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S1. Data Set Curation for Previously Synthesized Salen Ligands
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Figure S1. Previously Synthesized Salen Ligands.

Table S1. Data set curation for initial parameterization studies.

HO

catalyst (5 mol %) Q
0O, (50 psi)
MeO OMe  MeOH, 1-18h, RT  MeO OMe
OH 0

Entry Catalyst Time (h) Yield (%) Reference

1 s1 16 75 1
2 s2 5 61 1
3 s3 18 71 2
4 s3 1 75 2
5 s3 1 74 1
6 s4 16 54 1
7 s5 2 65 1
8 s6 18 80 2
9 s6 1 73 2



10 s7 18 70 2
11 s7 1 81 2
12 s8 16 46 1
13 s9 16 42 3
14 s10 16 71 3
15 s11 16 41 3
16 s12 16 51 3
17 s13 16 45 3

S$2. Computational Details

The conformational searches were done in gas phase using the Monte Carlo (MCMM)
method as implemented as implemented in MacroModel (Version 9.9).* The energy
minimization was carried out using the Polak-Ribiere Conjugate Gradient (PRCG), and the
OPLS_2005 force field, using dielectric constant-dependent electrostatics (e=1) and normal
cut-off points to model the non-bonded interactions. All heavy atoms and hydrogens at
heteroatoms were included in the test for redundant conformers, using the default cutoff
(maximum atom deviation) of 0.5 A. All rotatable single bonds were included in the
conformational search. The energy window for saving new structures was 5 kcal mol-1
relative to the current global minimum, using a maximum number of steps of 30000 and 1000
steps per rotable bond. Each search was continued until the global energy minima were found
at least 10-20 times, thus giving confidence that all the relevant conformers had been found.
The resulting conformers were clustered based on structural similarity, and representative
structures from each group were selected for further geometry optimization and parameter
extraction via quantum mechanical calculations. All subsequent geometry optimizations and
electronic property extractions were carried out using Gaussian16 (version B.01) ® and
NBOG6.0. & Density Functional Theory (DFT) calculations were performed at the M06/def2-
SVP level of theory including the ECP basis set def2-SVP for Cobalt. ” For the studies
involving intramolecular coordination (Scheme 3 in the main text), the energies were refined
at the M06/def2-TZVP level of theory. Frequency calculations at 295.15 K (1 atm) ensured
that the stationary points represent either minima (no imaginary frequency) on the potential-

energy surface, furnishing also the zero-point vibrational energies, the thermal and entropic



correction from which the Gibbs free energies were determined. All geometries of this study

were available in Salen_Regression.xyz file.

S$2.1. Molecular parameters extraction

The descriptors employed in this study are summarized in Table S2, and were
grouped as follows: electronic (including natural charges, NBO orbital energies, spin density,
HOMO and LUMO energies, and dipole moment); steric (Sterimol parameters, buried
volume, selected bond distances and angles). These parameters were selected to capture
both the electronic effects introduced by substituents on the aromatic rings, transmitted
through the Co—O and Co—N bonds, and the steric influence associated with the substitution
pattern near the cobalt center, particularly around the diamine bridge and aromatic moieties.
The atomic regions used for the calculation of the descriptors listed above, along with their
corresponding color codes are shown in Table 2S. Considering the relevance of
conformational sampling to the reactivity trends investigated herein,® descriptors were
computed for representative conformers. Each parameter was extracted and classified into
four categories of conformer: Boltzmann-weighted average across conformers of a given
catalyst (BOLTZ); maximum (MAX) and minimum (MIN) value of parameter among
conformers; and the value corresponding to the lowest-energy conformer (LEC). Descriptors
are referred to using the appropriate distribution label, e.g., the cobalt spin density for the
lowest-energy conformer is denoted as LEC_Spin_Co. The full set of extracted parameters

is provided in the supplementary file Salen_Regression_Featurization.xlsx.

Table S2. Molecular descriptors and corresponding atomic regions used for their calculation.

Feature (abrev.) Description

Electronic Energy (EE) | Total electronic energy of the optimized molecule in kcal/mol

Zero Point Energy | Zero-point vibrational energy, accounting for quantum mechanical motion of
(Zero_Point) | atoms at 0 K

Thermal corrected energy from vibrational, rotational, and translational

Thermal Energy (Thermal) motion at 298.15 K

Enthalpy | Thermal corrected enthalpy, from internal energy and pressure-volume work




Gibbs Free Energy (Gibbs)

Gibbs Free Energy potential at 298.15 K

HOMO

Energy of the Highest Occupied Molecular Orbital

LUMO

Energy of the Lowest Unoccupied Molecular Orbital

Dipole Moment (Dipole)

Magnitude of Molecular Dipole Moment

Electronegativity

Chemical Potential

Hardness

Softness

Electrophilicity Index

Nucleophilicity Index

Reactivity parameters derived from Koopman’s approximation of FMO theory

Mulliken Population
Analisys (Mulliken)

Atomic charges, spin densities, and normalized spin fractions

Natural Population Analisys
(NPA)

Atomic Charges and contributions from Core, Valence, Rydberg, and Total
electron populations

Natural Bonding Orbitals
(NBO)

Energies of bonding (BD), anti-bonding (BDu), lone pair (LP), and lone
valence (LV) orbitals

Sterimol

Steric descriptors quantifying the axial length (L) and lateral widths (Bmax,
Bmin) to account for steric effects of the hole ligand

