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1. Maximum achievable throughput in the search space of [3+3] 

cycloaddition reaction optimization
In this section, the maximum achievable objective is explained using the optimization problem 

from our earlier work: the optimization of a [3+3] cycloaddition of 1,3-cyclohexanedione with 

citral in a flow reactor – slug flow. The optimization involved four continuous variables: 

temperature ( ) [ ], residence time (τ) [ ], reagent equivalent ( ) [ ], 𝑇 25 ‒ 50 𝑜𝐶 1 ‒ 10 𝑚𝑖𝑛 𝑛𝑒𝑞 1 ‒ 2 𝑒𝑞

and catalyst loading ( ) [ ], along with one categorical variable consisting of six 𝑐𝑎𝑡𝑙𝑜𝑎𝑑 5 ‒ 20 𝑚𝑜𝑙%

catalyst options. The objective was to maximize throughput (g/h), which is the amount of 

product formed per hour.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝜏 (1)

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐶𝑖𝑛𝑙𝑖𝑛𝑒
𝑙𝑖𝑚 × 𝑌𝑖𝑒𝑙𝑑 × 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 × 𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (2)

where  is the inline concentration of the limiting reagent,  is the volume of 𝐶𝑖𝑛𝑙𝑖𝑛𝑒
𝑙𝑖𝑚 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟( = 5 𝑚𝑙)

reactor, and ) is the molecular weight of the product. 𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡( = 246 𝑔/𝑚𝑜𝑙

For the fixed total volume ( ), the inline concentration of the limiting reagent (refer 𝑉𝑡𝑜𝑡𝑎𝑙 = 214 𝜇𝑙

Fig. S1) depends on  and  as described by following equations:𝑛𝑒𝑞 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑙𝑖𝑚 + 𝑉𝑟𝑒𝑎𝑔 + 𝑉𝑐𝑎𝑡 (3)

𝑛𝑒𝑞 =
𝑉𝑟𝑒𝑎𝑔𝐶𝑠𝑡𝑜𝑐𝑘

𝑟𝑒𝑎𝑔

𝑉𝑙𝑖𝑚𝐶𝑠𝑡𝑜𝑐𝑘
𝑙𝑖𝑚

(4)

𝑐𝑎𝑡𝑙𝑜𝑎𝑑 =
𝑉𝑐𝑎𝑡𝐶

𝑠𝑡𝑜𝑐𝑘
𝑐𝑎𝑡

𝑉𝑙𝑖𝑚𝐶𝑠𝑡𝑜𝑐𝑘
𝑙𝑖𝑚

× 100 (5)

where , , and  are the volumes of the limiting reagent, excess reagent, and catalyst. 𝑉𝑙𝑖𝑚 𝑉𝑟𝑒𝑎𝑔 𝑉𝑐𝑎𝑡

The stock concentrations are , , and  corresponding to the 𝐶𝑠𝑡𝑜𝑐𝑘
𝑙𝑖𝑚 = 0.5 𝑀 𝐶𝑠𝑡𝑜𝑐𝑘

𝑟𝑒𝑎𝑔 = 0.5 𝑀 𝐶𝑠𝑡𝑜𝑐𝑘
𝑐𝑎𝑡 = 0.05 𝑀

limiting reagent, excess reagent, and catalyst respectively. 

 can then be calculated by substituting Equations (4) and (5) in (3).𝑉𝑙𝑖𝑚

𝑉𝑙𝑖𝑚 =
𝑉𝑡𝑜𝑡𝑎𝑙

[1 + 𝐶𝑠𝑡𝑜𝑐𝑘
𝑙𝑖𝑚 ( 𝑛𝑒𝑞

𝐶𝑠𝑡𝑜𝑐𝑘
𝑟𝑒𝑎𝑔

+

𝑐𝑎𝑡𝑙𝑜𝑎𝑑
100

𝐶𝑠𝑡𝑜𝑐𝑘
𝑐𝑎𝑡 )] (6)

 can be then calculated as follows:𝐶𝑖𝑛𝑙𝑖𝑛𝑒
𝑙𝑖𝑚
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𝐶𝑖𝑛𝑙𝑖𝑛𝑒
𝑙𝑖𝑚 =

𝑉𝑙𝑖𝑚𝐶𝑠𝑡𝑜𝑐𝑘
𝑙𝑖𝑚

𝑉𝑡𝑜𝑡𝑎𝑙
(7)

Fig. S1. Flow (slug) setup for the formal [3+3] cycloaddition reaction.

The throughput calculation incorporates the inline concentration of the limiting reagent ( ), 𝐶𝑖𝑛𝑙𝑖𝑛𝑒
𝑙𝑖𝑚

reactor volume ( ), yield of the reaction, and the residence time (τ). While the yield 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟

depends on the nature of the reaction at specific conditions, and the reactor volume ( )  is 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟

a fixed parameter, the remaining terms are determined by the chosen variables: τ is directly 

specified, while  is based on  and . Lower residence time (τ) favours higher 𝐶𝑖𝑛𝑙𝑖𝑛𝑒
𝑙𝑖𝑚 𝑛𝑒𝑞 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

throughput, as do lower equivalents of reagent ( ) and catalyst ( ). Overall, throughput 𝑛𝑒𝑞 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

depends on the yield of the reaction (which is unknown prior to conducting the reaction) and 

the chosen variables - residence time (τ), reagent equivalent ( ), and catalyst loading ( ) 𝑛𝑒𝑞 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

(which are known prior).  For each experimental condition in the optimization space, the 

maximum achievable throughput can be calculated by assuming a yield of 100%. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝐶𝑖𝑛𝑙𝑖𝑛𝑒

𝑙𝑖𝑚 × [𝑌𝑖𝑒𝑙𝑑 = 100%] × 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 × 𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝜏
(8)

