Supplementary File

Forest waste to Carbon Nanotubes: A Green Approach using NADES template for Reactive Orange 16 Dye Adsorption

Anshika Babbar ^a, Priyanka Verma ^a, Vinay Singh ^a, R.S. Walia*^b, Vasundhara Singh*^a

^a Department of Chemistry

^b Production and Industrial Engineering Department

Punjab Engineering College (Deemed to be University), Chandigarh, India, 160012

Table S1: Table for comparison of synthesis of CNTs

Reference	Carbon Source	Synthesis Technique	Synthesis Parameters	Catalyst	Disadvantages
Zhang et al. [1]	Methane	MW- assisted CVD		Nickel	• Difficulty in scaling up • Require specialized microwave reactors
Paul et al. [2]	Coconut Oil	CVD	850°C, N ₂ atmosphere	Fe particles	 High energy consumption Difficulty in process optimization
Zhu et al. [3]	Bamboo charcoal	CVD	1200- 1500°C at 10°C min ⁻¹ , Ar atmosphere	Mineral content in char	• Variable mineral
Shi et al. [4]	Gumwood	Microwave induced pyrolysis	500°C, 30 min, N ₂ atmosphere, 2.45 GHz multimode microwave cavity		Low yieldHigh energy consumption
Wang et al. [5]	Rice Husk	MW- Chemical vapour deposition	2.45 GHz microwave power, 300 m Torr pressure, Ar and H ₂ to generate plasma	Nickel	•Method may result in high D/G ratio.

Hamid et al. [6]	Olive oil	Pyrolysis	900°C	NiCl ₂	 High temperature requirement. High economic barriers
Fathy et al. [7]	Rice Straw	Conventional CVD	800°C	Ferrocene and Nickel	 Complex Pre-treatment processing. Risk of catalyst contamination. High temperature
Debalina et al. [8]	Sugarcane bagasse	MW pyrolysis	600 W, 500°C	Fe and Co	 Difficulty in maintaining process parameters. Difficulty in catalyst integration.
Zhang et al. [9]	Pine nutshell	MW- Chemical vapour deposition	600°C, N ₂ , Power: 2kW, 60 min	Nickel	 Challenges in scaling up. Plasma instability leads to defective product formation.
Omoriyekomwa n et al. ^[10]	Palm kernel shell cellulose	MW pyrolysis	Power output: 2000W, Frequency: 2.45 GHz, 600°C, N ₂ , 60 min	-	• High energy consumption
Hildago-Oporto et al. [11]	Biochar from waste of wheat straw, oat hulls, rapeseed cake and hazelnut hulls	Microwave Irradiation	600°C, Frequency: 2.45 GHz, Power: 200 W	Ferrocene	•Low CNT quality and structural defects.
Roquia et al. [12]	Juglans regia (walnut) shells	Pyrolysis	700°C, 4 h, Ar gas	Ferrocene and Benzene	•Use of harmful catalysts. •Scale-up challenges.
Le et al. [13]	Eucalyptus oil	Pyrolysis	800-900°C, 30 min, N ₂ gas	Ferrocene	◆High temperature requirement.◆Yield and purity challenges.

MW: Microwave; CVD: Chemical Vapor Deposition

Table S2: Composition of various NADES used

Sr. No.	Hydrogen Acceptor	Bond	Hydrogen Bond Donor	Molar Ratio	Results
1.	Choline (ChCl)	Chloride	Oxalic Acid	1:1	Successful
2.	ChCl		Hydroquinone	1:1	Unsuccessful
3.	ChCl		Glucose	4:1	Unsuccessful
4.	ChCl		Citric Acid	1:1	Unsuccessful
5.	ChCl		Lactic acid	1:1	Unsuccessful
6.	ChCl		Oxalic Acid	1:2	Unsuccessful
7.	ChCl		Oxalic Acid	1:3	Unsuccessful

