ol) and its modification via ethylenediamine: vanadyl-catalyzed process, structural characterization, and CO₂ sorption

Joanna Drzeżdżon^{1,2,3}*, Shengyu Dai^{4,5}, Huijun Fan⁴, Artur Sikorski¹, Mateusz A. Baluk¹, Janusz Datta³, Anatoliy Ranskiy², Dagmara Jacewicz¹

¹Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland

²Vinnytsia National Technical University, Khmelnytske shose 95, Vinnytsia, 21021, Ukraine

³Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk

⁴School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.

⁵Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, China.

*Corresponding author: joanna.drzezdzon@ug.edu.pl

Figure S1. MALDI-TOF-MS spectrum of vanadyl acetylacetonate hydrogen bonded with 3-amino-2-chloropyridine (CCA matrix)

Figure S2. MALDI-TOF-MS spectrum of vanadyl acetylacetonate hydrogen bonded with 3-amino-2-chloropyridine (DHB matrix)

Figure S3. TG of vanadyl acetylacetonate hydrogen bonded with 3-amino-2-chloropyridine.

Figure S4. FTIR spectra of vanadyl acetylacetonate hydrogen bonded with 3-amino-2chloropyridine (TG-FTIR) - changes in the duration of the measurement - the lowest are the spectra at the beginning of the measurement and the higher the closer to the end of the measurement.

Figure S5. The PL spectra of vanadyl acetylacetonate hydrogen-bonded with 3-amino-2-chloropyridine and substrates used for its synthesis.

Figure S6. The UV-Vis DRS spectra of vanadyl acetylacetonate hydrogen-bonded with 3-amino-2-chloropyridine and substrates used for its synthesis.

Figure S7. Heat of adsorption (complex compound sample) of CO_2 in range quantity adsorbed from 2 to 13 cm³/g of CO_2 .

Figure S8. ¹H NMR spectrum of the copolymer from table 2, entry 1 (CDCl₂CDCl₂, 100 °C).

Figure S9. ¹H NMR spectrum of the copolymer from table 2, entry 2 (CDCl₂CDCl₂, 100 °C).

Figure S10. DSC of the polymer from table 1, entry 1.

Figure S11. DSC of the polymer from table 1, entry 2.

Figure S11. DSC of the polymer from table 2, entry 1.

Figure S12. GPC of the polymer from table 1, entry 1.

Figure S13. GPC of the polymer from table 1, entry 2.

Figure S14. GPC of the polymer from table 2, entry 1.

Figure S15. TG analysis of poly(2-chloro-2-propen-1-ol).

Figure S16. TG analysis of poly(2-chloro-2-propen-1-ol) modified with EDA.

Figure S17. UV-VIS spectra of VO(acac)₂(H₂O)(3-amino-2-chloropyridine) (1), VO(acac)₂ (H₂O)(3-amino-2-chloropyridine) with Et_2AlCl (2), VO(acac)₂(H₂O)(3-amino-2-chloropyridine) with Et_2AlCl and ethylene (3). All solutions were prepared in CH₂Cl₂.

Figure S18. FTIR spectra of VO(acac)₂(H₂O)(3-amino-2-chloropyridine) and VO(acac)₂ (H₂O)(3-amino-2-chloropyridine) with Et_2AlCl .

Figure S19. MALDI-TOF-MS of poly(2-chloro-2-propen-1-ol).

Figure S20. Plot of nitrogen adsorption-desorption isotherms at 223 and 248 K for poly(2-chloro-2-propen-1-ol) modified with EDA, and a plot of the heat of adsorption of CO_2 based on these isotherms as an insert.

Figure S21. ¹H NMR of poly(2-chloro-2-propen-1-ol) (CDCl₃, 298 K).

Figure S22. ¹³C NMR of poly(2-chloro-2-propen-1-ol) (CDCl₃, 298 K).

Figure S23. ¹H NMR of poly(2-chloro-2-propen-1-ol) modified with EDA (CDCl₃, 298 K).

Figure S24. ¹³C NMR of poly(2-chloro-2-propen-1-ol) modified with EDA (CDCl₃, 298 K).