Fig. S2.A depicts the maximum achievable throughput in the search space, represented solely 

by variables essential for calculating throughput - residence time (τ), reagent equivalent ( ), 𝑛𝑒𝑞

and catalyst loading ( ) - is represented in Fig. S2.A using residence time (τ) and mass of 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

the product. The relationship between the mass of the product and the variables - reagent 

equivalent ( ), and catalyst loading ( ) - is represented Fig. S2.B.   𝑛𝑒𝑞 𝑐𝑎𝑡𝑙𝑜𝑎𝑑
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Fig. S2 A) Maximum achievable throughput for [3+3] – cycloadditions reaction - calculated 

assuming 100% yield within the search space. B) Relationship between mass of the product 

and the variables - reagent equivalent ( ), and catalyst loading ( )  𝑛𝑒𝑞 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

The plot clearly demonstrates the influence of variables on the objective function (throughput) 

calculation. Here, the maximum achievable throughput at higher residence times and low 

limiting reagent concentration (higher reagent equivalent ( ) and catalyst loading ( ))  is 𝑛𝑒𝑞 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

relatively lower compared to maximum achievable throughput at lower residence times (τ) and 

high limiting reagent concentration (lower reagent equivalent ( ) and catalyst loading (𝑛𝑒𝑞

)). It is important not to assume that the optimal solution necessarily lies at low residence 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

time (τ), reagent equivalent ( ), and catalyst loading ( )   since the maximum achievable 𝑛𝑒𝑞 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

throughput is calculated under the assumption that the yield is set at 100%. In reality, the 

reaction may not proceed efficiently under conditions that favour high maximum achievable 

throughput, so the actual global solution could be located anywhere within the search space.  

2. Futile region in the search space of [3+3] cycloaddition reaction 

optimization
In the process of optimization, as the value of the best objective increases, the futile region 

within the search space also expands. This futile region represents the area where the maximum 

achievable objective is less than the current best objective value. The evolution of the futile 

space within the search space of the reaction optimization problem (mentioned earlier) is 

illustrated in Fig. S3, where the futile space is shown in grey. The remaining white space 

represents the promising search space where improvement in the objective function is 

theoretically possible.
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Table S1. Boundary limits of variables (involved in objective calculation) for different values 

of the best throughput

Boundary Limit that ensures 𝑓max 𝑎𝑐ℎ𝑒𝑖𝑣𝑎𝑏𝑙𝑒 > 𝑓 ∗

Best Throughput 𝑓 ∗

 τ  𝑛𝑒𝑞    𝑐𝑎𝑡𝑙𝑜𝑎𝑑

(g/h) (min) (eq.) (mol%)

1 14.8 35.39 348.9

2 7.4 16.95 164.5

3 4.9 10.80 103.0

4 3.7 7.72 72.2

5 3.0 5.88 53.8

6 2.5 4.65 41.5

7 2.1 3.77 32.7

8 1.8 3.11 26.1

9 1.6 2.60 21.0

10 1.5 2.19 16.9
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Fig. S3. Evolution of futile space within the search space for different values of the best 

throughput. The futile space is shown in grey, while the remaining white space represents the 

promising area where theoretical improvement from the best throughput value is possible. 

(Left) The search space is represented by the mass of the product and residence time (τ). (Right) 

The mass of the product is shown as a function of other variables - reagent equivalent ( ) and 𝑛𝑒𝑞

catalyst loading ( ).  𝑐𝑎𝑡𝑙𝑜𝑎𝑑

It is worth noting that some of the boundaries of the variables (involved in objective calculation) 

become redundant as the optimization progresses. Removing such redundant boundaries from 

the optimization problem can reduce its complexity, thereby facilitating the optimization 

algorithm.

The boundary limit of a variable is determined based on the best objective value and the 

specified boundaries of the other variables that favour the objective value. For instance, 

boundary limit for residence time ( ) is calculated (Equation 9) at the best throughput (𝜏𝑙𝑖𝑚

) by assuming 100% yield and considering the lower limit of reagent equivalent (𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗

) and the lower limit of catalyst loading ( ). Similarly, the boundary limit for reagent 𝑛𝑙𝑏
𝑒𝑞 𝑐𝑎𝑡 𝑙𝑏

𝑙𝑜𝑎𝑑

equivalent ( ) is calculated (Equation 10) by considering lower limit of residence time ( ) 𝑛𝑙𝑖𝑚
𝑒𝑞 𝜏𝑙𝑏

and , and the boundary limit for catalyst loading is calculated (Equation 11) using  and 𝑐𝑎𝑡 𝑙𝑏
𝑙𝑜𝑎𝑑 𝜏𝑙𝑏

.𝑛𝑙𝑏
𝑒𝑞

𝜏𝑙𝑖𝑚 =

 ( 1

[ 1

𝐶𝑠𝑡𝑜𝑐𝑘
𝑙𝑖𝑚

+ ( 𝑛𝑙𝑏
𝑒𝑞

𝐶𝑠𝑡𝑜𝑐𝑘
𝑟𝑒𝑎𝑔

+

𝑐𝑎𝑡 𝑙𝑏
𝑙𝑜𝑎𝑑

100

𝐶𝑠𝑡𝑜𝑐𝑘
𝑐𝑎𝑡 )])[𝑌𝑖𝑒𝑙𝑑 = 100%] × 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 × 𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ (9)

𝑛𝑙𝑖𝑚
𝑒𝑞 =

𝐶𝑠𝑡𝑜𝑐𝑘
𝑟𝑒𝑎𝑔 ([𝑌𝑖𝑒𝑙𝑑 = 100%] × 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 × 𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ × 𝜏𝑙𝑏
‒

1

𝐶𝑠𝑡𝑜𝑐𝑘
𝑙𝑖𝑚

‒

𝑐𝑎𝑡 𝑙𝑏
𝑙𝑜𝑎𝑑

100

𝐶𝑠𝑡𝑜𝑐𝑘
𝑐𝑎𝑡 ) (10)

 



S8

𝑐𝑎𝑡 𝑙𝑖𝑚
𝑙𝑜𝑎𝑑 =

𝐶𝑠𝑡𝑜𝑐𝑘
𝑐𝑎𝑡 × 100 × ([𝑌𝑖𝑒𝑙𝑑 = 100%] × 𝑉𝑟𝑒𝑎𝑐𝑡𝑜𝑟 × 𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗ × 𝜏𝑙𝑏
‒

1

𝐶𝑠𝑡𝑜𝑐𝑘
𝑙𝑖𝑚

‒
𝑛𝑙𝑏

𝑒𝑞

𝐶𝑠𝑡𝑜𝑐𝑘
𝑟𝑒𝑎𝑔

) (11)

The boundary limits for the variables change with different best throughput value, is provided 

in Table S1. The boundary of the problem is updated only if the new boundary limit leads to a 

reduction in the search space. It can be observed that for lower values of the best throughput, 

the boundary limit exceeds the initially specified limit.