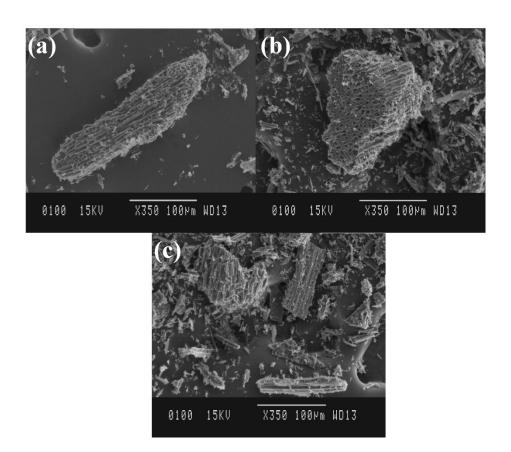


Fig. S1. SEM images of carbon materials synthesized at (a) 1 h (b) 3 h (c) 8 h

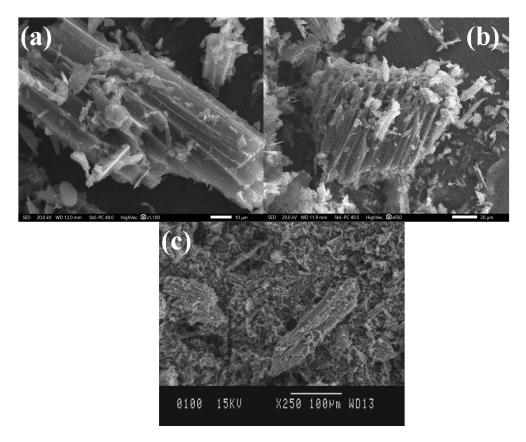


Fig. S2. SEM images of carbon materials synthesized with different molar ratios of $[ChCl/Oxalic\ acid]\ NADES\ (a)\ 1:2\ (b)\ 1:3\ (c)\ 2:1$

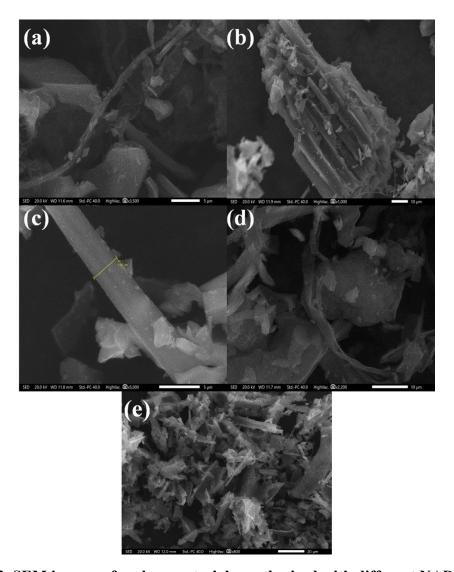


Fig. S3. SEM images of carbon materials synthesized with different NADES (a)

[ChCl/Glucose] (b) [ChCl/Citric acid] (c) [ChCl/Hq] (d) [ChCl/Lactic acid] (e) Without using NADES

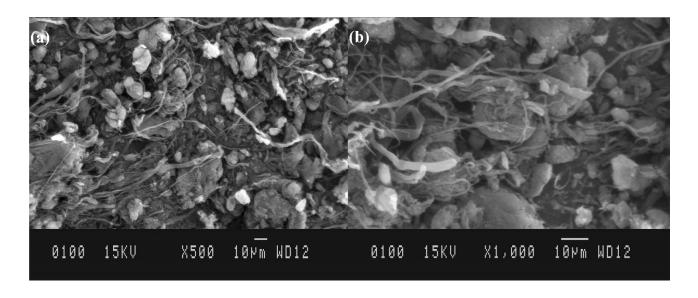


Fig. S4. SEM images of CNT synthesized using [ChCl/Oxalic acid] NADES (experiment performed in duplicate)

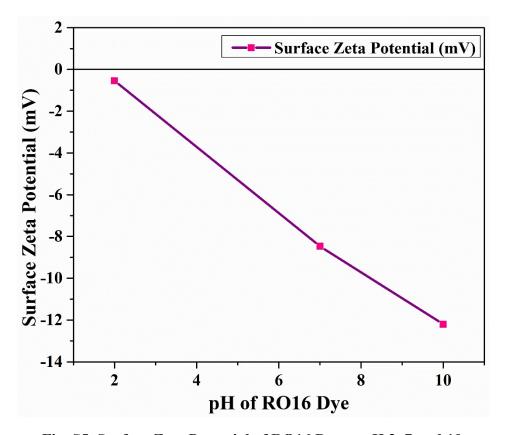


Fig. S5. Surface Zeta Potential of RO16 Dye at pH 2, 7 and 10.