Substituent Sterimol
(SubSterimol)

Steric descriptors quantifying the axial length (L) and lateral widths (Bmax,
Bmin) to account for steric effects of a specific substituent group

Burried Volume (BVol)

Percentage of a defined sphere (of radius r) around a central atom that is
occupied by the ligand or substituent atoms

Distance

Distance between two atoms, reported in angstroms (A)

Bond Angle

Angle between three atoms (A—-B-C), reported in degrees (°)

Dihedral Angle

Torsional angle between two planes defined by four atoms (A—-B—C-D),
reported in degrees (°)




Table S3. Evaluation of the relevance of intramolecular coordination

0 0
o o
Nng AG = +10.0 kcal/mol Nng
~Col - ~ " Col
t-Bu oo t-Bu -MeOH t-Bu o0 t-Bu
N ¥ N
% s6_10 \\'N s6_intra
Y _
Gibbs Free-
ZP energy
Conformer Energy (Hartrees) energy
(Hartrees)
(Hartrees)
MeOH -115.560952 0.051046 -115.532619
s6_10 -3766.877461 1.047156  -3765.926510
s6_intra -3651.287237 0.994661  -3650.377532

Table S4. Gibbs Free Energy of conformers related to complexes s1-s13

Gibbs Free-
ZP energy
Conformer Energy (Hartrees) energy
(Hartrees)
(Hartrees)
s01_1 -3441.659283 0.921805 -3440.821632
s01_2 -3441.6599 0.921913  -3440.821837
s01_3 -3441.658952 0.922325  -3440.819365
s01_4 -3441.657764 0.922142  -3440.818825
s01_6 -3441.658498 0.922266  -3440.818152
s01_7 -3441.660785 0.921889  -3440.822311
s01_8 -3441.660431 0.922928  -3440.819129
s02_1 -3457.672595 0.910712  -3456.847597
s02_2 -3457.653538 0.91137 -3456.821397

s02_3 -3457.671331 0.910983  -3456.843989



s02_4
s02 5
s02_6
s02_7
s02_8
s03_1
s03_2
s03_3
s03_4
s03_5
s03_6
s03_7
s03_8
s03_9
s04 1
s04_2
s04_3
s04 4
s04 5
s04 6
s04_7
s05_1
s05_2
s05 3
s05_4
s05 5
s06_1
s06_10
s06_11
s06_12
s06_2
s06_3
s06_4

-3457.671521
-3457.674421
-3457.655062
-3457.674315
-3457.645671
-3727.624091
-3727.624307
-3727.626539
-3727.62324
-3727.624724
-3727.626696
-3727.626729
-3727.630002
-3727.626452
-3496.920586
-3496.922028
-3496.926209
-3496.920592
-3496.92067
-3496.924025
-3496.924511
-3688.382001
-3688.381344
-3688.376936
-3688.381594
-3688.379387
-3766.875161
-3766.877461
-3766.879333
-3766.880426
-3766.875195
-3766.877438
-3766.876902

0.910612
0.910936
0.911387
0.9108
0.911886
1.019763
1.019048
1.020829
1.019173
1.019993
1.019106
1.019599
1.019689
1.019412
0.93831
0.937858
0.938399
0.93845
0.938159
0.939242
0.939466
0.993146
0.992769
0.991156
0.991687
0.991843
1.048423
1.047156
1.04831
1.048706
1.048755
1.050786
1.047941

-3456.84478
-3456.847176
-3456.823243
-3456.846595
-3456.814185
-3726.692453
-3726.698533

-3726.69449
-3726.696424
-3726.695019
-3726.698252
-3726.697543
-3726.700661
-3726.698603
-3496.066833
-3496.069557
-3496.071673
-3496.066198
-3496.066265
-3496.067788
-3496.067211
-3687.475757
-3687.475434
-3687.476012
-3687.475421
-3687.476219
-3765.918761

-3765.92651
-3765.922958
-3765.923048

-3765.91761

-3765.91446

-3765.9209



s06_5
s06_6
s06_7
s06_8
s06_9
s07_1
s07_2
s07_3
s07_4
s07_5
s07_6
s07_7
s07_8
s07_9
s08_3
s08_4
s08_6
s08_7
s08_8
s09 1
s09_2
s09_3
s10_1
s10_10
s10_11
s10_12
s10_2
s10_3
s10_4
s10_5
s10_6
s10_7
s10_8

-3766.875848
-3766.877497
-3766.882173
-3766.883388
-3766.878085
-3958.332435
-3958.330496
-3958.331501
-3958.332821
-3958.331538
-3958.32737
-3958.329872
-3958.331971
-3958.334546
-3802.530513
-3802.530597
-3802.530088
-3802.530767
-3802.531794
-3442.844375
-3442.845666
-3442.843086
-3728.813325
-3728.808702
-3728.809511
-3728.810417
-3728.812098
-3728.812021
-3728.812836
-3728.811981
-3728.814174
-3728.808859
-3728.808032

1.048237
1.048462
1.049822
1.048933
1.047571
1.101973
1.100876
1.100399
1.102589
1.100871
1.100617
1.099441
1.099847
1.101006
1.008176
1.007342
1.007377
1.007437
1.00729
0.940167
0.940231
0.940674
1.037429
1.037801
1.038284
1.037759
1.037777
1.037303
1.037738
1.037585
1.037676
1.037654
1.037584

