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A. PMMA spheres

Figure S1: SEM images of the PMMA spheres in the samples PMMA-372, PMMA-308, PMMA-203, PMMA-123, PMMA-115 

and PMMA-87
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B. Porous Ag

Figure S2: sphere diameter distribution curve of PMMA-308 and pore size distribution curve of a Ag-308 electrode. The pore 

size for the porous Ag-208 electrode is ~10% smaller than the PMMA sphere size. This is caused by shrinkage of the structure 

during drying. 
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Figure S3: SEM images of bare carbon paper and the Ag-372, Ag-308, Ag-203, Ag-123, Ag-115 and Ag-87 nm samples at both 

500 μm and 1 μm scale.
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C. XRD graphs

Figure S4: X-ray diffractograms of the Ag samples, carbon paper and pure Ag before and after catalysis
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D. Currents catalysis 

  

Figure S5: Current responses for the a) Ag-115, b) Ag-123, c,d) Ag-203, e,f) Ag-308 and g,h) Ag-372 catalysts when applying 

different potentials in catalysis. The fluctuations in the current are ascribed to bubble formation.
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E. NMR

Table S1: Faradaic efficiencies of the liquid products formate and methanol formed by the Ag-203 and Ag-372 catalysts at 

the five different catalysis potentials. 

Potential (V vs RHE) Ag-203 FE formate (%) Ag-372 FE formate (%)

-0.7 0 0

-0.9 0 0

-1.2 0 7.2

-1.3 0 4.4

-1.4 6.1 0

A

)

B)
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E)

formate

F)
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G)

formate

H)
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formate

I)

formate

J)

Figure S6: NMR spectra showing the (absence of) formate production for Ag-203 at a) -0.7 V vs RHE; b) -0.9 V vs RHE;                           

c) -1.2 V vs RHE; d) -1.3 V vs RHE and e) -1.4 V vs RHE; and for Ag-372 at f) -0.7 V vs RHE; g) -0.9 V vs RHE; h) -1.2 V vs 

RHE; i) -1.3 V vs RHE; j) -1.4 V vs RHE;
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F. Faradaic Efficiency

G. Sigmoidal 

fit catalytic 

data

All the data 

was fit with the Slogistic1 fit function in Origin, based on the function          

Figure S7: Faradaic efficiencies for the a) Ag-115, b) Ag-123, c,d) Ag-203, e,f) Ag-308 and g,h) Ag-372 catalysts when applying 

different potentials in catalysis and plots of the pore sizes dependence of the faradaic efficiency for i) CO and j) H2 at different 

potentials
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𝑦 =  
𝑎

1 + 𝑒( ‒ 𝑘(𝑥 ‒ 𝑥𝑐))

Table S2: R2 values for the sigmoidal fits of the partial current density to CO and H2 for the Ag-372, Ag-308, Ag-203, Ag-123 

and Ag-115 catalyst. 

Sample R2 |JCO| R2 |JH2
|

Ag-115 0.99600 0.99944

Ag-123 0.99964 0.99343

Ag-203 0.95932 0.50397

Ag-308 0.86573 0.42634

Ag-372 0.93996 0.95662

H. Surface area

Tabel S3: Pore diameter and ECSA determined via Pb UPD, DLC and EIS of the five porous Ag samples

Sample Ag pore size (nm) ECSA  (cm2/electrode) via Pb UPD ECSA  (cm2/electrode) via DLC

Ag-115 115 67 139

Ag-123 123 65 112

Ag-203 203 33 93

Ag-308 308 18 45

Ag-372 372 19 84 
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Figure S8: Pb underpotential deposition (UPD) curves for the Ag-115, Ag-123, Ag-203, Ag-308 and Ag-372 catalyst.

Figure S9: a) CV of a Ag-203 catalysts with 1 C/cm2 Ag loading showing the non-linear regime used for DLCin grey; b) CVs 

obtained during DLC for a 2 C/cm2 Ag-203 catalysts indicating that for larger scan rates (>0.2V), diffusion inside the porous 

Ag is not fast enough and the scans are no longer symmetric. These scan rates were excluded from the DLC determination.
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I. FIB-SEM

Data analysis

The data analysis was performed in ImageJ. An image stack was created by selecting images 

that were not out of focus nor contained defects that were not representative for the whole 

sample. For Ag-115 the dataset was composed of 69 consecutive images ordered in the 

z direction, for Ag-203 two datasets of 91 images and 100 images were selected (of which the 

results were averaged after all analyses), and for Ag-372 100 images were included in the 

dataset. Then, the real voxel depth was determined based on the roundness of the voids and 

the StackReg plugin was used to align the stacks. (1) Next, the images were cropped to a 

common Region of Interest (ROI) in the image plane (x,y) of 3.00 μm x 2.00 μm. A Gaussian 

Blur filter with sigma radius 3 was applied to reduce the electron micrograph noise. Finally, 

the contrast in the images was enhanced by normalizing and equalizing the stack histogram. 

