Supplementary Information (SI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2025

Supplementary information

Features of the mechanochemical synthesis of methylmethoxysilanes from silicon and dimethyl carbonate in the presence of promoters.

I.N. Kryzhanovskiy¹, <u>M.N. Temnikov</u>^{1*}, A.K. Ratnikov¹, I.V. Frank^{1,2}, M.V. Shishkanov^{1,2}, A.A. Anisimov^{1,2}, A.V. Naumkin¹, S.M. Chistovalov¹, and A.M. Muzafarov^{1,3}.

¹A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Moscow, Russia

²Moscow Institute of Physics and Technology (National Research University), 117303, Dolgoprudny, Moscow Region, Russia

³Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 117393, Moscow, Russia

Corresponding author email: temnikov88@gmail.com

Contents

1. Common information and methods	4
1.1. Materials	4
1.2. Methods and analysis	4
1.2.1. NMR	4
1.2.2. Gas chromatography analysis (GC)	4
1.2.3. Powder X-ray diffraction (PXRD)	5
1.2.4. Scanning electron microscopy (SEM)	5
1.2.5. X-Ray photoelectron spectroscopy (XPS)	5
1.2.6. Gas chromatography-mass spectrometry analysis (GC-MS)	6
1.3. Experimental	6
1.3.1. Typical experiment with copper (I) chloride as a source of copper	6
1.3.2. Additional experimental data	7
2.1. Calculations	.10
SEM-EDX elemental analyses	.11
3. XPS elemental analyses	.13
4. Spectra and other additional information	.13
4.1. SEM-EDX – images and spectra	.13
4.2. PXRD – data	.29

2	1.3.	XPS – spectra, tables and description	41
2	1.4.	NMR	43
2	1.5.	GC	46
2	1.6.	GC-MS analysis	46
5.	Refe	rences	46

1. Common information and methods

1.1. Materials

Technical grade silicon KR-1 (1000–2000 μ m, purity > 98%, impurities Fe < 0.7%, Al < 0.7, and Ca < 0.6%) was used as the source of silicon. Commercial CuCl were used as the copper catalysts. Dimethyl carbonate (DMC) was purchased from abcr. DMC was stored over molecular sieves (4 Å). The water content in DMC was less than 150 ppm. Commercial Zn powder was used as additive. Commercial Sn powder was used as additive. Commercial SnCl₂ was used as additive. The reactors were made of stainless steel (12c18n10t, major impurities: Ni 9–11%, Cr 17–19%, and Ti 0.4–1%). The grinding bodies were made of stainless steel 12c18n10t (this steel composition is similar to AISI 321, major impurities: Ni 9–11%, Cr 17–19%, and Ti 0.4–1%), zirconium oxide ZrO₂ (doped with yttrium oxide Y₂O₃ - 5,2%), brass L-59 (composition: Fe <0.3%, P < 0.01%, Cu 57 – 60%, As <0.01%, Pb <0.5%, Zn 39.1 – 43%, Sb <0.01%, Bi <0.003%, Sn <0.2%), tungsten carbide WC-3 (contains Co 3,5–5,3%). The tin coating on brass and steel milling bodies was obtained by electrochemical deposition in a drum electrolyzer. The coating thickness was about 70 μ m.

1.2. Methods and analysis

1.2.1. NMR

¹H, and ²⁹Si NMR spectra were recorded on a Bruker Avance[™] 500 and Bruker Avance[™] 600 spectrometers (Germany) (at 500.13 and 600.22, 99.36 MHz for 1H and 29Si, respectively). The ¹H chemical shifts were measured relative to TMS using residual signal of solvent CDCl₃ (7.26 ppm). The ²⁹Si NMR spectra were measured in CDCl₃ containing Cr(acac)₃ (30 mmol/L). The ²⁹Si chemical shifts were measured relative to TMS used as the external standard.

1.2.2. Gas chromatography analysis (GC)

Gas chromatography (GC) analysis was performed on a Chromatec Crystal 5000 chromatograph (Russia) at 50–250 °C, 20° min⁻¹; catharometer detector, columns (2 mm \times 2 m) with 5% SE-30 stationary phase deposited onto Chromaton-N-AW-HMDS, helium as a carrier gas (20 mL min⁻¹). Data were recorded and processed using the Chromatec Analytic program package (Chromatec, Russia).

1.2.3. Powder X-ray diffraction (PXRD)

XRD patterns were performed on a Proto AXRD θ -2 θ diffractometer with a copper anode, a nickel K β filter (K α =1.541874 Å) and a Dectris Mythen 1K 1D detector in the Bragg-Brentano geometry in the angular range of 20°–100° with a step of 0.02° along the angle 2 θ .

Qualitative phase analysis was performed using Crystallography Open Database and the ICDD PDF-2.

1.2.4. Scanning electron microscopy (SEM)

The surface morphology was studied by scanning electron microscopy using a JSM-6000 PLUS scanning electron microscope (JEOL, Japan). The studied samples were dispersed as powders on a conducting carbon adhesive tape. The elemental composition of each surface was determined using an EX-230**BU system with integrated energy dispersive analysis.

1.2.5. X-Ray photoelectron spectroscopy (XPS)

X-Ray photoelectron spectroscopy (XPS) was carried out on an Axis Ultra DLD spectrometer (Kratos) using monochromatic Al K α radiation with an X-ray beam power of 150 W. Survey spectra and high-resolution spectra were recorded at pass energies of 160 and 40 eV, respectively. Survey spectra were recorded with a step of 1 eV, while high-resolution spectra were recorded with a step of 0.1 eV. The dimensions of the explored area were $300 \times 700 \ \mu\text{m}^2$. Samples were mounted on a holder using a double-sided adhesive tape and studied at room temperature at the residual pressure in the spectrometer chamber no higher than 10^{-8} Torr. The energy scale of the spectrometer was calibrated according to the standard procedure based on the following binding energies: 932.62, 368.21 and 83.96 eV for Cu $2p_{3/2}$, Ag $3d_{5/2}$, and Au $4f_{7/2}$, respectively. To eliminate the effect of sample charging, the spectra were recorded using a neutralizer. Surface charging was taken into account based on the Si $2p_{3/2}$ peak of the Si(0) state with a binding energy of 99.34 eV.¹ The background due to electron inelastic energy losses was subtracted by the Shirley method. Quantification was performed using atomic sensitivity factors included in the software of the spectrometer.

1.2.6. Gas chromatography-mass spectrometry analysis (GC-MS)

GC-MS measurements were performed using Shimadzu QP2020 gas chromatograph-mass spectrometer with the following parameters: column: Shimadzu SH-Rtx-5MS ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$); oven temperature: 50 °C, hold for 3 min, ramp to 200 °C at 30 °C/min, hold for 11 min; injection

temperature: 250 °C; splitting ratio: split 1:10; MS ion source temperature: 200 °C; interface temperature: 250 °C; total run time: 20 min. Solvent cut-off time was 2 minutes for diethyl ether and 5 minutes for decane.