-3765.919458
-3765.920203
-3765.920453
-3765.92473
-3765.923037
-3957.323324
-3957.325284
-3957.326982
-3957.322522
-3957.325415
-3957.321313
-3957.327266
-3957.327131
-3957.328578
-3801.61326
-3801.615559
-3801.615436
-3801.614192
-3801.6185
-3441.990366
-3441.990862
-3441.987057
-3727.871286
-3727.864788
-3727.863059
-3727.864907
-3727.86883
-3727.86995
-3727.866945
-3727.86873
-3727.870559
-3727.865632
-3727.865912



s11_6
s12_1

s12_10
s12_2

s12_3

s12_4
s12_5
s12_6
s12_7
s12_8
s12_9

s13_10
s13_11
s13_2
s13_3
s13 4
s13 5
s13_6
s13_7
s13_8
s13_9

s10_9
s11_1
s11_2
s11_3
s11_4
s11_5

s13_1

-3728.807608 1.037374  -3727.865572
-3498.107864 0.955928  -3497.239822
-3498.108551 0.956714  -3497.238156
-3498.102945 0.956276  -3497.234221
-3498.101766 0.95718 -3497.231045
-3498.101757 0.956134  -3497.234295
-3498.104523 0.956545  -3497.234374
-3689.562038 1.009791  -3688.644801
-3689.558644 1.009335 -3688.642621
-3689.564306 1.009744  -3688.645985
-3689.563277 1.009437  -3688.646486
-3689.56078 1.009659  -3688.641825
-3689.563186 1.010214  -3688.644649
-3689.561595 1.009411  -3688.643175
-3689.560751 1.009467 -3688.645006
-3689.562026 1.009452  -3688.645568
-3689.557548 1.008963 -3688.641724
-3804.234655 1.055123  -3803.276153
-3804.237844 1.057184  -3803.271066
-3804.235388 1.067042  -3803.270008
-3804.214723 1.056196  -3803.246901
-3804.234443 1.055187  -3803.274857
-3804.232894 1.05542 -3803.273846
-3804.235766 1.056459 -3803.27001
-3804.234478 1.055555  -3803.273544
-3804.239542 1.055038 -3803.28106
-3804.237603 1.055173 -3803.27895
-3804.239701 1.0566333  -3803.275066




S3. UMAP Plot of Salicylaldehyde Chemical Space and Clustering

$3.1. Computational Methods

S$3.1.1 DFT Featurization of Salicylaldehyde Chemical Space:
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Figure S2. General workflow for salicylaldehyde molecular featurization.

Conformational Search:

Prior to the conformation search, following the best practices outlined in the program
documentation, a geometry pre-optimization was conducted using the semi-empirical xTB
GFN-FF method (--opt --gff --input dihedral_restriction -v). The dihedral angles associated
with the carbonyl and phenol groups were constrained to force an intramolecular hydrogen
bond, simulating the metal center behavior (see restrictions below). After the pre-
optimization, the conformational space of all salicylaldehydes was explored using the CREST

(Conformer-Rotamer Ensemble Sampling Tool) program, within a 12 kcal/mol energy window

single-point
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$end

Geometry Optimization:

Following the conformational search, all conformers were grouped and optimized
using the Screen function with the semi-empirical xTB GFN2-FF method, applying a reduced
energy window of 6 kcal/mol (--screen --gfn 2 -T 8 --ewin 6). Subsequently, the Cluster
function was used to group the conformers based on energy and structural similarity, allowing
for the removal of redundant structures (--cregen "${job_input/ref/confs_confs}" --notopo --

cluster -T 2 --ewin 6).

Electronic Single Point Calculations:

The optimized structures underwent DFT calculations in Gaussian162 at the M06-
2X/def2-SVP* level of theory and population analysis using NBOG6,3 which is well-suited for
analyzing delocalized and aromatic systems, such as the catalysts in this study (#p m062x

def2svp nosymm int=ultrafine pop=(savenbos,nbo6)).

S3.2. Construction of Salicylaldehyde Chemical Space

The complete code and associated Jupyter notebooks supporting the results of this
study are publicly available at the GitHub repository:
https://github.com/ArielAraujo00/CoSalen-repo

Substructure Search:

The search for the structures was conducted on the SciFinder-n (CAS Chemical
Abstracts Service) platform on March 23, 2023. On the Substance tab, the salicylaldehyde
structure were draw as show bellow (Figure S3), using both the Lock Atoms tool to block
undesired substitutions on the oxygens and the aldehyde carbon, and the Lock Ring Fusion

or Formation tool to block the aromatic ring.
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Figure S3. CAS SciFinder-n Draw tool screenshot highlighting the salicylaldehyde blocked

positions.

The search was done using the Substructure Match option affording ~43,000
structures, from which the following filters were applied (using the Exclude option on Filter
Behavior):

e Molecular Weight: 600 to No Max

e Commercial Availability: Not Available

¢ Metals: Containing Metals

¢ |sotopes: Containing Isotopes

e Element: B, P, S, Se, |

e Number of Components: 2, 3, 4, 5 or more

e Substance Class: Incompletely Defined Substance

e Reference Role: Natural Product Occurrence

After filtering the unwanted structures, the search afforded ~30,000 structures, but
through some visual inspection we notice a great number of results containing the alkyne
functional group (> 20,000), which could be too reactive to our system. To address this, we
applied a final filter using the “Search Within Results” option (set to Exclude mode) to remove
these entries from the dataset. The remaining 7,775 structures were exported as .sdf files.
All export files, along with a list of smiles with the in house salicylaldehydes of our lab

(manually added to the data set) is attached as a separate file (Salicylaldehyde dataset.rar).