3. Handling constraint using Bayesian Optimization
When discussing the use of constraints in expensive black-box problems like reaction 

optimization, they can generally be classified into two types:1

3.1. Known constraints (constraints involving variables)

These constraints are pre-defined and can be assessed for compliance before conducting the 

experiment. For example, a known constraint may require that the volume of a two-reagent 

mixture should not exceed a specified limit. In this case, the volumes of the reagent mixtures 

are the variables, and it can be determined prior to the experiment whether this constraint will 

be violated.

3.2. Unknown constraints (constraints involving objectives)

These constraints relate to outcomes that cannot be confirmed until after the experiment is 

conducted. An example of this is optimizing the throughput of a reaction where the yield must 

exceed a certain threshold, but the actual yield is not known until the reaction is complete.

Although Bayesian optimization can address both types of constraints, handling unknown 

constraints is more challenging than dealing with known constraints. The constraint in our case 

comes under known constraints, as the maximum achievable objective value is calculated using 

the variables assuming 100% yield, and their satisfaction can be checked without performing 

experiment. 

Bayesian optimization operates through two main steps: generating a surrogate model and 

utilizing an acquisition function to predict the optimum point. The surrogate model is a 

probabilistic model that serves as a cost-effective substitute for the actual model. Through the 
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acquisition function, each point in the variable space is scored, with the point receiving the 

highest score identified as the most promising for subsequent experimentation.

Different acquisition functions prioritize and score points in variable ways. For instance, the 

Expected Improvement function considers both the prediction and the uncertainty value. It 

strikes a balance between exploitation (searching near the best-known points) and exploration 

(searching in untested regions). The trade-off between these two can be adjusted by setting the 

exploration factor; a higher value leads to more exploration.

Identifying the point with the highest acquisition score presents another optimization challenge. 

Ideally, one could evaluate the score for all points in the search space and select the best one, 

but this is computationally intensive. Therefore, this selection is usually treated as an 

optimization problem and solved using efficient algorithms like gradient descent. Since this 

algorithm is a local search method, it is typically executed multiple times from different starting 

points to avoid local minima. Here, known constraints are incorporated into the acquisition 

function optimization step. The goal is to identify the point with the optimal score that 

simultaneously meets these constraints. Removing redundant boundaries helps in reducing the 

complexity of this acquisition function optimization problem. 

4. Solvers
4.1. Bayesopt (MATLAB)

Bayesopt is the MATLAB’s build-in function, by default, minimizes black-box problems. It 

utilizes a Gaussian Process (GP) as the surrogate model and employs the ARD Matern 5/2 

kernel as the covariance function. It can handle continuous, integer, and categorical variables. 

Bayesopt offers six acquisition function options:

 Expected Improvement per Second Plus

 Expected Improvement

 Expected Improvement Plus

 Expected Improvement per Second

 Lower Confidence Bound

 Probability of Improvement

For the "Expected Improvement per Second Plus" and "Expected Improvement Plus" functions, 

the exploration factor can be specified (default value: 0.5). For acquisition function 
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optimization, the best points among the feasible points (those that satisfy constraints) are 

optimized using a local search method.

For simulation studies, “Expected Improvement per Second Plus” and “Expected Improvement 

per Second” were excluded because they incorporate the evaluation time of the objective 

function in the acquisition process which is not in the interest of our problem.  Apart from the 

selection of the acquisition function and the exploration factor, the solver was run using its 

default settings. More details on the algorithm workflow, surrogate model, and acquisition 

functions, and settings can be found at: https://in.mathworks.com/help/stats/bayesian-

optimization-algorithm.html

The code for initializing and running Bayesopt, both in standard BO and ABC-BO modes, is 

available on GitHub (https://github.com/Aravind-vel/ABC_BO). This code is particularly 

useful when the constraints involve discrete numeric variables. Bayesopt cannot handle discrete 

numeric variables directly; they need to be treated as integer variables. However, in the 

provided code, variables can be initiated as discrete numeric directly, simplifying the process. 

Furthermore, the usage of the code is demonstrated with examples provided for solving both in 

silico and practical experimental optimization problems.

Probability of Improvement

The classical version of this acquisition function chooses the point that has the highest 

probability of improvement over the current best objective value.  

𝑃𝑜𝐼(𝑥) =  Φ(𝜇(𝑥) ‒ 𝜇(𝑥 ∗ )
𝜎(𝑥) )

where,  is the normal cumulative distribution function,  is the mean prediction of the Φ(.) 𝜇(𝑥)

surrogate model of point ,  is the standard deviation associated with the prediction model 𝑥 𝜎(𝑥)

at point ,  is the mean prediction at the point correspond to best objective .𝑥 𝜇(𝑥 ∗ ) 𝑓 ∗

This version has the disadvantage of over exploitation (stuck in local maxima). To counteract 

this, an exploration factor (ξ) can be added.  

𝑃𝑜𝐼(𝑥) =  Φ(𝜇(𝑥) ‒ 𝜇(𝑥 ∗ ) ‒ 𝜉
𝜎(𝑥) )

In Matlab’s Bayesopt, the exploration factor (ξ) by default takes the value of the estimated noise 

deviation (𝜎)

Expected Improvement

https://in.mathworks.com/help/stats/bayesian-optimization-algorithm.html
https://in.mathworks.com/help/stats/bayesian-optimization-algorithm.html
https://github.com/Aravind-vel/ABC_BO
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This acquisition function calculates the expected value of the improvement which takes in to 

account the magnitude of improvement along with probability of improvement.  