The different elements in the image (pore or Ag) were segmented via Trainable WEKA 

segmentation.(2) The default steps (Gaussian blur, Hessian, Sobel filter, difference of 

Gaussians and Membrane projections) were used with a filter sigma ranging from 1 to 16 and 

the FastRandomForest classifier algorithm. To overcome the anisotropy in the z direction (the 

voxel depth), the binarized slices were interpolated to create isotropic x, y, and z directions. 

The 3D Viewer plugin(3) of ImageJ was used to visualize and reconstruct the 3D surface from 

the segmented Z-Stack. A 3D watershed (3D ImageJ Suite)(4) was applied to separate the 

individual pores and by measuring the center-to-center distances of the pores,(4) the data for 

Figure S10: DLC curves for the Ag-115, Ag-123, Ag-203, Ag-308 and Ag-372 catalyst. The open data points indicate the linear 

parts that were used to determine the ECSA of the catalysts. On the right side, the linear fits (format ax + b) are given, where 

‘a’ is the capacitance in mC/electrode. 
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the pore distance distributions was obtained. The pore volume was calculated by using the 

ratio between the segmented voxel of Ag and porous space. The Skeletonize3D plugin(5) of 

ImageJ was used to reduce the structure to its medial axis. The skeletons were then measured 

and characterized through the AnalyzeSkeleton plugin.(6,7) To avoid artefacts, the 

skeletonization analysis was performed with a prune cycle based on the shortest branch and 

the elimination of the prune ends. The Matlab App(8) TauFactor(9) was used to determine 

the diffusion in x, y, and z directions through the finite difference method and to determine 

the 3D pore volume.

The diffusional tortuosity was analyzed (based on simulations of the diffusion using            

, where  is the tortuosity,   the effective diffusion,  the diffusion in 𝐷𝑒𝑓𝑓 =  𝑝 𝜏 ∗ 𝐷 𝑏𝑢𝑙𝑘 𝜏 𝐷𝑒𝑓𝑓  𝐷 𝑏𝑢𝑙𝑘

the bulk and  is the porosity) and not the geometric tortuosity (based on             , where𝑝  𝜏 =  𝑅/𝐿

 is the path through the pores and  the shortest path between begin and end), as the former  𝑅  𝐿

accounts for the real characteristics of the diffusing substance.(10,11)

Figure S11: Distances distribution of the pore center to center distance for Ag-115, Ag-203 and Ag-372.
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A) Ag-115 B) Ag-203 C) Ag-372

Figure S13: 3D skeleton based on FIB-SEM slice-and-view results from the samples a) Ag-115; b) Ag-203; and c) Ag-372

A) Ag-115 B) Ag-203 C) Ag-372

Figure S12: 3D diffusion model from the samples a) Ag-115; b) Ag-203; and c) Ag-372. The blue color indicates easy diffusion, 

the  orange/yellow color harder diffusion.
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J. After catalysis

Figure S14: SEM images of the a) Ag-115, b) Ag-123, c) Ag-203, d) Ag-308 and e) Ag-372 samples after catalysis.
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K. Long term catalytic performance
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Figure S15: Catalytic performance over time of a Ag-145 catalyst with a Ag loading 3.3 mg/cm2 on C-cloth at -1.2 V vs RHE 

(no iR correction). The catalytic performance was measured in duplo in a ElectroCell flow cell with a iridium oxide-based anode 

(Dioxide Materials) and an anion exchange membrane (Fumasep FAA-3-PK-130). A flow of 20 mL/min CO2 was applied, as 

well as 15 ml/min electrolyte flow of 0.1 M KHCO3. The long term stability was measured after applying a voltage of -0.7 V,   -

0.9 V, -1.2 V, -1.3 V and -1.4 V for 0.5 h each on a Autolab PGSTAT204. 
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