Recursive SMARTS Search:

To further refine the dataset to include only molecules compatible with our catalytic

system, we implemented the RDKit python Ilibrary for cheminformatics
(ChemSpaceSelection.ipynb) to exclude all molecules containing the following functional
groups:

e OH and NH donors

e Oxygen radicals and Phenolate anion

e C-C double bonds

e Aldehydes and Imine derivatives

¢ Ketal, Hemiaminal and Aminal derivatives

e Carbonate, Carbamate, Urea and Guanidine derivatives

¢ Aliphatic chains with 6 carbons or more

e Epoxides and Aziridines

e Hexoses

e Alkyl and Acyl Halides

e a-Haloketones and 1,3-diketo derivatives

e Diazo derivatives

e Anhydrides

o Nitrate and Nitroso derivatives

e Quinones

All SMARTS fragments are available in the smiles_filters.py file for verification. Each
filter was printed and individually verified to ensure proper functionality. The final set of 2,815
filtered molecules was then converted to 3D structures and pre-optimized using RDKit's built-
in force field optimization function, AlChem.MMFFOptimizeMolecule(), before being saved
as .xyz files. An additional step was taken to standardize the numbering of core atoms (Figure

S4) in the coordinate files, streamlining the featurization process.



Figure S4. Salicylaldehyde reference core atoms.

Molecular Featurization:

As demonstrated by Doyle® and coworkers, the information contained in Molecular
Fingerprints and Mordred descriptors, such as structural patterns, functional groups,
connectivity graphs, and molecular topology, fails to isolate the electronic and steric
properties necessary to capture reactivity trends in organic systems. Building on their work,
we opted to proceed directly with DFT featurization (as detailed in the computational methods
section).

Using an in house script (see Featurization.ipynb) a total of 257 numeric descriptors
were gathered from the DFT calculations. The molecular, electronic and geometric properties
were obtained directly from the single-point files, the steric parameters calculated using the
Morfeus'® module by Jorner et al (Table S4), and the reactivity parameters (see below) using

the formulas derived from the Koopmans''! theorem of FMO.

w T
() x= -u i
w=—
(5) 2n
n= (ELumo - EHomo) (6) Nindex =w 1
(3) 2

Dimensionality Reduction and Clustering:

To construct the salicylaldehyde chemical space from the assembled high-
dimensional dataset, we selected a manifold learning algorithm capable of handling the

inherent complex, non-linear relationships in chemical systems. We opted for UMAP (Uniform



Manifold Approximation and Projection), a state-of-the-art, projection-based dimensionality
reduction algorithm, which has been validated in similar studies by Sigman'?, Doyle!, and
others. For clustering, the HDBSCAN (Hierarchical Density-Based Spatial Clustering of
Applications with Noise) algorithm was chosen due to its density-based nature,
accommodating variance in cluster shape, and its hierarchical approach, which maximizes
cluster dissimilarity. Although we initially explored PCA for dimensionality reduction, its
performance across all subsequent steps was inferior to that of the UMAP algorithm, yielding
a maximum silhouette score of only 0.41 for three clusters.

Prior to model training, we cleaned the dataset to remove irrelevant and redundant
features, aiming to avoid multicollinearity and overfitting, as it can lead to unstable models,
impaired interpretability, or obscure the true significance of variables. We first excluded
columns with missing values (e.g., some delocalized aromatic NBQO’s) and zero-variance
features, allowing the conformer distributions to be properly calculated according to the
following naming convention: Boltzmann-weighted average across conformers (BOLTZ);
maximum (MAX) and minimum (MIN) feature value among conformers; and the value
corresponding to the Lowest-Energy Conformer (LEC).

Afterward, redundant data were addressed by eliminating linearly dependent
columns through QR decomposition, and those with correlations above 95%. The data were
then normalized using a standard scaler. Initial tests indicated that models trained exclusively
with the BOLTZ distribution descriptors performed better, yielding more coherent clusters.
Thus, we further reduced the dataset from 272 descriptors to 143 derived from this
distribution.

Since unsupervised learning algorithms lack a response vector, extrinsic evaluation
metrics must be used to assess clustering quality within itself and their spatial distributions.
One common metric is the silhouette score, which measures the similarity of points within a
cluster and the separation between different clusters. According to sklearn documentation,

the silhouette coefficient for a sample is calculated as follows:



a: The mean distance between a
sample and all other points in the same

b-a class.

~ maxii(a,b) b: The mean distance between a
sample and all other points in the next

nearest cluster.

This score is bounded between -1 and 1, where negative values indicate poor cluster
separation, and higher positive values suggest well-defined cluster partition. To optimize the
algorithms hyperparameters, we performed a brute-force search over various value ranges,
calculating the silhouette score for each scenario (see tuning section in ModelTraining.ipynb).
After evaluating over 11,000 iterations, the final validation step involved assigning chemical

significance to the labels generated by the optimal model (with the best silhouette score).

<Model Hyperparameters>

UMAP(n_components=5, n_neighbors=20,
min_dist=0.05, random_state=0)

HDBSCAN(cluster_selection_epsilon=1.0)
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Figure S5. UMAP Plot of Salicylaldehyde Chemical Space Embedding with HDBSCAN
Clustering Results Highlighted.