𝐸𝐼(𝑥) = (𝜇(𝑥) ‒ 𝜇(𝑥 ∗ ) ‒ 𝜉)Φ(𝜇(𝑥) ‒ 𝜇(𝑥 ∗ ) ‒ 𝜉
𝜎(𝑥) ) + 𝜎(𝑥)𝜑(𝜇(𝑥) ‒ 𝜇(𝑥 ∗ ) ‒ 𝜉

𝜎(𝑥) )
where,  is the normal probability density function. 𝜑(.)

In Matlab’s Bayesopt, by default, the exploration factor (ξ) takes the value 0. 

Expected Improvement plus

This acquisition function is the extended version of expected improvement. When the 

acquisition function finds the point that is overexploiting ( ), the algorithm adjusts the 
𝜎(𝑥)

𝜎
< 𝜉

parameters of the kernel function to increase the variance between points. This adjustment 

encourages exploration, and the acquisition function continues searching for new points until it 

finds one that is not overexploiting.

The exploration factor  can be specified. In this study, we tested two values (0.5, 1).𝜉

Lower Confidence Bound (Upper Confidence Bound)

This acquisition function represents a curve that is 𝑛 standard deviations away from the mean 

prediction. For maximization problems, this curve is above the mean prediction and is called 

the Upper Confidence Bound (UCB). For minimization problems, the curve is below the mean 

prediction, hence referred to as the Lower Confidence Bound (LCB).

Since MATLAB’s Bayesopt minimizes the objective function by default, this acquisition 

function is referred to as the lower confidence bound. However, as all of the objectives in this 

study involve maximization, we refer to it as the upper confidence bound. 

𝑈𝐶𝐵(𝑥) =  𝜇(𝑥) + 𝑛𝜎(𝑥)

n value by default takes 2 (for Bayesopt). 

The optimistic approach of selecting the next point could be a reason for its relatively lower 

number of futile experiments compared to other acquisition functions in standard BO.

4.2. Dragonfly (python)

Dragonfly2 is a Bayesian Optimization (BO) package (https://github.com/dragonfly/dragonfly) 

capable of handling a wide range of variable types, including continuous (with specified 

https://github.com/dragonfly/dragonfly
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boundaries), discrete numeric, categorical, integer, and discrete Euclidean. It employs a 

Gaussian Process (GP) as the surrogate model and uses the Matern-5/2 kernel for continuous 

and discrete numeric variables and the Hamming kernel for categorical variables. Unlike the 

general approach of selecting a specific acquisition function, Dragonfly uses an adaptive 

strategy where the acquisition function is randomly chosen from the following options: Upper 

Confidence Bound, Expected Improvement, Thompson Sampling, Top-two Expected 

Improvement3.  

By default, the algorithm favours the acquisition function that provides improvement. However, 

in our case, due to the difficulty of running the optimization in a single stretch and the 

unavailability of an option to save information on the favoured acquisition function, we treated 

each experiment as a new one. Consequently, the choice of acquisition function was fully 

random. The solver was run using its default settings. 

For purely continuous search spaces without constraints, dragonfly uses either the DiRect or 

PDOO algorithms for acquisition function optimization. In all other cases - such as when 

discrete numeric, categorical variables, or constraints are involved - dragonfly employs an 

evolutionary algorithm.

5. In silico reactions

5.1. ISR-1

This data-based in silico reaction involves the [3+3] cycloaddition of 1,3-cyclohexanedione a1 

with citral a2 (Scheme S1), as mentioned earlier. It is derived from practical experimental work 

featured in our prior publications.4,5 For prediction, we utilized a Gaussian Process (GP) model 

that incorporates data from both our published and unpublished studies. We have also used this 

model in our earlier work comparing multi-objective optimization solvers, where it was referred 

to as Cycloadditions-1 and Cycloadditions-2, with yield and throughput as the objectives.6 In 

this work, since we are testing single-objective solvers, we optimized throughput. In ISR-1, we 

consider only continuous variables: temperature ( ) [ ], residence time (τ) [ ], 𝑇 25 ‒ 50 𝑜𝐶 1 ‒ 10 𝑚𝑖𝑛

reagent a2 equivalent ( ) [ ], and catalyst loading ( ) [ ]. The other 𝑛𝑒𝑞 1 ‒ 2 𝑒𝑞. 𝑐𝑎𝑡𝑙𝑜𝑎𝑑 5 ‒ 20 𝑚𝑜𝑙%

details essential for calculating the objective function are as follows: the injection volume is 

214 μl; a1 has a stock concentration of 0.5 M; a2 has a stock concentration of 0.5 M; the 

catalyst, ethanolamine, has a stock concentration of 0.05 M; the reactor volume is 5 ml; and the 

molecular weight of the product is 246 g/mol.
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Scheme S1.  1,3-cyclohexanone reacts with citral.

5.2. ISR-2

ISR-2 is an extension of ISR-1, where, in addition to the four continuous variables, a categorical 

variable - catalyst with five choices (ethanolamine, pyrrolidine, ethylenediamine, butylamine, 

and piperidine) - is included in the optimization problem.

5.3. ISR-3

ISR-3 is a kinetic model based in silico reaction (Fig. S4), introduced by Reizman7 

encompassing five distinct case studies. The optimization involves the maximization of 

Turnover Number (TON), defined as the ratio between the product concentration and the 

catalyst concentration, and includes three continuous variables: residence time τ [1-10 min], 

temperature T [30-110 oC], catalyst loading  [0.5 -2.5 mol%], and one categorical variable 𝑐𝑎𝑡𝑙𝑜𝑎𝑑

catalyst [1,2,3,4,5,6,7,8]. This model has served as a benchmark in previous studies.6,8,9

Fig S4. Reaction scheme and kinetic details of the in silico reaction ISR-3.

