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11

12 Feature selection process

13 Prior to model construction, the dataset's molecular fingerprints undergo initial 

14 processing to reduce the dimension of the descriptors. A large number of redundant features 

15 with identical numerical distributions are removed from the molecular fingerprints, as these 

16 features do not contribute meaningfully to machine learning training models. As a result, the 

17 features of these descriptors have been considerably simplified.

18

19 Model input layers

20 In this study, three widely used molecular fingerprints, Molecular Access System 

21 (MACCS), Extended-Connectivity Fingerprint (ECFP), and Functional Connectivity 

22 Fingerprint (FCFP), are utilized as descriptors. The distinct molecular fingerprints are utilized 

23 as separate input layers rather than being integrated into a unified input layer, primarily for 
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24 the following reasons:

25 Feature diversity and uniqueness: Distinct molecular fingerprints capture different 

26 aspects of molecular structure information. For instance, MACCS captures functional group 

27 information within molecules; ECFP reflects the local environment and connectivity of each 

28 atom within a specified radius; FCFP, based on ECFP, disregards distinctions between 

29 similar functional groups and represents a more generalized functional molecular fingerprint. 

30 Separate input layers better preserve each fingerprint's unique characteristics and prevent 

31 potential information overlap or masking that could arise if combined into a single layer.

32 Model flexibility and adaptability: The separate input layer design allows the network 

33 architecture to be tailored for each type of fingerprint. For example, in this study, hidden 

34 layers with varying numbers of nodes are established for each distinct input layer. This 

35 flexibility enables the model to more effectively adapt to different types of input data, thereby 

36 enhancing the overall performance.

37 Avoiding information confusion: Combining all fingerprints into a unified input layer 

38 may cause information confusion. For example, high-dimensional features of certain 

39 fingerprints might overshadow critical information from other fingerprints. By separating the 

40 input layers, such mutual interference can be avoided, allowing the model to learn the 

41 characteristics of each fingerprint more distinctly.

42

43 Reaction condition optimization process

44 The reaction conditions are optimized through deep learning model. The CO2 pressure is 

45 always maintained at 0.1 MPa. The time range is set to [1 h, 2 h, 3 h, 4 h, 5 h], and the 



46 temperature range is set to [50 ℃, 60 ℃, 70 ℃, 80 ℃, 90 ℃]. The catalyst dosage range is 

47 considered as [0.2 mol%, 0.4 mol%, 0.6 mol%, 0.8 mol%, 1.0 mol%, 1.2 mol%, 1.4 mol%]. 

48 The initial reaction conditions are 4 h, 90 ℃, 0.1 MPa, 0.8%. Not all combinations of 

49 reaction conditions are traversed, but the control variable method from experiments is 

50 employed to determine parameters one by one. With the aim of reducing reaction conditions 

51 as much as possible while ensuring a predicted yield close to 0.95, the reaction conditions are 

52 optimized by yield prediction through deep learning.

53

54 General applicability and potential limitations of the model

55 The deep learning approach presented in this study offers a novel and efficient 

56 alternative for predicting and designing IL catalysts for CO2 cycloaddition reactions. While 

57 the current study focuses on imidazolium-based and pyrazolium-based ILs, the approach can 

58 be extended to other types of molecules and reactions with appropriate modifications. The 

59 use of hybrid fingerprint features allows the model to capture essential structural information 

60 for predicting catalytic performance. Additionally, the model's ability to handle high-

61 dimensional data and complex relationships, combined with SHAP analysis and a two-step 

62 screening strategy, provides valuable insights and reduces experimental burden.

63 Despite promising results, the model's generalizability is limited by the dataset's focus 

64 on imidazolium-based and pyrazolium-based ILs. Extending the approach to other molecules 

65 or reactions will require more diverse training data. Additionally, the model's adaptability to 

66 more complex or less studied catalytic systems remains to be validated and may need further 

67 refinement. Future work should aim to expand the dataset, validate the model on additional 



68 systems, and optimize computational efficiency to enhance its broader applicability.

69

70
71 Fig. S1. 27 types of imidazolium-based cation structures in the dataset.