1.3. Experimental

1.3.1. Typical experiment with copper (I) chloride as a source of copper

Design and parameters of the HPMR that was used in the direct synthesis was described in our previous work ². Commercial grade KR-1 silicon (particle size 1.5 mm, 1 g, 35.7 mmol), DMC 6.4 g, 71 mmol, copper chloride(I) 0.2 g and milling bodies (14 pcs) were loaded into the autoclave. The reactors with attached micanite heaters were mounted in cradles. After that, heating (the temperature settings were 250°C) and the vibration drive were activated synchronously. The vibrational acceleration was 19 g. The silicon particles were ground up and stirred with copper source by vibration milling. The resulting particles reacted with DMC to give mixture of methylmethoxysilanes (tetramethyl orthosilicate (M0), methyltrimethoxysilanes (M1), dimethyldimethoxysilanes (M2) trimethylmethoxysilanes (M3)) and siloxanes. After the specified amount of time of simultaneous heating and vibration, the mixture was cooled to room temperature. Liquid reaction products were analyzed using GC. The contact mass was separated from the reaction products by centrifugation then washed three time with hexane, dried and studied using SEM-DX, XPS, and PXRD.

Figure S1. Experimental scheme.

1.3.2. Additional experimental data

N⁰	Co-additive	Co-additive	Si	DMC	Selectivity, %							
		mass, mg	conversio	conversion,				J J				
			n, %	%	M3	M2	M1	M0	Siloxanes			
1	Standart experiment	-	30,1	30,8	4,4	70,2	9,6	2,4	13,3			
2	ZnCl ₂	5	36,6	36,2	9,7	57,5	17,1	3,9	11,7			
3	(F ₅ C ₆) ₃ B 2 wt% in	50 µl	23,5	31,0	4,6	65,8	10,8	6,7	12,1			
	toluene											
4	CoCl ₂	5	10,8	17,5	5,1	65,4	15,5	9,0	5,0			
5	MgCl ₂	5	0,0	14,2	0	0	0	0	0			
6	CeO ₂	5	0,0	100,0	0	0	0	0	0			
7	2,2'-Dipyridyl	12,4 *	8,8	12,4	3,7	51,1	5,9	31,8	7,5			
8	1,10-phenanthroline	14,3 *	9,3	15,1	2,6	52,3	33,4	4,3	7,5			
9	TiO ₂	5	22,0	30,9	4,4	68,1	10,5	3,4	13,7			
10	V_2O_5	5	22,1	30,6	5,1	63,6	12,6	4,1	14,5			
11	CoSi ₂	5	24,6	31,2	4,2	68,4	10,1	2,8	14,4			
12	Cs_2CO_3	5	21,3	19,3	2,7	72,1	1,4	10,5	13,3			
13	(AcO) ₂ AlOH	5	17,9	38,3	4,5	60,6	12,6	3,2	19,2			
14	Mg ₂ Si	5	12,2	44,8	4,9	50,6	16,7	8,9	18,8			
15	Ni ₂ Si	5	20,7	37,2	3,4	65,1	12,1	3,2	16,1			
16	CrSi ₂	5	26,6	33,5	3,5	68,3	10,1	2,9	15,1			
17	HgOAc ₂	5	32,0	41,5	3,6	74,6	7,8	2,2	11,8			
18	MoSi ₂	5	25,7	31,7	5,0	67,0	9,8	2,7	15,5			
19	Zn	5	68,5	65,7	11,2	47,6	12,4	2,7	26,2			
20	K ₂ CO ₃	5	13,3	16,0	1,1	66,9	14,7	4,5	12,8			
21	AcOBiO	5	4,0	10,1	0,0	32,4	27,0	25,6	15,0			
22	AlCl ₃	5	17,9	45,1	4,2	62,7	11,6	2,9	18,6			
23	NiCl ₂	5	26,5	31,9	3,6	67,1	11,5	3,2	14,6			

Table S1. Influence of co-additive on parameters of Si/Cu + DMC reaction, synthesis conditions: grinding bodies made from ZrO₂, 14 pcs. (Total weight 38,38 g), 250 °C, 1 g Si, 0,2 g CuCl, DMC 2 eq., 5 mg SnCl₂.

2. * -3 equivalent to 5 mg SnCl₂

Name	Catalyst mix, reaction time (hours)	Si conv. (%)	DMC conv. (%)	M3 select. (%)	M2 select. (%)	M1 select. (%)	M0 select. (%)
В	Without CuCl and additives, 6	4	61	0	0	11	74
B-Cu	Without additives, 2	15	22	6	43	19	15
B-Cu- Sn	SnCl ₂ (5 mg), 2	55	60	13	45	18	3
B-Cu- Sn-long	SnCl ₂ (5 mg), 2 + decompression + 3.2 Γ DMC, 2	74	67	11	40	19	10
B-Cu- Zn	Zn (5 mg), 2	15	21	6	47	17	7
B-Cu- Sn-Zn	SnCl ₂ (5 mg), Zn (5 mg), 2	59	67	16	40	14	3

Table S2. Synthesis with brass balls.

2.1. Calculations

The silicon conversion and selectivity of products were estimated as follows:

Concentration data obtained with GC give us mass relations between components of the reaction mixture. It allows us to determine the selectivities of components (S_i) by this equation:

$$S_i = \frac{W_i}{\sum W_i}$$

To determine Si conversion, we need to calculate the mass of the liquid products (m_{lp}) :

$$m_{lp} = m_{DMC} + m_{Si} * C_{Si} - m_{gas}$$

 m_{gas} – mass of gaseous products, mostly CO₂. m_{DMC} and m_{Si} are 6.4 g and 1 g respectively. C_{Si} is the Si conversion.

$$C_{Si} = \frac{n_{reacted Si}}{n_{loaded Si}} = \frac{\sum \frac{W_i * m_{mix}}{M_i}}{\frac{M_i}{M_{Si}}}$$

 m_{gas} – mass of gaseous products, mostly CO₂ determined by weighing the autoclave with reacted mixture before and after depressurization.

 C_{DMC} is the DMC conversion. m_{DMC} is 6.4 g.

$$C_{DMC} = \frac{n_{reacted DMC}}{n_{loaded DMC}} = \frac{m_{loaded DMC} - m_{lp} * W_{DMC}}{m_{loaded DMC}}$$

 W_{DMC} – obtained from GC data.

SEM-EDX elemental analyses

Sampla	Aree					E	lements (%	wt)				
Sample	Area	Si	Cu	С	0	AI	CI	Fe	Cr	Zn	Zr	Sn
	Reacted	8,73	71,48	4,65	4,39	1,22	0,60	1,16		7,27		0,52
Sn-30	Non reacted	70,63	4,14	15,12	7,97	0,60	0,7	0,18		0,31		0,88
	Reacted	42,27	17,43	17,56	15,55	0,35	0,78	2,82		2,56		0,68
Sn-60	Non reacted	74,04	0,25	20,29	3,87	0,24	0,05			0,13		1,14
	Reacted	27,70	9,85	17,08	40,05	0,35	1,11	3,04		0,30		0,52
Sn-120	Non reacted	78,58	0,10	17,73	1,81	0,23	0,01	0,11		0,17		1,25
	Reacted	16,16	25,28	19,25	9,86	0,44	2,45	15,42	4,73	1,42		1,55
Sn-240	Non reacted	48,23	1,57	35,95	9,92	0,21	0,75	2,31		0,17		0,89
	Reacted	23,33	65,93	2,78	2,48	0,76	0,09	1,66		2,43		0,54
SnCl ₂ -30	Non reacted	77.87	1.38	14.75	3.99	0.41	0.04	0.19		0.03		1.34
	Reacted	22,23	60,65	7,07	4,93	0,49	0,60	1,12		2,45		0,26
SnCl ₂ -60	Non reacted	84,75	0,70	11,18	2,31	0,34	0,01	0,09		0,02		0,59
	Reacted	75,80	1,88	14,96	3,99	0,29	0,32	0,99		0,37		1,40
SnCl ₂ -120	Non reacted	71,65	1,11	20,65	3,65	0,40	0,18	1,06		0,15		1,16
	Reacted	42.86	6.36	18.57	14.50	0.37	1.96	8.91	2.61	1.09		1,12
SnCl ₂ -240	Non reacted	71.79	2.24	14.31	7.25	0.29	0.56	1.43	0.42	0.04		1.43

Table S3. SEM-EDX elemental analyses data table (% wt).