In our study, we considered only Case 1 out of the five case studies. The kinetic parameters 

associated with the different case studies are provided in Table S2.
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Table S2. Overview kinetic parameters for different case studies

Case Catalyst effect 𝑘𝑆1
𝑘𝑆2

1 𝐸𝐴1
> 𝐸𝐴2 ‒ 8 = 0 = 0

2 𝐸𝐴1
= 𝐸𝐴2

> 𝐸𝐴3 ‒ 8 = 0 = 0

3 𝐸𝐴1
> 𝐸𝐴2 ‒ 8 > 0a = 0

4 𝐸𝐴1
> 𝐸𝐴2 ‒ 8 = 0 > 0b

5 𝐸𝐴1
> 𝐸𝐴2 ‒ 8 = 0 = 0

a: 
𝐴𝑆1

= 1 𝑥 1012𝑠 ‒ 1, 𝐸𝑎𝑆1
= 100 𝐾𝐽 𝑚𝑜𝑙 ‒ 1

b: 
𝐴𝑅 = 3.1 𝑥 105𝐿0.5𝑚𝑜𝑙 ‒ 1.5𝑠 ‒ 1,𝐸𝑎𝑆2

= 50 𝐾𝐽 𝑚𝑜𝑙 ‒ 1

5.4. Global solutions
For reference, global solution (Table S3) for the in silico reactions (ISR-1,2 and 3) are identified 

by extensive grid search. 

Table S3. Grid search parameters and corresponding global solutions identified for the in silico 

reactions.

in silico reaction Grid search parameters Global solution

ISR-1

Continuous variables:

Temperature = [25:1:50] 𝑜𝐶

Residence time = [1:0.1:10] 𝑚𝑖𝑛

Reagent equivalent = [1:0.01:2] 𝑒𝑞.

Catalyst loading = [5:0.1:20] 𝑚𝑜𝑙%

Temperature = 30 𝑜𝐶

Residence time = 1 𝑚𝑖𝑛

Reagent equivalent = 1 𝑒𝑞.

Catalyst loading = 5 𝑚𝑜𝑙%

Throughput = 10.14 𝑔/ℎ

ISR-2

Continuous variables:

Temperature = [25:1:50] 𝑜𝐶

Residence time = [1:0.1:10] 𝑚𝑖𝑛

Reagent equivalent = [1:0.01:2] 𝑒𝑞.

Catalyst loading = [5:0.1:20] 𝑚𝑜𝑙%

Categorical variables:

Catalyst = [1, 2, 3, 4, 5] 

Temperature = 30 𝑜𝐶

Residence time = 1 𝑚𝑖𝑛

Reagent equivalent = 1 𝑒𝑞.

Catalyst loading = 5 𝑚𝑜𝑙%

Catalyst = 3

Throughput = 12.52 𝑔/ℎ

ISR-3

Continuous variables:

Temperature = [30:1:110] 𝑜𝐶

Residence time = [1:0.1:10] 𝑚𝑖𝑛

Temperature = 110 𝑜𝐶

Residence time = 10 𝑚𝑖𝑛

Catalyst loading = 0.5 𝑚𝑜𝑙%
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Catalyst loading = [5:0.01:2.5] 𝑚𝑜𝑙%

Categorical variables:

Catalyst = [1, 2, 3, 4, 5,6,7,8] 

Catalyst = 1

TON = 180.54

6. In silico simulation results
The in silico problems were tested using five different acquisition functions in Bayesopt and 

Dragonfly. Each problem was run for 21 iterations with a total budget of 30 experiments. This 

budget was chosen to balance the practical computational time with having enough samples to 

allow for statistical evaluation. The initialization phase involves center point sampling: for ISR-

1, this is a single experiment, and for ISR-2, it involves 5 experiments (center point in each 

level of the categorical variable).

6.1. ISR-1 and ISR-2

Fig. S5. The top row displays the best objective values at the end of the 20th experiment for 

ISR-1(left) and ISR-2 (right), with ABC-BO results in orange and BO results in blue. The grey 

dotted line represents the global solution for the corresponding in silico reaction.   The bottom 

row shows the number of futile experiments at the end of the 20th experiment using BO.

In ABC-BO, Figs. S6 and S7 show how variable boundaries are updated after each iteration 

based on the best results obtained. The upper limit of the 'time' variable decreases from an initial 

10 minutes to nearly 1 minute, faster than other variables such as reagent eq. and catalyst 
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loading. This highlights the critical role of residence time in optimizing throughput. 

Furthermore, the boundary adjustments are tied to the best objective values achieved; for 

instance, while the reagent equivalent limit stays the same in ISR-1 with a best throughput near 

10 g/h, it decreases in ISR-2 where the throughput reaches 12 g/h. 

Fig. S6. Boundary reduction of influencing variables (variables involved in objective 

calculation) for ISR-1 during optimization using ABC-BO. The orange line represents the 

average, while the orange shaded area indicates the 95% confidence interval.

Fig. S7. Boundary reduction of influencing variables (variables involved in objective 

calculation) for ISR-2 during optimization using ABC-BO. The orange line represents the 

average, while the orange shaded area indicates the 95% confidence interval.
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Fig. S8. Distribution of variable selection (histogram plots) in optimization for ABC-BO 

(orange) and BO (blue) in ISR-1

6.2. ISR-3

In the ISR-3 problem, the variable influencing TON calculation is catalyst loading. After each 

experiment, the boundary for this variable is updated, effectively making the constraint 

redundant. In other words, once the boundary is narrowed, all values of catalyst loading will 

naturally satisfy the constraint (refer Fig. S9). As a result, for this problem, we focused solely 

on reducing the boundary of catalyst loading and performed BO. 

Fig. S9. Maximum achievable TON (calculated assuming 100% yield) for ISR-3, represented 

as a function of the influencing variable, catalyst loading.

