Supporting information

Catalytic transformation of epoxy resin toward dicyclohexane

Ganwen Deng^{a.b} Liang Li,^b Chenguang Wang, ^b Haiyong Wang^b and Yuhe Liao^{*a,b}

^aSchool of Energy Science and Engineering, University of Science and Technology of China, Guangzhou, 510640, People's Republic of China.

^bKey Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.

Email: liaoyh@ms.giec.ac.cn or yuhe.liao20@gmail.com

Fig. S1. Gas chromatogram of the reaction products. Reaction conditions: 220 °C, 5 MPa H₂, 0.2 g glycidyl end-capped poly(bisphenol A-*co*-epichlorohydrin), 15 mL *n*-hexane, 0.05 g Pd/C, and 0.05 g HZSM-5 (SiO₂/Al₂O₃=25). C15-2OH: complete and partial hydrogenation products of bisphenol A (BPA) with two hydroxy groups; C15-OH: complete and partial hydrogenation products of BPA with one hydroxy group.

Fig. S2. Conversion of glycidyl end-capped poly(bisphenol A-*co*-epichlorohydrin) in the presence of hydroprocessing catalysts and HZSM-5 (SiO₂/Al₂O₃=25) with different reaction times. Reaction conditions: 220 °C, 5 MPa H₂, 10 h, 0.2 g glycidyl end-capped poly(bisphenol A-coepichlorohydrin), 15 mL *n*-hexane, 0.05 g Pd/C, and 0.05 g HZSM-5. C6: cyclohexane; C8: ethylcyclohexane; C9: isopropylcyclohexane; C15: propane-2,2-diyldicyclohexane; C15-2OH: complete and partial hydrogenation products of bisphenol A (BPA) with two hydroxy groups; C15-OH: complete and partial hydrogenation products of BPA with one hydroxy group.

Fig. S3. Nitrogen isotherms of different zeolites.

Fig. S4. NH₃-TPD profiles of different zeolites.

Fig. S5. Nitrogen isotherms of HZSM-5 with different SiO $_2$ to Al $_2$ O $_3$ ratios.

Fig. S6. NH_3 -TPD profiles of HZSM-5 with different SiO₂ to Al_2O_3 ratios.

Fig. S7. FTIR spectra of HZSM-5 zeolites (SiO₂/Al₂O₃=25, 46, and 85) after adsorption of pyridine. B acid: Brønsted acid; L acid: Lewis acid.

Fig. S8. Conversion of glycidyl end-capped poly(bisphenol A-*co*-epichlorohydrin) in the presence of Pd/C and HZSM-5 with different SiO₂ to Al₂O₃ ratios. Reaction conditions: 220 °C, 5 MPa H₂, 10 h, 0.2 g glycidyl end-capped poly(bisphenol A-co-epichlorohydrin), 15 mL *n*-hexane, 0.05 g Pd/C, and 0.05 g HZSM-5. C6: cyclohexane; C8: ethylcyclohexane; C9: isopropylcyclohexane; C15: propane-2,2-diyldicyclohexane; C15-2OH: complete and partial hydrogenation products of bisphenol A (BPA) with two hydroxy groups; C15-OH: complete and partial hydrogenation products of BPA with one hydroxy group.

Fig. S9. Conversion of glycidyl end-capped poly(bisphenol A-co-epichlorohydrin) in the presence of acidic zeolite supported Pd catalysts. Reaction conditions: 220 °C (unless otherwise stated), 5 MPa H₂, 10 h, 0.2 g glycidyl end-capped poly(bisphenol A-co-epichlorohydrin), 15 mL n-hexane, 0.05 g catalyst (5wt.% Pd in catalyst). 2×Pd/HZSM-5: 0.1 g catalyst; HZSM-5 (SiO₂/Al₂O₃=25), Hbeta (SiO₂/Al₂O₃=25), and HUSY (SiO₂/Al₂O₃=13). C6: cyclohexane; C8: ethylcyclohexane; C9: isopropylcyclohexane; C15: propane-2,2-diyldicyclohexane; C15-2OH: complete and partial hydrogenation products of bisphenol A (BPA) with two hydroxy groups; C15-OH: complete and partial hydrogenation products of BPA with one hydroxy group.

Fig. S10. Conversion of glycidyl end-capped poly(bisphenol A-*co*-epichlorohydrin) in different solvents using Pd/C and HZSM-5 (SiO₂/Al₂O₃=25). Reaction: 220 °C, 5 MPa H₂, 10 h, 0.2 g glycidyl end-capped poly(bisphenol A-co-epichlorohydrin), 15 mL solvent, 0.05 g Pd/C, and 0.05 g HZSM-5. C6: cyclohexane; C8: ethylcyclohexane; C9: isopropylcyclohexane; C15: propane-2,2-diyldicyclohexane; C15-2OH: complete and partial hydrogenation products of bisphenol A (BPA) with two hydroxy groups; C15-OH: complete and partial hydrogenation products of BPA with one hydroxy

Fig. S11. Characterization of fresh and spent HZSM-5 ($SiO_2/Al_2O_3=25$). (A) XRD; (B) NH₃-TPD. The spent HZSM-5 includes Pd/C and HZMS-5.

Fig. S12. Conversion of polycarbonate and epoxy resin (i.e. glycidyl end-capped poly(bisphenol A*co*-epichlorohydrin)), and the mixture of polycarbonate and epoxy resin in the presence of Pd/C and HZSM-5 (SiO₂/Al₂O₃=25). Reaction: 220 °C, 5 MPa H₂, 10 h, 0.2 g substrate, 15 mL *n*-hexane, 0.05 g Pd/C, and 0.05 g HZSM-5. Polycarbonate+Epoxy resin: 0.1 g polycarbonate and 0.1 g epoxy resin. C6: cyclohexane; C8: ethylcyclohexane; C9: isopropylcyclohexane; C15: propane-2,2diyldicyclohexane; C15-2OH: complete and partial hydrogenation products of bisphenol A (BPA) with two hydroxy groups; C15-OH: complete and partial hydrogenation products of BPA with one hydroxy group.

 Table S1.
 The properties of zeolites.

Zeolite	S _{BET} (m²/g) ^a	S_{micro} (m ² /g) ^b	V _{total} (cm ³ /g) ^c	V _{micro} (cm ³ /g) ^b
HZSM-5 (SiO₂/Al₂O₃= 25)	410	370	0.23	0.15
Hbeta (SiO ₂ /Al ₂ O ₃ = 25)	709	633	0.57	0.25
HUSY (SiO ₂ /Al ₂ O ₃ = 13)	865	798	0.45	0.31
Ferrierite (SiO ₂ /Al ₂ O ₃ =20)	425	401	0.27	0.15
HZSM-5 (SiO ₂ /Al ₂ O ₃ =46)	417	378	0.21	0.16
HZSM-5 (SiO ₂ /Al ₂ O ₃ =85)	390	348	0.22	0.15

^{*a*} Determined by N_2 sorption.

 $^{\it b}$ t-plot was used to determine the $V_{\rm micro}\, {\rm and}\, S_{\rm micro}$

^c The total pore volume (V_{total}) was determined by using the adsorbed value at p/p_0 =0.99.