Sampla	Area	Area Elements (% at)										
Sample	Alea	Si	Cu	С	0	Al	CI	Fe	Cr	Zn	Zr	Sn
	Reacted	13,54	49,02	16,85	11,95	1,96	0,74	0,91		4,84		0,19
Sn-30	Non reacted	57,42	1,49	28,74	11,38	0,51	0,11	0,07		0,11		0,17
	Reacted	34,65	6,32	33,66	22,38	0,29	0,51	1,16		0,90		0,13
Sn-60	Non reacted	57,40	0,08	36,78	5,26	0.20	0,03			0,04		0,21
	Reacted	19,06	3,00	27,48	48,38	0.25	0,60	1,05		0,09		0,08
Sn-120	Non reacted	63,41	0,03	33,45	2,57	0,19	0,01	0,05		0,06		0,24
	Reacted	15,39	10,64	42,87	16,49	0,44	1,85	7,39	2.44	0,58		0,35
Sn-240	Non reacted	31,59	0,45	55,07	11,41	0,14	0,39	0,76		0,05		0,14
			1	1	1		1	1				
	Reacted	35,25	44,02	0,14	6,57	1,19	0,11	1,26		1,58		0,19
SnCl ₂ -30	Non reacted	64,43	0,51	28,54	5,79	0,35	0,02	0,08		0,01		0,26
	Reacted	28,77	34,70	21,40	11,21	0,67	0,62	0,73		1,36		0,08
SnCl ₂ -60	Non reacted	73,18	0,27	22,58	3,50	0,30	0,1	0,04		0,01		0,12
	Reacted	63,07	0,69	29,12	5,83	0,25	0,21	0,41		0,13		0,28
SnCl ₂ -120	Non reacted	55,86	0,38	37,65	5,00	0,32	0,11	0,42		0,05		0,21
	Reacted	34,59	2,27	35,05	20,54	0,31	1,25	3,62	1,14	0,38		0,21
SnCl ₂ -240	Non reacted	59,26	0,82	27,62	10,51	0,25	0,37	0,59	0,19	0,01		0,28

Table S4. SEM-EDX elemental analyses data table (% at)

3. XPS elemental analyses

Sample		Element, at%												
Sampie	С	0	Si	Zn	Cu	Sn	Cr	Fe	C1					
Sn-30	24.8	35.9	34.8	1.1	0.6	0.2		0.4	2.2					
Sn-60	37.2	31.4	28.0	0.9	0.4	0.1		0.5	1.6					
Sn-120	52.5	27.7	13.5	1.2	0.5	0.2	0.6	1.7						
Sn-240	49.7	26.9	10.9	1.1	0.4	0.3	1.3	4.8	4.8					
SnCl ₂ -30	25.3	39.9	30.3	0.6	0.9	0.1	0.2	0.9	1.7					
SnCl ₂ -60	28.4	34.6	32.4	1.0	0.5	0.1	0.5	0.7	1.7					
SnCl ₂ -120	45.3	28.7	17.8	1.3	0.4	0.2	1.1	2.5	2.8					
SnCl ₂ -240	45.4	29.8	14.0	1.1	0.3	0.2	1.6	4.1	3.6					

Table S5. Element concentrations determined by XPS from the survey spectra.

Sample	Element, at%												
Sample	С	0	Si	Zn	Cu	Sn	Cr	Fe					
Sn-30	26.1	33.2	38.5	1.0	0.5	0.2		0.4					
Sn-60	38.8	28.6	31.0	0.7	0.4	0.1		0.4					
Sn-120	54.3	26.4	15.8	0.9	0.4	0.1	0.6	1.6					
Sn-240	51.2	26.8	14.2	1.0	0.4	0.3	1.4	4.8					
SnCl ₂ -30	27.1	36.8	33.5	0.6	0.8	0.1	0.4	0.8					
SnCl ₂ -60	29.3	32.2	36.0	0.8	0.4	0.1	0.5	0.7					
SnCl ₂ -120	46.8	27.5	20.8	1.1	0.3	0.2	1.2	2.2					
SnCl ₂ -240	46.9	28.9	17.8	1.0	0.3	0.2	1.4	3.7					

Table S6. Element concentrations determined by XPS from the high-resolution spectra.

4. Spectra and other additional information

SEM-EDX - images and spectra 4.1.

Fitting Coefficient : 0.2094

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
CK	0.277	4.65	0.03	16.85				0.9643
OK	0.525	4.39	0.03	11.95				3.6566
Al K	1.486	1.22	0.02	1.96				0.6094
Si K	1.739	8.73	0.04	13.54				5.7327
Cl K	2.621	0.60	0.01	0.74				0.6104
Fe K	6.398	1.16	0.02	0.91				1.4939
Cu K	8.040	71.48	0.26	49.02				78.5039
Zn K	8.630	7.27	0.11	4.84				7.9736
Sn L	3.442	0.52	0.02	0.19				0.4553
meter 1		100 00		100 00				

Instrument : JCM-6000PLUS Probe Current: 1.00000 nA : 200.00 sec : 170.22 sec Counting Rate: 10284 cps Energy Range : 0 - 20 keV

Figure S2. Sn-30-react area.

Acquisition Parameter Instrument : JCM-6000PLUS Acc. Voltage : 15.0 kV Probe Current: 1.00000 nA PHA mode : Standard Real Time : 200.00 sec Live Time : 157.92 sec Dead Time : 20 % Counting Rate: 15500 cps Energy Range : 0 - 20 keV

Sn-30-non react

K

4.2079

0.6969

0.1689

0.2098

4.5771 0.3360 0.7756

87.8776

CK 0.277 28.74 15.12 0.09 OK 0.525 7.97 0.06 11.38 Al K 1.486 0.60 0.01 0.51 Si K 1.739 70.63 0.09 57.42 C1 K 2.621 0.17 0.01 0.11 Fe K 6.398 0.18 0.02 0.07

Cu K	8.040	4.14	0.08	1.49
Zn K	8.630	0.31	0.04	0.11
Sn L	3.442	0.88	0.03	0.17
Total		100.00		100.00

Figure S3. Sn-30-non react area.

ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.1997

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
СК	0.277	17.56	0.07	33.66	-			2.5466
OK	0.525	15.55	0.07	22.38				11.5087
Al K	1.486	0.35	0.01	0.29				0.3621
Si K	1.739	42.27	0.07	34.65				52.5376
Cl K	2.621	0.78	0.01	0.51				1.0123
Fe K	6.398	2.82	0.04	1.16				4.1387
Cu K	8.040	17.43	0.14	6.32				23.6683
Zn K	8.630	2.56	0.07	0.90				3.4640
Sn L	3.442	0.68	0.02	0.13				0.7618
Total		100.00		100.00				

Figure S4. Sn-60 reacted area.

ar	ameter	
:	JCM-6000PLUS	
:	15.0 kV	
:	1.00000 nA	
:	Standard	
:	200.00 sec	
:	167.13 sec	
:	16 %	
:	12008 cps	
:	0 - 20 keV	
	ar : : : :	arameter : JCM-6000PLUS : 15.0 kV : 1.00000 nA : Standard : 200.00 sec : 167.13 sec : 16 % : 12008 cps : 0 - 20 keV

ND

0.08

0.04

0.21

100.00

Acquisition Parameter Instrument : JCM-6000PLUS Acc. Voltage : 15.0 kV Probe Current: 1.00000 nA PHA mode : Standard Real Time : 200.00 sec Live Time : 151.25 sec Dead Time : 24 % Counting Rate: 19139 cps Energy Range : 0 - 20 keV

_____ \$.0 MM

	10 10 m 1 1 1 10	000 m m m 0 m 0 m 0 m m	A 4 4 4 4 4 4				
Ele	ement	(keV)	Masst	Sigma	Atom%	Compound	Ma
C	K	0.277	20.29	0.10	36.78		
0	K	0.525	3.87	0.04	5.26		
Al	K	1.486	0.24	0.01	0.20		
Si	K	1.739	74.04	0.08	57.40		
Cl	K	2.621	0.05	0.01	0.03		

0.03

0.03

0.03

ND

0.25

0.13

1.14

100.00

8.040

8.630

3.442

Fe K

Cu K

Zn K

Sn L

Total

Figure S5. Sn-60 non reacted area.

1.4336 1.7799 0.3015 95.0628 0.0440

0.2647

0.1371

0.9765

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation
CK	0.277	17.08	0.08	27.48			
OK	0.525	40.05	0.14	48.38			

Fitting Coefficient : 0.2006

C	K	0.277	17.08	0.08	27.48	3.6906
0	K	0.525	40.05	0.14	48.38	37.6551
Al	K	1.486	0.35	0.01	0.25	0.3933
Si	K	1.739	27.70	0.08	19.06	37.0548
Cl	K	2.621	1.11	0.02	0.60	1.6301
Fe	K	6.398	3.04	0.05	1.05	4.6223
Cu	K	8.040	9.85	0.14	3.00	13.8997
Zn	K	8.630	0.30	0.05	0.09	0.4212
Sn	L	3.442	0.52	0.03	0.08	0.6330
Tot	al		100.00		100.00	

Acquisition Parameter Instrument : JCM-6000PLUS Acc. Voltage : 15.0 kV Probe Current: 1.00000 nA : Standard PHA mode Real Time : 200.00 sec Live Time : 186.30 sec : 6 % Dead Time Counting Rate: 4692 cps Energy Range : 0 - 20 keV

Figure S6. Sn-120 reacted area.

Acquisition Par	rameter
Instrument :	JCM-6000PLUS
Acc. Voltage :	15.0 kV
Probe Current:	1.00000 nA
PHA mode :	Standard
Real Time :	200.00 sec
Live Time :	150.88 sec
Dead Time :	24 %
Counting Rate:	19363 cps
Energy Range .	0 - 20 keV

 SQ (n)	00000
 300	12000

Fitting	Coefficient :	0.2090						
Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
CK	0.277	17.73	0.10	33.45				1.1186
OK	0.525	1.81	0.03	2.57				0.7964
Al K	1.486	0.23	0.01	0.19				0.2735
Si K	1.739	78.58	0.09	63.41				96.4013
Cl K	2.621	0.01	0.01	0.01				0.0103
Fe K	6.398	0.11	0.01	0.05				0.1210
Cu K	8.040	0.10	0.03	0.03				0.0973
Zn K	8.630	0.17	0.03	0.06				0.1733
Sn L	3.442	1.25	0.03	0.24				1.0082
Total		100.00		100.00				

Figure S7. Sn-120 non reacted area.

Ele	ement	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation
C	K	0.277	19.25	0.06	42.87			
0	K*	0.525	9.86	0.05	16.49			
Al	K*	1.486	0.44	0.01	0.44			
Si	K	1.739	16.16	0.05	15.39			
Cl	K	2.621	2.45	0.02	1.85			
Cr	K*	5.411	4.73	0.04	2.44			
Fe	K	6.398	15.42	0.08	7.39			
Ni	K	7.471	3.44	0.06	1.57			
Cu	K	8.040	25.28	0.17	10.64			
Zn	K	8.630	1.42	0.06	0.58			
Sn	L*	3.442	1.55	0.03	0.35			
Tot	tal		100.00		100.00			

Figure S8. Sn-240 reacted area.

Acquisition Parameter Instrument : JCM-6000PLUS Acc. Voltage : 15.0 kV Probe Current: 1.00000 nA PHA mode : Standard Real Time : 200.00 sec Live Time : 176.31 sec Dead Time : 11 % Counting Rate: 7992 cps Energy Range : 0 - 20 keV

3.2075 6.6565 21.5335 4.6286 32.3773 1.8161 1.6827

keV

ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.2227

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	
CK	0.277	35.95	0.09	55.07	oompound	naooo	odoron	
O K*	0.525	9.92	0.06	11.41				
Al K*	1.486	0.21	0.01	0.14				
Si K	1.739	48.23	0.06	31.59				
Cl K	2.621	0.75	0.01	0.39				
Fe K	6.398	2.31	0.03	0.76				
Cu K	8.040	1.57	0.04	0.45				
Zn K*	8.630	0.17	0.03	0.05				
Sn L*	3.442	0.89	0.02	0.14				
Total		100.00		100.00				

Figure S9. Sn-240 non reacted area.

Acquisition Pa	arameter
Instrument :	JCM-6000PLUS
Acc. Voltage :	: 15.0 kV
Probe Current:	: 1.00000 nA
PHA mode :	Standard
Real Time :	: 200.00 sec
Live Time :	: 154.79 sec
Dead Time :	: 20 %
Counting Rate:	: 15914 cps
Energy Range :	0 - 20 keV

Sn-240 non react

5.8333 0.3137 80.1447 1.0918 3.5879 2.3068 0.2462 1.1068

ZAF	Meth	lod	Standardl	ess	Quantitative	Analysis
Fitt	ing	Coe	fficient	: 0.	.1816	

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation
CK	0.277	2.78	0.02	9.83			
OK	0.525	2.48	0.02	6.57			
Al K	1.486	0.76	0.01	1.19			
Si K	1.739	23.33	0.06	35.25			
Cl K	2.621	0.09	0.00	0.11			
Fe K	6.398	1.66	0.03	1.26			
Cu K	8.040	65.93	0.25	44.02			
Zn K	8.630	2.43	0.08	1.58			
Sn L	3.442	0.54	0.02	0.19			
Total		100.00		100.00			

Figure S10. SnCl₂-30 reacted area.