From the simulation results (Fig. S10), it can be observed that ISR-3 exhibits a relatively lower 

number of futile evaluations compared to ISR-1 and ISR-2. This is likely because, in ISR-3, 
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only one variable (catalyst loading) influences the objective function calculation, leading to a 

comparatively smaller futile space than in the other problems, where three variables affect the 

objective calculation. Consequently, the performance improvement of ABC-BO over BO in the 

ISR-3 problem is less significant than in ISR-1 and ISR-2.

Fig. S10. The top row displays the best objective values at the end of the 20th experiment (left) 

and 30th experiment (right) for ISR-3, with ABC-BO results in orange and BO results in blue. 

The grey dotted line represents the global solution for the reaction. The bottom row shows the 

number of futile experiments using BO.  

Fig. S11. Boundary reduction of the influencing variable (variable involved in objective 

calculation) for ISR-3 during optimization using ABC BO. The orange line represents the 

average, while the orange shaded area indicates the 95% confidence interval.
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Fig. S12 A) Distribution of variable selection in optimization for ABC-BO (orange) and BO 

(blue) in ISR-3; histogram plots for continuous variables and bar plots for categorical variables. 

B) Best objective value (TON) for each catalyst in ISR-3 



S20

Fig. S13. Average optimization trends of  ABC-BO approaches across different solvers for 

ISR-3. The lines represent the mean performance across multiple runs, and the shaded regions 

indicate the 95% confidence intervals.

7. Practical experiment
7.1. Reaction procedure

CF3

O
H
N

Pd2dba3

PhMe

Base [tBuOK, Cs2CO3]

CF3

ON·HCl

Electrophile [PhCl, PhBr]

Ligand [Johnphos, Xantphos, PPh3]

1 2

Scheme S2. Arylation of fluoxetine through Buchwald-Hartwig coupling

General procedure for initialization

To a 4 ml screw-cap vial were added Fluoxetine hydrochloride (1, 0.500 mmol, 173 mg), the 

base (3 eq.) and Pd2dba3 and the ligand (4x [Pd2dba3]) dissolved in dried and degassed toluene 

(2 ml). Afterwards, the electrophile and anisole (0.500 mmol, 54.3 μl, 1 eq.) were added, the 

vial was flushed with Argon, capped and stirred for the indicated time and temperature. 

For 1H NMR analysis a sample (0.2 ml) was taken, diluted with CDCl3 (0.5 ml) and filtered 

through a syringe filter (0.20 μm). The yield of 2 was determined by the ratio of the signals of 

anisole (PhOMe, 3.74 ppm, s, 3H) and the product (-NPhMe, 2.86 ppm, s, 3H).
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Best result – Conditions of experiment 20, ABC-BO

Following the general procedure Fluoxetine hydrochloride (1, 0.500 mmol, 173 mg), tBuOK 

(168 mg, 1.50 mmol, 3 eq.), Pd2dba3 (6.73 mg, 7.35 μmol, 1.47 mol%), JohnPhos (8.77 mg, 

29.4 μmol 5.88 mol%) and PhBr (99.4 μl, 0.950 mmol, 1.9 eq.) were mixed and the mixture 

was stirred for 0.5 h at 110 °C. Afterwards, the sample was filtered over celite with EtOAc (20 

ml), concentrated under reduced pressure and subjected to column chromatography (silica, 

EtOAc/Cy 1:40) to obtain the product (2, 151 mg, 0.391 mmol, 78%) as a colourless solid.

1H NMR (300 MHz, CDCl3) δ 7.43–7.35 (m, 2H), 7.31–7.17 (m, 5H), 7.17–7.10 (m, 2H), 

6.90–6.81 (m, 2H), 6.69–6.58 (m, 3H), 5.16 (dd, 1H, J = 8.1, 4.7 Hz), 3.62–3.39 (m, 2H), 2.86 

(s, 3H), 2.25–2.01 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 160.5, 149.2, 140.9, 129.3, 128.9, 

128.0, 126.9 (q, J = 3.8 Hz), 125.7, 124.4 (q, J = 271.2 Hz), 122.9 (q, J = 32.6 Hz), 116.5, 115.8, 

112.4, 78.1, 49.1, 38.6, 36.1. 19F NMR (376 MHz, CDCl3) δ -61.5. FTIR (ATR, neat) ʋ 2966, 

2917, 2855, 2224, 1670, 1604, 1573, 1506, 1446, 1379, 1300, 1251, 1235, 1170, 1111, 982, 

832, 546 cm-1. mp = 39–41 °C. HRMS (ESI+, MeOH/H2O) m/z [M+H]+ calc. for 

C23H23NOF3 386.1732; Found 386.1719.

7.2. Optimization problem
The variables involved in the optimization include catalyst loading ( ), reaction time 0.5 𝑡𝑜 5 𝑚𝑜𝑙%

( ), temperature ( ), electrophile equivalent (0.5, 1.0, ..., 7.5, 8.0 ℎ 50, 60, ..., 100, 110 °𝐶

), electrophile ( ), base ( ), and ligand (1.0, 1.1, ..., 1.9, 2.0 𝑒𝑞 𝑃ℎ𝐶𝑙, 𝑃ℎ𝐵𝑟 𝐾𝑂𝑡𝐵𝑢, 𝐶𝑠₂𝐶𝑂₃

). The objective was to maximize the ratio of productivity (throughput) 𝐽𝑜ℎ𝑛𝑝ℎ𝑜𝑠, 𝑋𝑎𝑛𝑝ℎ𝑜𝑠, 𝑃𝑃ℎ₃

to cost. Productivity corresponds to the amount of product formed per unit time, while cost 

corresponds to the combined cost of the electrophile, catalyst, base, and ligand. The costs of the 

reagents were sourced from Sigma-Aldrich, dated 03 December 2024 (Table S4). Since the 

costs of other reagents (e.g., fluoxetine 1, solvent) are constant across all reactions, they were 

not accounted for in the optimization. From the representation of the maximum achievable 

objective across the design space (Fig. S14, left), it can be observed that the objective 

corresponding to low time and cost differs significantly from the rest of the space. To enhance 

the performance of the surrogate model, the objective values were transformed using the natural 

logarithm (Fig. S14, right). This transformation helps to scale the values, particularly when 

there are significant differences across the design space, making the model more robust to 

variations.10,11  
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Fig. S14. Maximum achievable objective (assuming yield = 100%) within the search space, 

represented in terms of time and cost. (left) 3D surface plot, (right) contour plot in logarithmic 

scale.