72

73

74 Fig. S2. 13 types of anion structures associated with imidazolium-based ionic liquids in the 

75 dataset.

76



77
78 Fig. S3. 25 types of pyrazolium-based cation structures in the dataset.
79

80
81 Fig. S4. 5 types of anion structures associated with pyrazolium-based ionic liquids in the 
82 dataset.
83



84

85 Fig. S5. 14 types of reactant structures in the dataset.

86

87
88 Fig. S6. Number of data points for each of the 14 types of reactants in the dataset.

89

90 Table S1 

91 Parameters of DNN models.

Model Random seed Learning rate Epochs

M 28 0.006 310

E 29 0.005 374

F 6 0.004 486

ME 3 0.007 715

MF 25 0.007 390

EF 2 0.007 262

MEF 3 0.007 385



92

93

94 Fig. S7. DNN model based on M feature.

95

96

97 Fig. S8. DNN model based on E feature.

98

99

100 Fig. S9. DNN model based on F feature.
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102
103 Fig. S10. DNN model based on MF feature.

104

105
106 Fig. S11. DNN model based on EF feature.
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108
109 Fig. S12. DNN model based on MEF feature.
110

111 Table S2 

112 Parameters of traditional algorithms.

Algorithms M

DT random_state=35, max_depth=24

RF max_depth=17, random_state=16, max_features=84, n_estimators=11

GBR learning_rate=0.396, random_state=7, n_estimators=200

XGB random_state=0, max_depth=2, n_estimators=81

SVM Kernel=’rbf’, C=470, epsion=1e-06, gamma=0.01

113



114
115 Fig. S13. The structures of screened pyrazolium-based ionic liquids.

116

117 Table S3 

118 The 12 screened pyrazolium-based ionic liquids.

Structure Time (h) T (℃) P (MPa)
Amount 

(mol%)

Predicted 

yield

P-1 7 90 0.1 1 1.00

P-2 7 90 0.1 1 0.96

P-3 7 90 0.1 1 0.91

P-4 7 90 0.1 1 0.87

P-5 7 90 0.1 1 0.87

P-6 7 90 0.1 1 0.85

P-7 7 90 0.1 1 0.83

P-8 7 90 0.1 1 0.83

P-9 7 90 0.1 1 0.83

P-10 7 90 0.1 1 0.82

P-11 7 90 0.1 1 0.82

P-12 7 90 0.1 1 0.80
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120
121 Fig. S14. The mechanism of the CO2 cycloaddition reaction catalyzed by ionic liquids.
122

123 Table S4 

124 The energy barriers, optimized reaction conditions, and corresponding yields of 19 

125 imidazole-based ionic liquids.

ILs
Time 

(h)

T 

(℃)

P 

(MPa)

Amount 

(mol%)

Predicted 

yield

Energy barriers 

(kcal mol-1)

M-1 4 80 0.1 1.2 0.96 16.0

M-2 4 80 0.1 1.0 0.98 17.2

M-3 4 70 0.1 1.0 0.96 18.8

M-4 4 80 0.1 1.0 0.98 19.8

M-5 4 60 0.1 1.0 0.98 20.2

M-6 4 80 0.1 1.0 0.96 20.3

M-7 4 50 0.1 1.2 0.99 20.4

M-8 4 80 0.1 1.0 0.95 20.4

M-9 4 50 0.1 1.2 0.97 20.7

M-10 4 90 0.1 0.8 0.94 20.8

M-11 4 70 0.1 1.0 0.95 21.1

M-12 4 90 0.1 1.0 0.95 21.8

M-13 4 90 0.1 0.8 0.95 22.4

M-14 4 60 0.1 0.8 0.97 22.6

M-15 4 90 0.1 1.0 0.94 23.1

M-16 4 80 0.1 1.2 0.95 23.3



M-17 4 90 0.1 0.8 0.95 29.4

M-18 4 80 0.1 1.0 0.95 34.8

M-19 4 70 0.1 1.2 0.97 40.5

126

127

128 Fig. S15. The structures of 5 imidazole-based ionic liquids with energy barriers more than 

129 23.0 kcal mol-1.