Acquisition Par	rameter
Instrument :	JCM-6000PLUS
Acc. Voltage :	15.0 kV
Probe Current:	1.00000 nA
PHA mode :	Standard
Real Time :	200.00 sec
Live Time :	180.65 sec
Dead Time :	9 %
Counting Rate:	6759 cps
Energy Range :	0 - 20 keV

 $SnCl_2-30$ react

K 0.4704

2.0380 0.4317 17.1072 0.0903 2.1478 74.4835 2.7432

0.4878

Acquisition Parameter

Instrument : JCM-6000PLUS Acc. Voltage : 15.0 kV

Probe Current: 1.00000 nA

ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.2121

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
CK	0.277	14.75	0.09	28.54	3656			0.9469
OK	0.525	3.99	0.04	5.79				1.8517
Al K	1.486	0.41	0.01	0.35				0.4699
Si K	1.739	77.87	0.08	64.43				93.9639
Cl K	2.621	0.04	0.01	0.02				0.0325
Fe K	6.398	0.19	0.02	0.08				0.2042
Cu K	8.040	1.38	0.05	0.51				1.4156
Zn K	8.630	0.03	0.03	0.01				0.0332
Sn L	3.442	1.34	0.03	0.26				1.0821
Total		100.00		100.00				

Figure S11. SnCl₂-30 non reacted area.

Compound

ZAF	Meth	od	Standardl	ess	Quantitative	Analysis
Fitt	ing	Coe	fficient	: 0	.2123	

Ele	ement	(keV)	Mass%	Sigma	Atom%
C	K	0.277	7.07	0.04	21.40
Ν	K	0.392	0.18	0.02	0.47
0	K	0.525	4.93	0.04	11.21
Al	K	1.486	0.49	0.01	0.67
Si	K	1.739	22.23	0.07	28.77
Cl	K	2.621	0.60	0.01	0.62
Fe	K	6.398	1.12	0.03	0.73
Cu	K	8.040	60.65	0.28	34.70
Zn	K	8.630	2.45	0.09	1.36
Sn	L	3.442	0.26	0.03	0.08
Tot	tal		100.00		100.00

Mass%	Cation	K
		1.2460
		0.1618
		3.9989
		0.3020
		17.4961
		0.6533
		1.5097
		71.4939
		2.8884
		0.2499

Figure S12. SnCl₂-60 reacted area.

Acquisition P	ar	ameter
Instrument	:	JCM-6000PLUS
Acc. Voltage	:	15.0 kV
Probe Current	:	1.00000 nA
PHA mode	:	Standard
Real Time	:	200.00 sec
Live Time	:	175.51 sec
Dead Time	:	11 %
Counting Rate	:	8584 cps
Energy Range	:	0 - 20 keV

SnCl₂-60 react

keV

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
CK	0.277	11.18	0.12	22.58	•			0.6070
OK	0.525	2.31	0.05	3.50				1.0247
Al K	1.486	0.34	0.01	0.30				0.3766
Si K	1.739	84.75	0.14	73.18				96.7754
Cl K	2.621	0.01	0.01	0.01				0.0111
Fe K	6.398	0.09	0.02	0.04				0.0845
Cu K	8.040	0.70	0.06	0.27				0.6626
Zn K	8.630	0.02	0.05	0.01				0.0208
Sn L	3.442	0.59	0.04	0.12				0.4372
Total		100.00		100.00				

Figure S13. SnCl₂-60 non reacted area.

Acquisition Pa	rameter
Instrument :	JCM-6000PLUS
Acc. Voltage :	15.0 kV
Probe Current:	1.00000 nA
PHA mode :	Standard
Real Time :	200.00 sec
Live Time :	179.40 sec
Dead Time :	9 %
Counting Rate:	7185 cps
Energy Range :	0 - 20 keV

Acquisition Parameter Instrument : JCM-6000PLUS Acc. Voltage : 15.0 kV Probe Current: 1.00000 nA PHA mode : Standard Real Time : 200.00 sec Live Time : 143.28 sec Dead Time : 28 % Counting Rate: 22860 cps Energy Range : 0 - 20 keV

SnCl₂-120 react

ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.1987

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
CK	0.277	14.96	0.08	29.12				1.0037
OK	0.525	3.99	0.04	5.83				1.8986
Al K	1.486	0.29	0.01	0.25				0.3288
Si K	1.739	75.80	0.08	63.07				91.8937
Cl K	2.621	0.32	0.01	0.21				0.2988
Fe K	6.398	0.99	0.02	0.41				1.0761
Cu K	8.040	1.88	0.05	0.69				1.9637
Zn K	8.630	0.37	0.04	0.13				0.3811
Sn L	3.442	1.40	0.03	0.28				1.1556
Total		100.00		100.00				

Figure S14. SnCl₂-120 reacted area.

keV

ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.2025

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
CK	0.277	20.65	0.10	37.65				1.5448
OK	0.525	3.65	0.04	5.00				1.7346
Al K	1.486	0.40	0.01	0.32				0.4857
Si K	1.739	71.65	0.08	55.86				92.4373
Cl K	2.621	0.18	0.01	0.11				0.1738
Fe K	6.398	1.06	0.02	0.42				1.2162
Cu K	8.040	1.11	0.04	0.38				1.2257
Zn K	8.630	0.15	0.03	0.05				0.1599
Sn L	3.442	1.16	0.03	0.21				1.0220
Total		100.00		100.00				

Figure S15. SnCl₂-120 non reacted area.

Acquisition H	Par	ameter
Instrument	:	JCM-6000PLUS
Acc. Voltage	:	15.0 kV
Probe Current	::	1.00000 nA
PHA mode	:	Standard
Real Time	:	200.00 sec
Live Time	:	149.53 sec
Dead Time	:	23 %
Counting Rate	::	18661 cps
Energy Range	:	0 - 20 keV

SnCl₂-120non react

🗆 3.0 µm

ZAF Method Standardless Quantitative Analysis Fitting Coefficient : 0.2165

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
CK	0.277	18.57	0.07	35.05				2.5671
OK	0.525	14.50	0.06	20.54				10.1982
Al K	1.486	0.37	0.01	0.31				0.4062
Si K	1.739	42.86	0.06	34.59				54.8538
Cl K	2.621	1.96	0.02	1.25				2.5242
Cr K	5.411	2.61	0.03	1.14				3.6723
Fe K	6.398	8.91	0.06	3.62				12.4569
Ni K	7.471	1.65	0.04	0.64				2.2972
Cu K	8.040	6.36	0.08	2.27				8.3690
Zn K	8.630	1.09	0.05	0.38				1.4328
Sn L	3.442	1.12	0.02	0.21				1.2224
Total		100.00		100.00				

Figure S16. SnCl₂-240 reacted area.

Acquisition Parameter Instrument : JCM-6000PLUS Acc. Voltage : 15.0 kV Probe Current: 1.00000 nA PHA mode : Standard Real Time : 200.00 sec Live Time : 158.68 sec Dead Time : 20 % Counting Rate: 15259 cps Energy Range : 0 - 20 keV

Acquisition Par	rameter
Instrument :	JCM-6000PLUS
Acc. Voltage :	15.0 kV
Probe Current:	1.00000 nA
PHA mode :	Standard
Real Time :	200.00 sec
Live Time :	147.00 sec
Dead Time :	25 %
Counting Rate:	20649 cps
Energy Range :	0 - 20 keV

— 3.0 µm

ZAF	Meth	oa	Stand	larc	$1 \pm \epsilon$	es	s	Quanti	tative	Analysis	
Fitt	ing	Coe	ffici	ent	:		Ο.	2232			
					* *			0	a :		

Element	(keV)	Mass%	Sigma	Atom%	Compound	Mass%	Cation	K
CK	0.277	14.31	0.08	27.62				1.0465
OK	0.525	7.25	0.05	10.51				3.6964
Al K	1.486	0.29	0.01	0.25				0.3384
Si K	1.739	71.79	0.08	59.26				88.3385
Cl K	2.621	0.56	0.01	0.37				0.5424
Cr K	5.411	0.42	0.02	0.19				0.4673
Fe K	6.398	1.43	0.03	0.59				1.6064
Ni K	7.471	0.24	0.02	0.09				0.2705
Cu K	8.040	2.24	0.05	0.82				2.4200
Zn K	8.630	0.04	0.03	0.01				0.0452
Sn L	3.442	1.43	0.03	0.28				1.2285
Total		100.00		100.00				

Figure S17. SnCl₂-240 non reacted area.