The reaction was optimized using MATLAB’s built-in function, Bayesopt, in the ABC-BO 

framework. The acquisition function used was expected improvement plus, with the default 

exploration factor of 0.5. The discrete numeric variables - reaction time, electrophile equivalent, 

and temperature - were treated as integer variables since Bayesopt handles integer variables but 

not discrete numeric ones directly. This approach is valid because discrete numeric and integer 

variables representation in surrogate model is same as continuous variables. The main 

difference is that, during acquisition function optimization, the search is limited to the 

predefined integer or discrete numeric values rather than exploring the entire continuous 

domain.

Table S4. Reagents cost used for evaluating the objective function

Reagents Cost

PhBr 134 €/𝑙

PhCl 18.76 €/𝑙

Pd2dba3 37 €/𝑔

Johnphos L1 11.48 €/𝑔

Xantphos L2 22.24 €/𝑔

PPh3 L3 0.06 €/𝑔

tBuOK 0.19 €/𝑔

Cs2CO3 0.54 €/𝑔



S23

The constraint used for the ABC-BO is:

𝑓𝑚𝑎𝑥. 𝑎𝑐ℎ𝑒𝑖𝑣𝑎𝑏𝑙𝑒 > 𝑓 ∗
𝑛

where,   is the objective value assuming a 100% yield, and  represents the 𝑓𝑚𝑎𝑥. 𝑎𝑐ℎ𝑒𝑖𝑣𝑎𝑏𝑙𝑒 𝑓 ∗
𝑛

existing best objective value adjusted for noise (5%)

𝑓 ∗
𝑛  = 𝑓(𝑥 ∗ ,𝑦𝑖𝑒𝑙𝑑 ∗ ‒ 𝑛𝑜𝑖𝑠𝑒)

Here, represents the condition, and  is the reaction yield corresponding to best objective 𝑥 ∗ 𝑦𝑖𝑒𝑙𝑑 ∗

value .𝑓 ∗

The influencing variables whose boundaries or levels (in case of categorical variables) that are 

eligible to update during the optimization to eliminate futile space include reaction time, 

electrophile equivalent, catalyst loading, electrophile, base and ligand. For the reaction time, 

electrophile equivalent and catalyst loading, reduction in these boundaries favours the objective 

value, and thus the upper limit for each variable was adjusted, if necessary, for each experiment 

in the optimization process.

7.3. Results

Table S5. Initialization results; center point for each combination of the categorical variables.

Exp. 

No.
Temp Time

Cat. 

Load.

Elec. 

Load.
Ligand Base Electrophile Yield Productivity Cost

Objective= 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝑐𝑜𝑠𝑡

Max. ach. 

Obj.

𝑜𝐶 ℎ 𝑚𝑜𝑙% 𝑒𝑞. % 𝑚𝑔/ℎ € 𝑚𝑔 ℎ ‒ 1 € ‒ 1 𝑚𝑔 ℎ ‒ 1 € ‒ 1

1 80 4 2.75 1.5 Johnphos tBuKO PhBr 99.4 47.9 0.70 68.82 69.23

2 80 4 2.75 1.5 Johnphos Cs2Co3 PhBr 1 0.5 0.93 0.52 51.99

3 80 4 2.75 1.5 Xantphos tBuKO PhBr 88.5 42.6 1.22 35.09 39.64

4 80 4 2.75 1.5 Xantphos Cs2CO3 PhBr 0 0.0 1.45 0.00 33.32

5 80 4 2.75 1.5 PPh3 tBuKO PhBr 5.4 2.6 0.51 5.12 94.77

6 80 4 2.75 1.5 PPh3 Cs2Co3 PhBr 0 0.0 0.74 0.00 65.17

7 80 4 2.75 1.5 Johnphos tBuKO PhCl 94 45.3 0.69 65.94 70.15

8 80 4 2.75 1.5 Johnphos Cs2CO3 PhCl 0 0.0 0.92 0.00 52.50

9 80 4 2.75 1.5 Xantphos tBuKO PhCl 9.4 4.5 1.21 3.75 39.94

10 80 4 2.75 1.5 Xantphos Cs2Co3 PhCl 0 0.0 1.44 0.00 33.53

11 80 4 2.75 1.5 PPh3 tBuKO PhCl 7.9 3.8 0.50 7.62 96.50

12 80 4 2.75 1.5 PPh3 Cs2CO3 PhCl 0 0.0 0.73 0.00 65.99
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Table S6. Optimization results for BO

Exp. 

No.
Temp Time

Cat. 

Load.

Elec. 

Load.
Ligand Base Electrophile Yield Productivity Cost

Objective= 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝑐𝑜𝑠𝑡

Max. ach. 

Obj.

𝑜𝐶 ℎ 𝑚𝑜𝑙% 𝑒𝑞. % 𝑚𝑔/ℎ € 𝑚𝑔 ℎ ‒ 1 € ‒ 1 𝑚𝑔 ℎ ‒ 1 € ‒ 1

13 80 4.5 4.12 1.3 Johnphos tBuKO PhBr 96 41.1 1.02 40.28 41.96

14 60 1.5 2.4265 2 Johnphos tBuKO PhBr 92 118.2 0.62 190.36 206.92

15 50 8 1.416 1.7 Johnphos tBuKO PhCl 56 13.5 0.37 36.50 65.17

16 110 8 2.47 1 Johnphos tBuKO PhCl 70 16.9 0.62 27.21 38.87

17 110 8 3.0762 2 Johnphos tBuKO PhBr 93 24.1 0.78 28.83 31.00

18 90 0.5 0.5799 1.9 Johnphos tBuKO PhBr 25 96.4 0.18 528.27 2113.08

19 60 0.5 0.7252 1.2 Johnphos tBuKO PhBr 41 158 0.21 745.18 1817.52

20 110 0.5 0.5024 1.1 Johnphos tBuKO PhBr 22 84.8 0.16 535.48 2434.00

Table S7. Optimization results for ABC-BO

Exp. 