Cluster Evaluation and Scope Selection:

After selecting the model with the best silhouette performance, we proceeded to
search for chemical meaning within the clusters, so we looked for rationalizable structural

patters:

Cluster A (41 molecules): meta1-secondary amines
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Cluster B (410 molecules) para-diverse substitutions
g i: %
Cluster C (649 molecules): meta2-diverse substitutions
? OH
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=N _0 Br

Cluster D (22 molecules): ortho-substituted chroman-4-one derivatives

O OH ‘ \*R R = o-Me, m-Me, p-Me,
Pz o-F, m-F, m-OMe, m-CN...

Cluster E (490 molecules): meta1-diverse substitutions
? OH ? OH ? OH ? OH ? OH
T, W, . ;
NO, CF, N ‘\(,j\o)K ‘\@Br
=/ O NO,
Cluster F (249 molecules): ortho-substituted bulky aryl/alkyl

$
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Cluster G (47 molecules): ortho-substituted electron-donating groups
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Cluster H (216 molecules): ortho/para bulky substitutions

Cluster | (155 molecules): ortho-substituted ethers with para variations

g AR A

Cluster J (536 molecules): ortho-substituted electron-withdrawing

&, W S % %

Cluster A: This cluster is a small subset of the meta7-only substitution pattern,
featuring only secondary amines in this position. Due to the strong electron-donating nature
of this group, which is directly conjugated with the carbonyl, these molecules are expected to
exhibit special stability, which differs from the rest of the dataset.

Cluster B: This cluster contains all para-only substituted molecules, and aside from
3 outliers, it exclusively presents this substitution pattern, showcasing a wide range of
electronic and steric effects.

Cluster C: At first, this cluster might appear complex, as it has 8 different structural
combinations. However, upon closer inspection, it contains almost all meta2-substituted
molecules (98.8%, with only 8 outliers out of 657 entries). Since the meta2 position has
negligible impact on our system, we opted to exclude this group from the analysis.

Cluster D: Interestingly, the algorithm collected a specific fragment of chroman-4-
one derivatives substituted at the ortho position and placed all together in this cluster. Due to
being a small and specific cluster of molecules and the literature-supported observation that
high steric demand near the reactive center negatively affects the reaction outcome, we

opted to exclude this group from the analysis.



Cluster E: This cluster contains 58.6% meta7-only substitutions and 40.0% meta1-
para substitutions. Apart from cluster 1 (which presents a special subclass of meta1
substitutions), this is the only other cluster that shows the meta7-only pattern, exhibiting
significant electronic diversity. The cluster also contains 99.0% of all meta1-para pattern (with
only 2 outliers), suggesting that these two patterns were somehow logically grouped by the
algorithm.

Cluster F: Composed of 97.6% ortho-only substitutions, this cluster contains bulky,
sterically demanding groups, predominantly aryl in nature. With limited examples of
heteroatoms directly bonded to the salicylaldehyde ring, the electronic effects within the
cluster are mainly limited to conjugation across the bis-aryl system.

Cluster G: This small cluster predominantly features ortho substitutions (89.4%),
primarily with electron-donating groups. Since clusters F through J all involve ortho
substitutions as their main structural feature, we conducted a pairwise silhouette analysis to
assess the separation and similarity among these clusters. Interestingly, clusters G and J
had the lowest silhouette score (0.39), indicating poor separation (with the mean silhouette
value among all clusters being 0.79 + 0.12). This may suggest, since the main effect on both
clusters is electronic, that whether the substituent is an electron-donating or electron-
withdrawing group at the ortho position has minimal impact on overall catalyst reactivity.

Cluster H: This cluster also features sterically demanding groups at the ortho
position, though it primarily presents the ortho-para substitution pattern (99.1%). While some
aryl groups are found at the para position, most of the substituents are alkyl or linked by
saturated systems, significantly limiting electronic effects.

Cluster I: This final cluster consists exclusively of ortho-para substitutions, with a
combination of electronic and steric effects. The ortho position is primarily occupied by ether
groups, while the para position features bulky aryl moieties. Given that the initial scope
candidates were selected from in-house salicylaldehydes with ether groups at ortho or bulky
groups at para, we opted to exclude this group from the analysis.

Cluster J: This cluster is primarily composed of ortho-substituted molecules with
electron-withdrawing groups, though it also includes some electron-donating groups,
particularly ethers. The presence of both types of substituents may account for the relatively

low silhouette score when compared to cluster G.

The scope was then selected based on synthetic accessibility and the availability of

in-house chemicals, with the examples highlighted on Scheme 4 of main text.



S4. Experimental details

S$4.1. General Procedure for the Oxidation of Phenols to Benzoquinones

HO.__R> o
catalyst (5 mol%),
base
MeO R, Oz (1 atm) MeO”~ i "R
OH 0
R{=OMe, H
R, = H, Me, Et

The lignin model substrate (0.20 mmol), catalyst (0.010 mmol), and base (0-0.10
mmol) were combined in MeOH (1 mL) in a 5 mL reaction vial. The vial was connected to a
balloon filled with O,, and the mixture was stirred for the indicated time (5 or 30 min). The
solvent was removed under reduced pressure at room temperature. An analytical sample
was purified by flash column chromatography (eluent: 40% EtOAc/CH,CI,) to afford the

corresponding quinone product.