Κ

4.2. PXRD – data

Figure S18. PXRD of contact mass Zr-Cu.

Figure S19. PXRD of contact mass Zr-Cu-Zn.

Figure S20. PXRD of contact mass Zr-Cu-Sn.

Figure S21. PXRD of contact mass Zr-Cu-Sn-Zn.

Figure S22. PXRD of contact mass Sn-30.

Figure S23. PXRD of contact mass Sn-60.

Figure S24. PXRD of contact mass Sn-120.

Figure S25. PXRD of contact mass Sn-240.

Figure S26. PXRD of contact mass $SnCl_2$ -30.

Figure S27. PXRD of contact mass SnCl₂-60.

Figure S28. PXRD of contact mass SnCl₂-120.

Figure S29. PXRD of contact mass SnCl₂-240.

Figure S30. PXRD patterns of the direct synthesis contact masses obtained with brass milling bodies.

Figure S31. ¹H NMR spectrum for liquid products of direct methylmethoxysilanes synthesis.

Figure S32. ¹³C NMR spectrum for liquid products of direct methylmethoxysilanes synthesis.

Figure S33. ²⁹Si NMR spectrum for liquid products of direct methylmethoxysilanes synthesis.

Figure S34. GC chromatogram for liquid products of direct methylmethoxysilanes synthesis.

4.5. GC-MS analysis

Figure S35. GC-MS analysis of products mixture after the synthesis with DMC in decane.

Figure S36. GC-MS analysis of products mixture after the synthesis with DMC in diethyl ether.

4.6. XPS – spectra, tables and description

Experiment

X-Ray photoelectron spectroscopy (XPS) was carried out on an Axis Ultra DLD spectrometer (Kratos) using monochromatic Al K α radiation with an X-ray beam power of 150 W. Survey spectra and high-resolution spectra were recorded at pass energies of 160 and 40 eV, respectively. Survey spectra were recorded with a step of 1 eV, while high-resolution spectra were recorded with a step of 0.1 eV The dimensions of the explored area were $300 \times 700 \ \mu\text{m}^2$. Samples were mounted on a holder using a double-sided adhesive tape and studied at room temperature at the residual pressure in the spectrometer chamber no higher than 10–8 Torr. The energy scale of the spectrometer was calibrated according to the standard procedure based on the following binding energies (purified by ion sputtering of metal surfaces): Au $4f_{7/2} - 83.96 \ eV$, Cu $2p_{3/2} - 932.62 \ eV$, Ag $3d_{5/2} - 368.21 \ eV$. To eliminate the effect of sample charging, the spectra were recorded using a neutralizer. Surface charging was taken into account based on the Si $2p_3/2$ peak of the Si(0) state with a binding energy of 99.34 eV.¹ The background due to electron inelastic energy losses was subtracted by the Shirley method. Quantification was performed using atomic sensitivity factors included in the software of the spectrometer.

Figure S37. Survey spectrum of sample Sn-30.

Figure S38. Survey spectrum of sample Sn-60.

Figure S39. Survey spectrum of sample Sn-120.

Figure S40. Survey spectrum of sample Sn-240.

Figure S41. Survey spectrum of sample SnCl₂-30.

Figure S42. Survey spectrum of sample SnCl₂-60.

Figure S43. Survey spectrum of sample SnCl₂-120.

Figure S44. Survey spectrum of sample SnCl₂-240.

Considering the possibility of copper reduction under the influence of X-ray radiation, Cu 2p spectra were recorded at the beginning and end of the experiment (**Figure S45**). To minimize exposure, the recording of spectra commenced with the Cu 2p spectrum. The presented spectra show no changes in the shape of the spectral lines, indicating that copper was not reduced.

Figure S45. Photoelectron spectra of Cu 2p of the studied samples, measured at the beginning and end of the recording of the spectra.

Results and Discussion

Figure S46 displays the Si 2p photoelectron spectra of the examined samples, normalized by the intensity of the low-energy peak corresponding to the Si⁰ state. These spectra qualitatively reflect the relative concentrations of Si⁴⁺ and Si⁰ states, as well as being normalized by the Si concentration in the samples.

Figure S46. Si 2p photoelectron spectra of the examined samples, the spectra are normalized by intensity of the main peak (a) and Si concentration (b).

Figure S47. Si 2p photoelectron spectra of the studied samples, the spectra are normalized by intensity of the main peak (a) and Si concentration (b).

Figure S48 presents the photoelectron spectra of Si 2p, approximated by a set of Gaussian peaks consistent with the data on chemical shifts. The Si⁰ state is represented by two peaks with a characteristic ratio of $2p_{1/2}/2p_{3/2}$ equal to 0.5 and a spin-orbital splitting of $2p_{1/2} - 2p_{3/2}$ equal to 0.605. Binding energies are assigned to the Si⁺, Si²⁺, Si³⁺ and Si⁴⁺ states 100.78 – 100.85, 101.77-101.9, 102.85-103.1 and 103.87 – 104.16 eV, respectively. **Figure S48**

illustrates the binding energies, Gaussian widths, and relative intensities of the photoelectron peaks, while **Table S7** lists these values along with the chemical shifts.

From Figure S48, it is evident that the predominant state in the Si 2p spectra is the Si⁰ state, and the primary variations among the spectra pertain to the proportion of the Si⁴⁺ state.

Figure S48. Photoelectron spectra of Si 2p the studied samples, decomposition into components.