No.
Temp Time

Cat. 

Load.

Elec. 

Load.
Ligand Base Electrophile Yield Productivity Cost

Objective= 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝑐𝑜𝑠𝑡

Max. ach. 

Obj.

𝑜𝐶 ℎ 𝑚𝑜𝑙% 𝑒𝑞. % 𝑚𝑔/ℎ € 𝑚𝑔 ℎ ‒ 1 € ‒ 1 𝑚𝑔 ℎ ‒ 1 € ‒ 1

13 80 1.5 2.19 1.6 Johnphos tBuKO PhBr 95 122.1 0.56 217.07 228.49

14 100 1 1.71 2 Johnphos tBuKO PhBr 99.9 192.5 0.45 425.84 426.26

15 110 1 0.50 1.2 Johnphos tBuKO PhBr 30.5 58.8 0.16 370.27 1213.99

16 110 0.5 1.27 1.8 Johnphos tBuKO PhCl 66.4 255.9 0.33 764.27 1151.01

17 70 1 0.50 1.2 Xantphos tBuKO PhBr 7.2 13.9 0.25 54.69 759.55

18 110 0.5 1.85 1.3 Johnphos tBuKO PhCl 75.8 292.2 0.47 618.63 816.13

19 50 0.5 1.19 1.4 Johnphos tBuKO PhCl 8.7 33.5 0.31 106.57 1224.99

20 110 0.5 1.47 1.9 Johnphos tBuKO PhBr 90.2 347.7 0.39 882.94 978.87
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Fig. S15. Trend of the objective over the course of optimization and reduction of promising 

search space in ABC-BO

Fig. S16 Optimization results presented as a parallel coordinate plot. Each line in the plot 

corresponds to a different experiment, illustrating the relationship between variables, the 

objective (productivity/cost), and the parameters (yield, productivity, cost) used to calculate the 

objective. Grey lines denote initialization experiments, while blue and orange lines represent 

experiments conducted using BO and ABC-BO, respectively. The optimum results from BO 

and ABC-BO are highlighted with dark lines.

Fig. S17-S25 represent the futile space within the search space for individual combinations of 

the categorical variables during optimization using ABC-BO. The search space is depicted 

using the variables time and cost, which also account for other influencing variables such as 

catalyst loading and electrophile equivalent. At the end of the initialization phase (12th 

experiment, Fig. S17), the futile space for each combination varies due to differences in reagent 

costs and the incorporation of cost into the objective function. As the experiments progress and 

the best objective value increases, the futile space for each combination also expands. If all 

combinations for a particular reagent reached 100% futile space, that reagent could be removed 

as a level of the categorical variable. However, in our case, no single reagent combination 

reached 100% futile space by the 20th experiment (Fig. S25), so no reagent was eligible for 
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elimination. Nonetheless, the reagent combinations [Xantphos, Cs₂CO₃, PhBr] and [Xantphos, 

Cs₂CO₃, PhCl] reached 100% futile space.

Fig. S17. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 12 (initialization). The red star represents the 

existing best objective, and the black plus sign represents the next point suggested by ABC-

BO.
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Fig. S18. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 13. The red star represents the existing best 

objective, and the black plus sign represents the next point suggested by ABC-BO.

Fig. S19. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 14. The red star represents the existing best 

objective, and the black plus sign represents the next point suggested by ABC-BO.
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Fig. S20. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 15. The red star represents the existing best 

objective, and the black plus sign represents the next point suggested by ABC-BO.

Fig. S21. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 16. The red star represents the existing best 

objective, and the black plus sign represents the next point suggested by ABC-BO.
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Fig. S22. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 17. The red star represents the existing best 

objective, and the black plus sign represents the next point suggested by ABC-BO.

Fig. S23. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 18. The red star represents the existing best 

objective, and the black plus sign represents the next point suggested by ABC-BO.
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Fig. S24. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 19. The red star represents the existing best 

objective, and the black plus sign represents the next point suggested by ABC-BO.

Fig. S25. Futile space (grey) within the search space corresponding to individual combinations 

of categorical variables at the end of experiment 20. The red star represents the existing best 

objective, and the black plus sign represents the next point suggested by ABC-BO.
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The boundaries of the influencing variables - reaction time, electrophile equivalent, and catalyst 

loading - that satisfy the constraint for each combination are presented in Fig. S26-S28. It can 

be observed that the trends of boundary update for each variable differ, indicating their varying 

impact on the objective function. For the electrophile, the limits remain unchanged from the 

initially specified boundary.

Fig. S26. Maximum time limit within the specified boundary that satisfies the constraint at the 

start of each experiment for all combinations of categorical variables in ABC-BO.
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Fig. S27. Maximum electrophile limit within the specified boundary that satisfies the constraint 

at the start of each experiment for all combinations of categorical variables in ABC-BO.

Fig. S28. Maximum catalyst loading limit within the specified boundary that satisfies the 

constraint at the start of each experiment for all combinations of categorical variables in ABC-

BO.



S33

Fig. S29. Boundary reduction of the variables during optimization using ABC-BO

The constraint satisfaction score (Fig. S30) represents how much the maximum achievable 

objective exceeds the existing best objective (accounted for noise). A positive value indicates 

that the point theoretically allows improvement over the existing best objective. For ABC-BO 

(orange), the scores are positive for all experiments during the optimization process. In contrast, 

for BO, some experiments (e.g., 13, 15, 16, and 17) have negative scores, indicating futile 

experiments.

Fig. S30. Constraint score: ; orange for ABC-BO, blue for BO.  𝑓𝑚𝑎𝑥. 𝑎𝑐ℎ𝑒𝑖𝑣𝑎𝑏𝑙𝑒 ‒  𝑓 ∗
𝑛
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