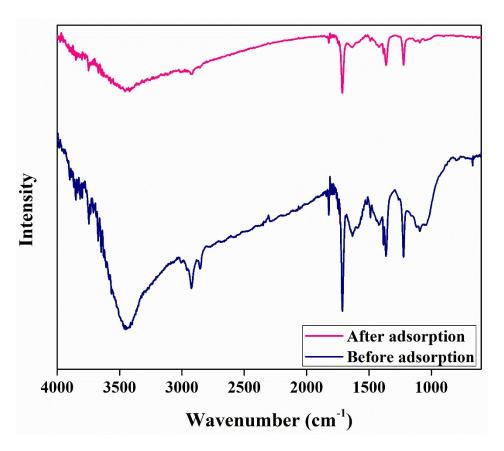


Fig. S6. FTIR of adsorbent before and after adsorption

References:

- 1. Zhang, J., Tahmasebi, A., Omoriyekomwan, J. E., & Yu, J. (2019). Production of carbon nanotubes on bio-char at low temperature via microwave-assisted CVD using Ni catalyst. *Diamond and Related Materials*, *91*, 98-106.
- 2. Paul, S., & Samdarshi, S. K. (2011). A green precursor for carbon nanotube synthesis. *New Carbon Materials*, 26(2), 85-88.
- 3. Zhu, J., Jia, J., Kwong, F. L., Ng, D. H. L., & Tjong, S. C. (2012). Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. *biomass and bioenergy*, *36*, 12-19.
- 4. Shi, K., Yan, J., Lester, E., & Wu, T. (2014). Catalyst-free synthesis of multiwalled carbon nanotubes via microwave-induced processing of biomass. *Industrial & Engineering Chemistry Research*, 53(39), 15012-15019.

- 5. Wang, Z., Ogata, H., Morimoto, S., Ortiz-Medina, J., Fujishige, M., Takeuchi, K., ... & Endo, M. (2015). Nanocarbons from rice husk by microwave plasma irradiation: From graphene and carbon nanotubes to graphenated carbon nanotube hybrids. *Carbon*, *94*, 479-484.
- 6. Hamid, Z. A., Azim, A. A., Mouez, F. A., & Rehim, S. A. (2017). Challenges on synthesis of carbon nanotubes from environmentally friendly green oil using pyrolysis technique. *Journal of Analytical and Applied Pyrolysis*, *126*, 218-229.
- 7. Fathy, N. A. (2017). Carbon nanotubes synthesis using carbonization of pretreated rice straw through chemical vapor deposition of camphor. *RSC advances*, 7(45), 28535-28541.
- 8. Debalina, B., Reddy, R. B., & Vinu, R. (2017). Production of carbon nanostructures in biochar, bio-oil and gases from bagasse via microwave assisted pyrolysis using Fe and Co as susceptors. *Journal of Analytical and Applied Pyrolysis*, 124, 310-318.
- 9. Zhang, J., Tahmasebi, A., Omoriyekomwan, J. E., & Yu, J. (2019). Production of carbon nanotubes on bio-char at low temperature via microwave-assisted CVD using Ni catalyst. *Diamond and Related Materials*, *91*, 98-106.
- Omoriyekomwan, J. E., Tahmasebi, A., Zhang, J., & Yu, J. (2019). Mechanistic study on direct synthesis of carbon nanotubes from cellulose by means of microwave pyrolysis. *Energy Conversion and Management*, 192, 88-99.
- 11. Hidalgo, P., Navia, R., Hunter, R., Coronado, G., & Gonzalez, M. (2019). Synthesis of carbon nanotubes using biochar as precursor material under microwave irradiation. *Journal of environmental management*, 244, 83-91.
- 12. Roquia, A., khalfan hamed Alhashmi, A., & hamed Abdullah alhasmi, B. (2021). Synthesis and characterisation of carbon nanotubes from waste of Juglans regia (walnut) shells. *Fullerenes, Nanotubes and Carbon Nanostructures*, 29(11), 860-867.

13. Le, G. T., Mala, P., Ratchahat, S., & Charinpanitkul, T. (2021). Bio-based production of carbon nanotubes via co-pyrolysis of eucalyptus oil and ferrocene. *Journal of Analytical and Applied Pyrolysis*, 158, 105257.