	peans	i ciacca co aiii	ci chit chui ge si		a ap spectra	•	
		Si ⁰ 2p _{3/2}	Si ⁰ 2p _{1/2}	Si ⁺	Si ²⁺	Si ³⁺	Si ⁴⁺
		Ι	II	III	IV	V	VI
Sn-30	E _{b.} eV	99.34	99.945	100.8	101.8	102.9	103.9
	W, eV	0.8	0.8	1.06	1.5	1.6	1.75
	I _{rel.}	7220	3610	450	330	365	4700
	I _{rel.}	0.43	0.22	0.03	0.02	0.02	0.28
Sn-60	E _b , eV	99.34	99.945	100.84	101.81	102.91	103.91
	W, eV	0.78	0.814	1.06	1.5	1.6	1.76
	I _{rel.}	7050	3525	660	330	3535	4672
	I _{rel.}	0.36	0.18	0.03	0.02	0.18	0.24
Sn-120	E _b , eV	99.34	99.945	100.82	101.79	102.89	103.9
	W, eV	0.81	0.8	1.06	1.5	1.6	1.76
	I _{rel.}	7200	3600	1600	1647	7030	6700
	I _{rel.}	0.26	0.13	0.06	0.06	0.25	0.24
Sn-240	E _b , eV	99.34	99.945	100.80	101.77	102.88	103.87
	W, eV	0.82	0.81	1.06	1.5	1.6	1.76
	I _{rel.}	7200	3600	1700	1902	9901	1155
	I _{rel.}	0.28	0.14	0.07	0.07	0.39	0.05
SnCl ₂ -30	E _b , eV	99.34	99.945	100.79	101.86	103.01	104.11
	W, eV	0.8	0.81	1.06	1.5	1.65	1.65
	I _{rel.}	7150	3575	503	564	333	6216
	I _{rel.}	0.39	0.19	0.03	0.03	0.02	0.34
SnCl ₂ -60	E _b , eV	99.34	99.945	100.85	101.82	102.92	104.12
	W, eV	0.77	0.81	1.06	1.5	1.6	1.76
	I _{rel.}	7200	3600	400	500	1200	4100
	I _{rel.}	0.42	0.21	0.02	0.03	0.07	0.24
SnCl ₂ -120	E _b , eV	99.34	99.945	100.84	101.9	102.86	104.16
	W, eV	0.8	0.81	1.06	1.5	1.65	1.65
	I _{rel.}	7154	3577	960	595	4087	3458
	I _{rel.}	0.36	0.18	0.05	0.03	0.21	0.17
SnCl ₂ -240	E _b , eV	99.34	99.945	100.78		102.85	103.9
	W, eV	0.82	0.81	1.06		1.65	1.65
	I _{rel.}	7300	3650	1800	595	9740	2542
	I _{rel.}	0.28	0.14	0.07	0.02	0.38	0.10
		I	II	III	IV	V	VI

Table S7. Characteristics of photoelectron spectra: binding energies (E_b), Gaussian widths (W) and relative intensities (I_{rel}) of photoelectron peaks related to different charge states in the Si 2p spectra.

The corresponding photoelectron spectra of C 1s are displayed in **Figure S49** and **Figure S50**, and their characteristics are summarized in **Table S8**. These spectra are characterized by peaks with binding energies 283.58 - 283.91, 284.66, 285.11-285.77, 286.6, 287.6 and 288.93 - 289.56 eV, which can be ascribed to low-molecular-weight carbon fragments, graphitized carbon containing structural defects, groups C-C/C-H, C-OH/C-O-C, O-S-O/S=O and S(O)O. The relative intensities of the photoelectronic peaks reflect the relative concentrations of the isolated states.

Figure S49. Photoelectron spectra of C 1s of the studied samples, the spectra are normalized by the intensity of the main peak and by the concentration of carbon.

Figure S50. Photoelectron spectra of C 1s of the studied samples, decomposition into components.

					rr rr r		
		C-C/C-H*	sp ²	C-C/C-H	C-OH/C-O-C	C=O/O-C-O	C(0)0
		I	II	III	IV	V	VI
Sn-30	E _b , eV	283.75	284.66	285.44	286.60	287.61	288.93
	W, eV	1.13	1.13	1.13	1.19	1.13	1.2
	I _{rel.}	1059	2565	9200	3599	3650	550
	I _{rel.}	0.05	0.12	0.45	0.17	0.18	0.03
Sn-60	E _b , eV	283.75	284.66	285.44	286.60	287.62	289.5
	W, eV	1.13	1.13	1.13	1.19	1.13	1.2
	I _{rel.}	610	2741	9210	2510	1917	439
	I _{rel.}	0.04	0.16	0.53	0.14	0.11	0.03
Sn-120	E _b , eV	283.75	284.66	285.49	286.60	287.62	289.5
	W, eV	1.13	1.13	1.13	1.19	1.13	1.2
	I _{rel.}	570	2706	9184	3550	1753	785
	I _{rel.}	0.03	0.15	0.50	0.19	0.09	0.04
Sn-240	E _b , eV	283.91		285.11	286.60	287.62	289.31
	W, eV	1.2		1.2	1.19	1.2	1.4
	I _{rel.}	1527		2706	3550	1753	785
	I _{rel.}	0.15		0.26	0.34	0.17	0.08
SnCl ₂ -60	E _b , eV	283.90	284.66	285.48	286.60	287.63	289.4
	W, eV	1.25	1.2	1.2	1.19	1.21	1.5
	I _{rel.}	1930	3030	9620	3305	3890	916
	I _{rel.}	0.04	0.04	0.04	0.04	0.04	0.04
SnCl ₂ -120	E _b , eV	283.65	284.66	285.46	286.61	287.63	289.56
	W, eV	1.25	1.2	1.2	1.2	1.21	1.42
	I _{rel.}	957	2497	9693	4386	2840	817
	I _{rel.}	0.05	0.12	0.46	0.21	0.13	0.04
SnCl ₂ -240	E _b , eV	283.58	284.66	285.34	286.61	287.58	289.5
	W, eV	1.25	1.2	1.2	1.2	1.21	1.45
	I _{rel.}	883	2942	9169	4544	2605	632
	I _{rel.}	0.04	0.14	0.44	0.22	0.13	0.03
SnCl ₂ -30	E _b , eV	283.73	284.66	285.57	286.61	287.57	289.40
	W, eV	1.25	1.2	1.2	1.2	1.21	1.5
	I _{rel.}	985	2683	9878	2816	6059	1410
	I _{rel.}	0.04	0.11	0.41	0.12	0.25	0.06
		I	II	III	IV	V	VI

Table S8. Characteristics of photoelectron spectra: binding energies (E_b), Gaussian widths (W) and relative intensities (I_{rel}) of photoelectron peaks related to different chemical groups in the C 1s spectra.

Based on Figures Figure S49 and Figure S50 and Table S8, it is evident that although the same groups are present in the studied samples, they exhibit varying relative intensities due to the differing conditions of sample preparation.

Figure S51 depicts the Cu 2p photoelectron spectra of the studied samples, normalized by the intensity of the main peak and the concentration of copper. Notably, there are no satellite peaks with a binding energy of approximately 943 eV, indicating the absence of a Cu^{2+} state.

Figure S51. Photoelectron spectra of Cu 2p3/2 of the studied samples, the spectra are normalized by the concentration of copper on the surface of the CM.

Figure S52 displays the decomposition of the Cu $2p_{3/2}$ photoelectron spectra of the studied samples using three Gaussian profiles, and their characteristics are presented in Table 5. The binding energies of peaks I fall within the range 931.45 - 932.45 eV, corresponding to the Cu⁺ state.^{3,4}

Regarding the positions of peaks II, two ranges can be identified: 932.94 - 932.98 eV and 933.15 - 933.33 eV. The former corresponds to the Cu⁰ state for particles larger than several tens of nanometers, whereas the latter pertains to nanoparticles smaller than 10 nm, reflecting the size-dependent shift of the photoelectron peak, known as the so-called dimensional effect. However, based on electron microscopy data, the size of nanoparticles containing copper exceeds 1 µm. This observation suggests the presence of differential charging, implying that the copper-containing particles are enveloped by a substance with low electrical conductivity. The binding energies of peaks III surpass 934 eV and, according to available literature, should be assigned to the Cu²⁺ state.⁴⁻⁶ Nonetheless, considering the absence of characteristic satellites and the inability to observe the dimensional effect, peaks III should also be attributed to the Cu⁰ state. The binding energies of peaks III, as indicated in the **Table S9**, further highlight the occurrence of differential charging and suggest that copper-containing particles are encased in a thicker layer of a substance with low electrical conductivity or a layer of a substance with even lower electrical conductivity compared to the scenario involving peak II.

