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General information 

All reagents (methyl picolinate, ammonia solution etc.) were purchased from TCI Europe or 

BLDpharm and used as such. NMR spectra were measured with a Bruker Avance Nanobay III 

NMR spectrometer. The components were dissolved in deuterated DMSO-d6 or D2O and 

tetramethylsilane (TMS) as an internal standard. Microwave reactions were performed in a 

CEM FocusedTM Microwave Synthesis sistem, Model Discover, with adaptable power from 

0-300 W, monitored with the Synergy-software V. 1.32 (maximum temperature = 250 °C, 

macimum pressure = 21 bar). For the measurement of the water content, The C10S Karl-Fisher 

Coulometer from Mettler Toledo was used. 

Aminolysis in batch 

In a flame dried microwave vial (10 mL) equipped with a magnetic stirrer, 150 mg of methyl 

picolinate is combined with 12 equivalents of ammonia in MeOH (7 N) (1.9 mL). The vial is 

tightly sealed (PTFE septum) and placed in the microwave reactor at 130 °C for 10 minutes 

while stirring. Subsequently, the solvent is evaporated and 1H-NMR analysis is conducted using 

dimethyl sulfone as the internal standard, and both the conversion and NMR yield are 

determined. Experiments with different time/temperature conditions were conducted in a 

similar manner. 

Computational analysis 

To elucidate the factors that might influence the observed experimental yields, we performed 

an additional theoretical investigation and explore the energetics of the reaction. We started by 

localizing the most stable conformer of each molecule (17 methyl esters, 1a–1q and the 

corresponding amides 2a–2q), as most of them are expected to be relatively flexible. To this 

end, we used the iMTD-GC workflow implemented in the CREST 3.0.2 software at a GFN2-

xTB level of theory [1-3]. We performed both a conformational search in gas-phase and one in 

methanol with an implicit solvation model, using a generalized Born model with surface area 

contributions method implemented in CREST. 

After obtaining a conformer list for each of the molecules, we moved to a more accurate 

description of the potential energy surface (PES). For each molecule, we selected all conformers 

that, according to GFN2-xTB, were within 2 kcal·mol-1 from the most stable one, with a 

maximum of 10 conformers per molecule. These were fully reoptimized at a B3LYP-

D3(BJ)/def2-TZVP  level of theory within the Gaussian16  (revision C.02) software [4-8]. Each 

molecule was characterized by a normal mode analysis to ensure that a minimum on the PES 



was effectively reached. If any structure presented a significant imaginary frequency, the atoms 

were displaced along the imaginary normal mode and then fully reoptimized, until a minimum 

was reached. The procedure was, as for the conformer search, performed both in gas-phase and 

in implicit methanol using the default SCRF method implemented in Gaussian [9]. Methanol 

and ammonia were also optimized and the reaction energy for each identified stable conformer 

was calculated as: 

∆E = E(RNH2 ) + E(MeOH) - (E(ROMe) + E(NH3 )) 

Equation S1. Calculation of the energy difference between products and reagents. 

Continuous flow setup 

Figure S1 illustrates a schematic overview of the continuous flow setup, denoted as the CØPE 

reactor. One Teledyne ISCO HLf 500d was used as pressure resistant pump to precisely dose 

the flow into the reactor. The system pressure is indicated by this pump on the display interface. 

Adjustments of the pulsator amplitude can be made using the rotary knob, ranging from 0.0 to 

0.95 in increments of 0.05. These values correspond to a percentage of the maximum stroke 

volume, which is 0.76 mL/stroke (or a maximum stroke amplitude of 0.38 mL/stroke). The 

frequency of the strokes is controlled using the Danfoss VLT® Midi Drive FC 280 frequency 

controller. N2 gas from an external gas tank pressurizes the cylindrical BPR to achieve the 

desired system pressure. 
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Figure S1. Schematic overview of the continuous flow setup (CØPE reactor). 



 

Figure S2. Photograph of the continuous flow setup (CØPE Reactor; A: pump (Teledyne Isco 

Hlf 500d); B: pulsator; C: reactor (Uniqsis); D: BPR; E: collection vessel). 

Aminolysis in continuous flow 

Initially, a feed vessel is prepared by mixing 6.72 grams of methyl picolinate with 140 mL 

methanolic ammonia (7 N solution, 20 eq.). The mixture is stirred and the Teledyne ISCO 

syringe pump is filled with the solution. Before the reaction is started, the system undergoes 

methanol flushing and pressurization to 15 bar. A flow rate of 1.333 mL/min is programmed, 

translating to a residence time of 30 minutes. Upon reaching steady state after three times the 
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residence time, the cylindrical collection vessel is emptied to prevent contamination of the 

samples. Subsequently, two samples are collected and analyzed using the same analytical 

procedure as in the batch process. The reported conversion and NMR yield represent the 

average of both samples. 

Bayesian Optimization 

For a detailed explanation of the MVMOO algorithm, we refer readers to its original publication 

[10] and a previous application in chemical reaction optimization [11]. In summary, the 

algorithm employs a Gaussian process (GP) as a surrogate model for each objective. A GP is a 

non-parametric regression model that can be viewed as an infinite-dimensional generalization 

of a multivariate Gaussian distribution. A key feature of the MVMOO algorithm is its use of 

GPs with an internal distance metric based on Gower similarity, allowing it to handle mixed-

variable optimization. The algorithm can be initialized with any small dataset, though a 

common choice is a small Latin Hypercube Sampling (LHS) to ensure a space-filling design. 