0 2,6-Dimethoxybenzoquinone (6):'3 Yellow solid. Rf = 0.6 (DCM/EtOAc
6:4): "H NMR (400 MHz, CDCl;) & 5.79 (s, 2H), 3.76 (s, 6H); *C NMR

MeO ove (101 MHz, CDCl;) 6 186.8, 176.6, 157.3, 107.4, 56.4.

2-Methoxybenzoquinone (8):' Orange solid. Rf = 0.7 (DCM/EtOAc 7:3); 'H
NMR (400 MHz, CDCl;) 6 6.67 (s, 2H), 5.88 (s, 1H), 3.81 (s, 3H).

OMe

For the lignin model 12 the conversion >99% and yield of 78% was determined from
crude 'H-NMR in comparison with quinone standard. Since it was added 1.0 equivalent of
internal standard (in relation to starting material, lignin model) after the completion of the

reaction, the yield could be obtained directly from the integration of the crude spectrum.
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Overlapped quinone (red) and crude reaction (green) '"H-NMR spectra.



S$4.2. General Procedure for the Oxidation of Lignin

Powdered sugarcane lignin (100 mg) and catalyst 4b (10 mg; 19.2 ymol) were mixed
in a 1:1 mixture of MeOH/acetone (2 mL) in a pressure-resistant glass vessel. The vessel
was flushed three times with O, and then pressurized with O, to 50 psi. The reaction mixture
was vigorously stirred at 25 °C for 48 h. After completion, the mixture was concentrated under
reduced pressure, dissolved in CH,Cl, (20 mL), and filtered. The filtrate was combined with
H,O (50 mL) and extracted with CH,Cl, (2 x 20 mL). The organic layers were dried over
Na,SO, and concentrated under reduced pressure to give a brown solid (4.8 mg, 4.8% mass
recovery). GC—MS analysis of this solid indicated the presence of compounds 6, vanillin 13,

8 and 7 in a relative ratio of 13:10:5:1, respectively.

$4.3. Synthesis of Precursors of Salicylaldehydes 1d and 1h

3-Bromo-2-hydroxybenzaldehyde (0d):* To a solution of
Br salicylaldehyde (8.0 mmol) in CH,Cl, (10 mL), N,N-diisopropylamine (0.80

OH

mmol) was added, followed by dropwise addition of a solution of N-
bromosuccinimide (8.0 mmol) in CH,Cl, (60 mL) over 1 h 40 min using a syringe pump (36
mL h-"). The reaction mixture was stirred at room temperature for 3 h and then acidified to
pH 1 with 1.0 M HCI. The resulting mixture was washed with H,O (20 mL), dried over Na,SQOq,
and concentrated under reduced pressure. The crude product was purified by flash column
chromatography to afford the brominated salicylaldehyde in 20% vyield. Rf = 0.80
(hexane/EtOAc 9.5:0.5). '"H NMR (400 MHz, CDCl3) d 11.54 (s, 1H), 9.79 (s, 1H), 7.71 (d, J
=7.7 Hz, 1H), 7.48 (d, J = 7.7 Hz, 1H), 6.93 — 6.83 (m, 1H); '3C NMR (101 MHz, CDCl3) &
196.1, 158.1, 140.0, 133.0, 121.4, 120.8, 111.2.

OH 4-(Tert-butyl)-2-isopropylphenol (0h):'5 In a 100 mL flask, CH,Cl, (40 mL), 4-
(tert-butyl)phenol (3.85 g, 20.0 mmol), and tert-butyl alcohol (4.82 g, 65.0 mmol)
were combined, followed by the slow addition of H,SO,4 (1.5 mL) under constant
stirring. The reaction mixture was stirred at room temperature for 48 h, then

quenched with a CH,Cl,/H,O mixture. The organic phase was separated, dried over Na,SOy,,
and concentrated under reduced pressure to afford a yellowish oil in 38% vyield (1.04 g, 5.38
mmol). The yield was estimated based on the ratio of aromatic signals in the '"H NMR
spectrum. Rf = 0.6 (100% hexane). '"H NMR (60 MHz, CDClI;) &: 11.62 (s, 1H), 9.85 (s, 1H),
7.59 (d, J=2.5Hz, 1H), 7.33 (d, J = 2.4 Hz, 1H), 3.43 (s, 1H), 1.42 (s, 9H), 1.32 (s, 6H).



S$4.4. Synthesis of Salicylaldehyde 1d

(? OH 2-Hydroxy-[1,1'-biphenyl]-3-carbaldehyde (1d):"® A mixture of 2-
bromosalicylaldehyde (100.5 mg, 0.50 mmol), phenylboronic acid (182.9 mg,
1.50 mmol), KOH (1.0 M, 3.0 mL, 6.0 equiv), and Pd/C (10 wt %, 5.3 mg, 1.0
mol %) in H,O (1.5 mL) was placed in a sealed microwave tube. The reaction mixture was
heated at 120 °C for 30 min under microwave irradiation. After cooling to room temperature,
the mixture was filtered through a Celite pad, the aqueous phase acidified with 1.0 M HCI,
and the aqueous phase was extracted with Et,O, washed with brine, dried over Na,;SOy,
filtered, and concentrated under reduced pressure. The crude product was purified by flash
column chromatography to afford 2-phenylsalicylaldehyde in 29% vyield. Rf = 0.40
(hexane/EtOAc 9:1). '"H NMR (400 MHz, CDCl3) 8 11.45 (s, 1H), 9.86 (s, 1H), 7.56 — 7.43 (m,
4H), 7.41 — 7.32 (m, 2H), 7.31 — 7.26 (m, 1H), 7.06 — 6.95 (m, 1H); 3C NMR (101 MHz,
CDCIl3) 6 197.0, 159.0, 137.9, 136.4, 133.3, 130.6, 129.4, 128.4, 127.8, 121.0, 120.0.