Figure S52. Photoelectron spectra of Cu 2p_{3/2} of the studied samples, decomposition into components. Figure S53 displays the photoelectron spectra of Zn 2p of the examined samples, normalized by the intensity of the main peak and the Zn concentration.

Figure S53. Photoelectron spectra of Zn 2p_{3/2} of the studied samples (a), the spectra are normalized by zinc concentration (b) and by the intensity of the main peak (c).

Figure S54 shows the decompositions of the Zn $2p_{3/2}$ photoelectron spectra of the studied samples using three Gaussian profiles, and their characteristics are presented in the Table. As in the case of Cu $2p_{3/2}$ spectra, the Zn $2p_{3/2}$ spectra are approximated by three Gaussian profiles.

Figure S54. Photoelectron spectra of Zn 2p_{3/2} of the studied samples, decomposition into components.

The binding energies of the Zn $2p_{3/2}$ photoelectron peaks exhibit weak dependence on the chemical environment. One primary method to determine the charge state of Zn atoms involves utilizing the Auger parameter. However, at low concentrations, this approach necessitates prolonged registration times, potentially leading to metal reduction. The acquired binding energies of the Zn $2p_{3/2}$ peaks are approximately 1 eV higher than the reference values for ZnO, differing by 0.25 eV from those of pure Zn. Nevertheless, based on the interpretation of the Cu 2p spectra, the observed shift should also be ascribed to the dimensional effect (**Table S9**).

		Cu 2p _{3/2}				Substraction				
		Ι	II	III	Ι	II	III	I-I	II-II	III-III
Sn-30	E _b , eV	932.0	932.98	934.1	1022.11	1023.29	1024.32	90.11	90.31	90.22
	I _{rel.}	0.10	0.71	0.19	0.14	0.61	0.25			
Sn-60	E _b , eV	932.0	932.98	934.1	1022.11	1023.29	1024.32	90.11	90.31	90.22
	I _{rel.}	0.10	0.72	0.19	0.09	0.61	0.29			
Sn-120	E _b , eV	932.45	933.33	934.1	1021.82	1022.95	1024.04	89.37	89.62	89.94
	I _{rel.}	0.15	0.71	0.14	0.14	0.71	0.15			
Sn-240	E _b , eV	932.35	933.15	934.14	1021.82	1022.87	1024.07	89.47	89.72	89.93
	I _{rel.}	0.15	0.67	0.18	0.12	0.76	0.12			
SnCl ₂ -30	E _b , eV	931.45	932.94	934.19	1022.11	1023.29	1024.32	90.66	90.35	90.13
	I _{rel.}	0.04	0.81	0.15	0.17	0.61	0.22			
SnCl ₂ -60	E _b , eV	931.99	933.26	934.56	1022.2	1023.2	1024.41	90.21	89.94	89.85
	I _{rel.}	0.07	0.79	0.14	0.19	0.67	0.14			
SnCl ₂ -120	E _b , eV	931.75	933.23	934.67	1021.98	1023.03	1024.14	90.23	89.8	89.47
	I _{rel.}	0.05	0.83	0.12	0.16	0.71	0.13			
SnCl ₂ -240	E _b , eV	932.35	933.26	934.69	1022.11	1023.2	1024.32	89.76	89.94	89.63
	I _{rel.}	0.16	0.76	0.08	0.25	0.55	0.20			

Table S9. Characteristics of photoelectron spectra: binding energies (Eb) and relative intensities (Irel) of photoelectron peaks related todifferent charge states in the Cu 2p_{3/2} and Zn 2p_{3/2} spectra

Figure S55. Photoelectron spectra of Sn 3d_{5/2} of the studied samples, the spectra are normalized by intensity of the main peak (a) and their concentration in contact mass (b).

Figure S56. Photoelectron spectra of Sn 3d_{5/2} of the studied samples.

		Sn(I)	Sn(II)	Sn(III)			Sn(I)	Sn(II)	Sn(III)
Sn-30	E _b , eV	485.55	486.85	488.0	SnCl ₂ -30	E _b , eV	485.40	486.85	488.0
	W, eV	1.2	1.2	1.45		W, eV	1.05	1.2	1.45
	I _{rel}	267	146	900		I _{rel}	290	263	837
	I _{rel}	0.20	0.11	0.69		I _{rel}	0.21	0.19	0.60
Sn-60	E _b , eV	485.6	486.85	488.0	SnCl ₂ -60	E _b , eV	485.55	486.85	488.0
	W, eV	1.2	1.2	1.45		W, eV	1.2	1.2	1.45
	I _{rel}	640	260	880		I _{rel}	453	232	728
	I _{rel}	0.36	0.15	0.49		I _{rel}	0.32	0.16	0.52
Sn-120	E _b , eV	485.40	486.85	487.8	SnCl ₂ -120	E _b , eV	485.3	486.85	487.85
	W, eV	1.08	1.2	1.35		W, eV	1.25	1.2	1.45
	I _{rel}	719	1016	851		I _{rel}	822	630	1066
	I _{rel}	0.28	0.39	0.33		I _{rel}	0.33	0.25	0.42
Sn-240	E _b , eV	485.40	486.9	487.8	SnCl ₂ -240	E _b , eV	485.40	486.9	487.8
	W, eV	1.08	1.2	1.30		W, eV	1.08	1.2	1.30
	I _{rel}	1473	1561	720		I _{rel}	1159	1081	823
	I _{rel}	0.39	0.42	0.19		I _{rel}	0.38	0.35	0.27

Table S10. Characteristics of the Sn $3d_{5/2}$ photoelectron spectra: binding energies (E_{b} , eV), Gaussian widths (W, eV), and relative intensities (I_{rel}) ofphotoelectron peaks.

Figure S57. Photoelectron spectra of Fe 2p_{3/2} of the studied samples, the spectra are normalized by the intensity of the main peak.

5. References

- Powell, C. J. Elemental Binding Energies for X-Ray Photoelectron Spectroscopy. *Appl. Surf. Sci.* 1995, 89 (2), 141–149. https://doi.org/10.1016/0169-4332(95)00027-5.
- (2) Krizhanovskiy, I. N.; Temnikov, M. N.; Anisimov, A. A.; Ratnikov, A. K.; Levin, I. S.; Naumkin, A. V.; Chistovalov, S. M.; Muzafarov, A. M. Direct Synthesis of Tetraalkoxysilanes in a High-Pressure Mechanochemical Reactor. *React. Chem. Eng.* 2022, 7 (3), 769–780. https://doi.org/10.1039/D1RE00522G.
- (3) Vasquez, R. P. Cu2O by XPS. Surf. Sci. Spectra 1998, 5 (4), 257–261. https://doi.org/10.1116/1.1247881.
- (4) Barreca, D.; Gasparotto, A.; Tondello, E. CVD Cu2O and CuO Nanosystems Characterized by XPS. Surf. Sci. Spectra 2007, 14 (1), 41–51. https://doi.org/10.1116/11.20080701.
- (5) Vasquez, R. P. CuO by XPS. Surf. Sci. Spectra 1998, 5 (4), 262–266. https://doi.org/10.1116/1.1247882.
- (6) Vasquez, R. P. Cu(OH)2 by XPS. Surf. Sci. Spectra 1998, 5 (4), 267–272. https://doi.org/10.1116/1.1247883.