The hyperparameters of each GP are optimized to achieve the best fit to the data. Next, the 

Expected Improvement Matrix (EIM) acquisition function is constructed from the GPs and 

optimized to determine the next set of reaction conditions. After conducting the experiment, the 

results are incorporated into the dataset, the GPs are updated, and the process is repeated 

iteratively until termination criteria are met. In Bayesian optimization, termination typically 

occurs after a fixed number of iterations or when the user is satisfied with the results. 

Some modifications were made to the algorithm to enable its use in systems with only 

continuous variables, as previously reported by our group [12]. The GitHub version available 

as of July 2024 contained a minor bug that caused an error in such cases. The specific changes 

made to address this issue are summarized in Table S1. 

Line Original  Change 

multi_mixed_optimiser.py 

– line 351 

results.append(stats.optimize.minimize(self.EIMoptimiserWrapper, 

xmax[i,:-self.num_qual].reshape(-1), 

args=(qual[i],constraints,modes[i]), 

bounds=bndlist,method='SLSQP')) 

 Replaced  

:-self.num_qual by  

:self.-num_quant, 

otherwise the slicing 

when num_qual = 0 is 

incorrect. 

multi-mixed_optimiser.py 

– line 363 

qual = xmax[-self.num_qual:] if self.num_qual == 0: 

 qual = np.array([]) 

else: 

 qual = xmax[-self.num_qual:] 

Slicing issue when num_qual = 0, 



because then qual would be xmax, even 

though there are no qualitative 

variables. 

 multi-mixed_optimiser.py 

– line 371 

result = stats.optimize.minimize(self.EIMoptimiserWrapper, 

xmax[:-self.num_qual].reshape(-1), args=(qual,constraints,mode), 

bounds=bndlist,method='SLSQP') 

Replaced  

:-self.num_qual by  

:self.-num_quant, 

otherwise the slicing 

when num_qual = 0 is 

incorrect. 

Table S1. Changes made to the MVMOO algorithm, according to Desimpel et al [12]. 

Substrate analysis 

Prolinamide hydrochloride 2a 

Purification: after evaporation of the solvent, the residue was recrystallized in isopropanol. 

The obtained solids were filtered off and dried. During screening, NMRs were taken in D2O, 

the final product was analyzed with DMSO-d6. 

1H-NMR (400MHz, DMSO-d6): δ 9.23 (2H, s, -NH-HCl), 8.09 (1H, s, -NH2), 7.62 (1H, s, -
NH2), 4.11 (1H, m, Cquat-CH), 3.18 (2H, m, NH-CH2), 2.29 (1H, m, Cquat-CH-CH2), 1.85 (3H, 
m, Cquat-CH-CH2, CH2-CH2-CH2) ppm (isolated) 

 



 
 
Figure S3. 1H-NMR of prolinamide hydrochloride in DMSO-d6. 

Picolinamide 2b 

Purification: after evaporation of the solvent, the residue was recrystallized in EtOH. The 

obtained solids were filtered off and dried. 

1H-NMR (400MHz, DMSO-d6): δ 8.64 (1H, s, N=CH), 8.12 (1H, s, -NH2), 8.05 (1H, d, Cquat-
CH), 7.98 (1H, t, =CH), 7.65 (1H, s, -NH2), 7.59 (1H, t, =CH) ppm (isolated) 

 



 
Figure S4. 1H-NMR of picolinamide in DMSO-d6 (isolated). 

Piperidine-2-carboxamide hydrochloride 2i 

Purification: after evaporation of the solvent, the residue was recrystallized in EtOH. The 

obtained solids were filtered off and dried. 

1H-NMR (400MHz, DMSO-d6): δ 8.95 (2H, s, -NH-HCl), 7.96 (1H, s, -NH2), 7.55 (1H, s, -
NH2), 3.68 (1H, m, -CH-Cquat), 3.18 (1H, m, Cquat-CH-CH2), 2.87 (1H, m, Cquat-CH-CH2), 2.13 
(1H, m, Cquat-NH-CH2), 1.61 (5H, m, Cquat-NH-CH2, -CH2-CH2-) ppm (isolated) 

 

 
 

Figure S5. 1H-NMR of piperidine-2-carboxamide hydrochloride in DMSO-d6 (isolated). 

Tetrahydrofuran-2-carboxamide 2k 



Purification: after evaporation of the solvent, the residue was recrystallized in isopropanol. 

The obtained solids were filtered off and dried. 

1H-NMR (400MHz, DMSO-d6): δ 7.15 (2H, d, -NH2), 4.13 (1H, m, Cquat-CH), 3.88 (1H, m, 
CH2-O), 3.74 (1H, m, CH2-O), 2.09 (1H, m, Cquat-CH-CH2), 1.81 (3H, m, Cquat-CH-CH2, CH2-
CH2-CH2) ppm (isolated) 

 
Figure S6. 1H-NMR of tetrahydrofuran-2-carboxamide in DMSO-d6 (isolated). 

4-methoxypicolinamide 2q 

Purification: after evaporation of the solvent, the residue was recrystallized in EtOH. The 

obtained solids were filtered off and dried. 

1H-NMR (400MHz, DMSO-d6): δ 8.44 (1H, d, N=CH), 8.09 (1H, s, -NH2), 7.66 (1H, s, -NH2), 
7.56 (1H, d, Cquat=CH-Cquat), 7.14 (1H, dxd, OMe-Cquat=CH) ppm (isolated) 

 

 



Figure S7. 1H-NMR of 4-methoxypicolinamide in DMSO-d6 (isolated). 
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