$4.5. Synthesis of Salicylaldehyde 1h and 1l

OH Cl) OH

AN MgC'Z’ p-CHO, Et3N‘ AN

[ [ =
R THF, reflux, Ar, 4h R

1h, 11

In a two-neck flask containing THF (15 mL), phenol (5.0 mmol), MgCl, (0.953 g, 10,0
mmol), and paraformaldehyde (0.450 g, 15,0 mmol) were combined and stirred under an Ar
atmosphere. Triethylamine (1.5 mL, 10 mmol) was added dropwise, during which the solution
turned green. The mixture was heated at mild reflux for 4 h, then quenched with saturated
NH,4CI solution and transferred to a separatory funnel. The organic layer was dried over
Na,SO,, filtered, and concentrated under reduced pressure. The crude product was purified
by flash column chromatography to afford the corresponding hydroxymethylated phenol

derivative.

O OH 5-(Tert-butyl)-2-hydroxy-3-isopropylbenzaldehyde (1h):'7 White solid,
| yield of 31%. Rf = 0.5 (Hexane/EtOAc 9:1). '"H NMR (400 MHz, CDCl;) 5: 9.78
(s, 1H), 7.63 (d, J = 2.0 Hz, 1H), 7.58 (d, J = 2.0 Hz, 1H), 5.78 (s, 1H), 3.02
(sept, J = 6.8 Hz, 1H), 1.38 (s, 9H), 1.25 (d, J = 6.8 Hz, 6H). *C NMR (101
MHz, CDCl;) &: 191.9, 157.6, 136.4, 134.3, 129.2, 127.5, 126.1, 34.7, 29.6,

26.8, 22.6.



3,5-Dichloro-2-hydroxybenzaldehyde (11):'8 Pale yellow solid, yield of 35%;

O OH
| ol Rf=0.6 (hexane/EtOAc 9:1); 'H NMR (400 MHz, CDCl5) & 11.31 (s, 1H), 9.79
(s, 1H), 7.55 (d, J = 2.5 Hz, 1H), 7.43 (d, J = 2.5 Hz, 1H); *C NMR (101 MHz,
i CDCly) 5 195.1, 155.9, 136.5, 131.1, 124.7, 123.4, 121.4.

S4.6. General Procedure for the Synthesis of Catalysts 4a-m

=0 @Q@ Q Q
— + H3N NH3 K2CO3 _N: N= Co(OAc), 4H20 _N\‘ N—
5/ OH 820 ng MeOH, H,0 C§:OH Hoiz/:\\ EtOH —( . 7\
— flux, 4h : flux, 2h .
reflux R /) iy reflux X ) O O e

HO OH 71-99% 34-93%

1a-1m 2 3a-3m 4a-4m

A solution of the (1R,2R)-(+)-1,2-diaminocyclohexane L-tartrate (0.317 g, 1.20 mmol) and
K>CO3 (0.166 g, 1.20 mmol) in H,O (0.8 mL) was prepared. MeOH (20 mL) was added, and
the mixture was heated to reflux. A solution of the corresponding salicylaldehyde (2.40 mmol)
in MeOH (3 mL) was added dropwise to the refluxing mixture. The reaction was maintained
under reflux for 2 h. After cooling to room temperature, the solvent was removed under
reduced pressure. The residue was extracted with EtOAc (3 x 15 mL) and H,O (50 mL), and
the crude product was purified by flash column chromatography to afford the corresponding

salen ligands (3a-3m).

A flask containing anhydrous, degassed EtOH (12 mL) was charged with the corresponding
salen ligand (1.0 mmol) and stirred under an inert atmosphere. In a separate flask,
Co(OACc),-4H,0 (0.249 g, 1.00 mmol) was dissolved in hot EtOH (4 mL). This solution was
transferred via cannula to the stirred ligand solution. After 1 h at room temperature, the
reaction mixture was filtered through a Buchner funnel, and the resulting solid was washed

with cold EtOH and dried under vacuum to afford the cobalt(ll) salen complexes (4a—4m).

(R,R)-N,N’-Bis(3-ethoxysalicylidene)-1,2-
\ cyclohexanediamine (3a):'° Yellow solid, yield: 96% (0.402 g,
—N  N&= 0.865 mmol); Rf = 0.7 (hexane/EtOAc 6:4); "H NMR (400 MHz,
OH HO CDCI;) & 13.86 (s, 2H), 8.16 (s, 2H), 6.78 (dd, J = 7.8, 1.6 Hz,

2H), 6.70 (dd, J = 7.8, 1.6 Hz, 2H), 6.63 (t, J = 7.8 Hz, 2H), 3.99
(g, J = 7.0 Hz, 4H), 3.28-3.16 (m, 2H), 1.91-1.81 (m, 2H), 1.82—

OEt EtO



1.75 (m, 2H), 1.65-1.56 (m, 2H), 1.44-1.36 (m, 8H); **C NMR (101 MHz, CDCl;) & 164.7,
151.6, 147.5, 123.1, 118.4, 117.8, 114.9, 77.3, 72.4, 64.2, 33.0, 24.0, 14.9.
Q (R,R)-N,N’'-Bis(4-diethylaminosalicylidene)-1,2-

