

Supplementary information

Economical synthesis of MOF from CHNS analyzer waste CuO and PET bottles for congo red sequestration: A pathway towards dual mitigation

Manish Sharma^a, Vanshika Dixit^a, Priya Sharma^b, Ragini Gupta^{a,b*}

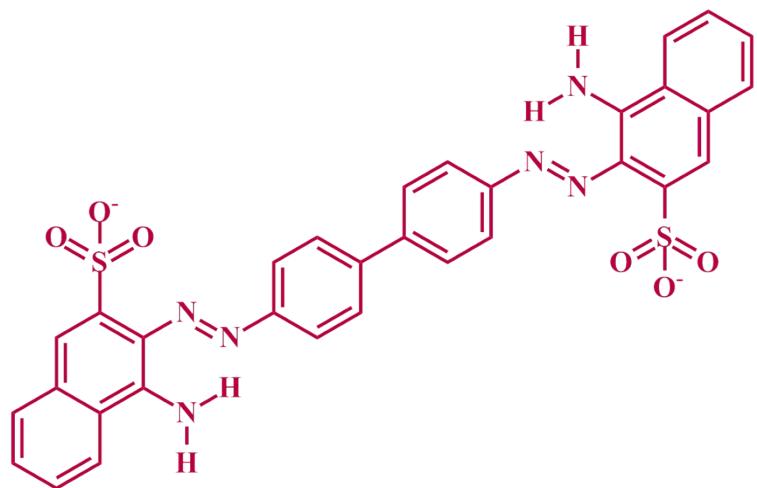
^a*Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India*

^b*Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India*

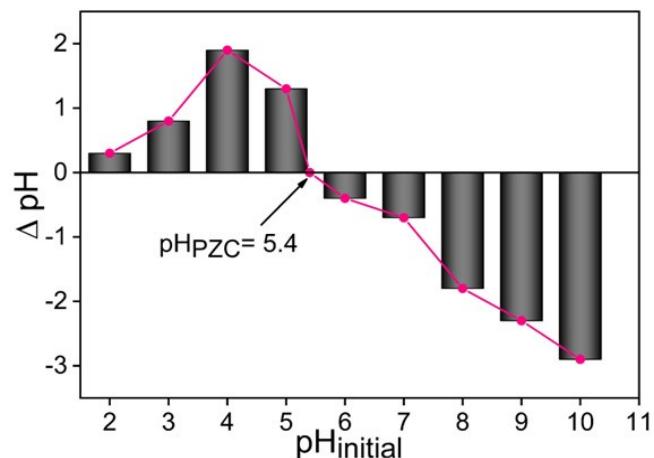
[*rgupta.chy@mnit.ac.in](mailto:rgupta.chy@mnit.ac.in)

CONTENTS

Fig. S1. Structure of Congo red (anionic form).


Fig. S2. Point zero charge graph of Cu-PTA-MOF.

Text S1: Kinetic models for adsorption


Text S2: Adsorption isotherm models

Text S3: Thermodynamic parameters

Supplementary information

Fig. S1: Structure of Congo red (anionic form).

Fig. S2. Point zero charge graph of Cu-PTA-MOF.

Supplementary information

Text S1: Kinetics model for Adsorption.

The linear equations of the kinetics model employed in the study are following:

$$\ln(Q_e - Q_t) = \ln Q_e - k_1 t \quad (\text{Pseudo-first-order}) \quad (\text{S1})$$

$$\frac{t}{Q_t} = \frac{1}{K_2 Q_e^2} + \frac{t}{Q_e} \quad (\text{Pseudo-second-order}) \quad (\text{S2})$$

where t (min) is contact time, Q_e and Q_t are the adsorption amounts (mg/g) at equilibrium and time t respectively. Here k_1 (min^{-1}) and k_2 ($\text{g. mg}^{-1} \text{ min}^{-1}$) denote the rate constants of the pseudo-first-order and the pseudo-second-order respectively.

Text S2: Adsorption isotherm models

The linear equations for the adsorption isotherms employed in the study are outlined below:

$$\frac{C_e}{Q_e} = \frac{1}{K_L Q_m} + \frac{C_e}{Q_m} \quad (\text{Langmuir adsorption isotherm}) \quad (\text{S4})$$

$$\ln Q_e = \ln K_F + \frac{1}{n} \ln C_e \quad (\text{Freundlich adsorption isotherm}) \quad (\text{S5})$$

$$Q_e = \frac{RT}{b_T} \ln K_T + \frac{RT}{b_T} \ln C_e \quad (\text{Temkin adsorption isotherm}) \quad (\text{S6})$$

$$\ln \left(\frac{C_e}{Q_e} \right) = B \ln C_e - \ln A \quad (\text{Redlich-Peterson adsorption isotherm}) \quad (\text{S7})$$

where C_0 and C_e denote initial and equilibrium concentrations of CR (mg/L), Q_e is the extent of the CR adsorbed at the stage of equilibrium (mg/g), Q_m denotes the optimum adsorption capacity (mg/g), K_L , K_F and K_T signify Langmuir, Freundlich and Temkin isotherm constants (L/mg) respectively. n and b_T indicate the adsorption intensity and heat of adsorption (J/mol), respectively. R stands for the universal gas constant ($8.314 \text{ J/mol} \times \text{K}$) and T (K) is the temperature. A is Redlich-Peterson isotherm constant (L/mg) and B is R-P parameter.

Supplementary information

Text S3: Thermodynamic parameters

The equation of thermodynamics parameters employed in the study are given below:

$$\Delta G^\circ = -RT \ln K_C^\circ \quad (S8)$$

$$\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \quad (S9)$$

$$\ln K_L^\circ = \frac{-\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R} \quad (S10)$$

Considering the adsorption isotherm model, the dimensionless thermodynamic equilibrium constant was determined using the following equation:

$$K_L = \frac{(1000 \times K_L \times \text{molecular weight of adsorbate}) \times [\text{adsorbate}]^0}{\gamma}$$

where γ is the activity coefficient (dimensionless), K_L° is the thermodynamic equilibrium constant (dimensionless), $[\text{Adsorbate}]^0$ is the standard adsorbate concentration (mol L^{-1}) and T (K) is the temperature, and R (8.314 J/mol \times K) is the universal gas constant. K_L is the fitted adsorption isotherm constant (Langmuir, Freundlich, Temkin and Redlich-Peterson).