) cyclohexanediamine (3b):2° Yellow solid, yield: 96% (0.442
—N =

g, 0.951 mmol); Rf = 0.7 (hexane/EtOAc 6:4); '"H NMR (400
OH HO MHz, CDCl;) & 13.86 (s, 2H), 8.16 (s, 2H), 6.78 (dd, J = 7.8,
Et,N NEt, 1.6 Hz, 2H), 6.70 (dd, J=7.8, 1.6 Hz, 2H), 6.63 (t, J = 7.8 Hz,

2H), 3.99 (q, J = 7.0 Hz, 4H), 3.28-3.16 (m, 2H), 1.91-1.81 (m, 2H), 1.82-1.75 (m, 2H), 1.65—
1.56 (m, 2H), 1.44-1.36 (m, 8H); *C NMR (101 MHz, CDCl,) & 164.7, 151.6, 147.5, 123.1,
118.4, 117.8, 114.9, 77.3, 72.4, 64.2, 33.0, 24.0, 14.9.

(R,R)-N,N’'-Bis(4-hydroxysalicylidene)-1,2-
Q cyclohexanediamine
=N NS (3c):8 Yellow solid, yield: 98% (0.4133 g, 1.166 mmol); Rf = 0.5
OH HO (hexane/EtOAc 6:4); 'H NMR (400 MHz, DMSO-d¢) & 13.66 (s,
HO OH 2H), 8.26 (s, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.22 (d, J = 8.5 Hz,

2H), 6.12 (s, 2H), 3.29-3.23 (m, 2H), 1.85 (d, J = 12.5 Hz, 2H), 1.77 (d, J = 8.0 Hz, 2H), 1.62—
1.49 (m, 2H), 1.42 (t, J = 9.0 Hz, 2H); "*C NMR (101 MHz, DMSO) & 164.5, 164.2, 162.0,
133.6, 111.5, 107.3, 102.8, 70.9, 33.2, 24.2.

(R,R)-N,N’'-Bis(3-phenylsalicylidene)-1,2-
_Q_ cyclohexanediamine (3d)?' Yellow solid, yield 99% (0.1117 g,
N N 0.223 mmol); Rf = 0.8 (hexano/EtOAc 1:1); '"H NMR (400 MHz,
dOH HO%D CDCl3) & 8.34 (s, 2H), 7.67 — 7.58 (m, 4H), 7.46 (t, J = 7.5 Hz, 4H),
Ph PH 7.39 — 7.33 (m, 4H), 7.19 (dd, J = 7.6, 1.7 Hz, 2H), 6.91 (t, J = 7.6
Hz, 2H), 3.42 — 3.27 (m, 2H), 2.01 — 1.86 (m, 4H), 1.79 — 1.66 (m, 2H), 1.52 — 1.42 (m, 2H);

13C NMR (101 MHz, CDCl3) d 164.9, 158.4, 137.8, 133.2, 130.9, 129.6, 129.3, 128.1, 127.0,
118.7, 118.5, 72.5, 60.3, 33.1, 29.7, 24.1, 21.0, 14.2.

(R,R)-N,N’'-Bis(5-chlorosalicylidene)-1,2-
R cyclohexanediamine (3e):??2 Yellow solid, yield: 95%

- N (0.4424 g, 1.131 mmol); Rf = 0.8 (hexane/EtOAc 6:4); "H
cl < § OH HO 2 > €' NMR (400 MHz, CDCl;) 5 13.15 (s, 2H), 8.11 (s, 2H), 7.12
(dd, J = 8.8, 2.6 Hz, 2H), 7.05 (d, J = 2.6 Hz, 2H), 6.77 (d, J = 8.8 Hz, 2H), 3.31-3.19 (m,
2H), 1.84 (it, J = 12.0, 3.0 Hz, 4H), 1.64 (dd, J = 16.5, 8.2 Hz, 2H), 1.40 (ddd, J = 12.0, 8.2,



3.0 Hz, 2H); *C NMR (101 MHz, CDCI;) 6 163.5, 159.5, 132.1, 130.5, 123.2, 119.2, 118.4,
72.6, 32.9, 24.0.
(R,R)-N,N’-Bis(5-carbomethoxysalicylidene)-
o Q B 1,2-cyclohexanediamine (3f):2® Yellow solid,
NN yield: 99% (0.5300 g, 1.209 mmol); Rf = 0.6
MeO,C < § OH HO Z > CO:Me  (hexane/EtOAC 6:4); 'H NMR (400 MHz, CDCl;) &
13.97 (s, 2H), 8.31 (s, 2H), 7.94 (dd, J = 8.6, 2.1 Hz, 2H), 7.91 (d, J = 2.1 Hz, 2H), 6.92 (d, J
= 8.6 Hz, 2H), 3.87 (s, 6H), 3.44-3.33 (m, 2H), 1.99 (d, J = 14.6 Hz, 2H), 1.93 (d, J = 9.8 Hz,
2H), 1.81—1.70 (m, 2H), 1.51 (t, J = 9.8 Hz, 2H): "*C NMR (101 MHz, CDCl,) & 166.3, 165.4,
164.3, 133.8, 133.7, 120.6, 117.8, 117.2, 72.3, 51.9, 32.9, 24.0.
(R,R)-N,N’-Bis(5-tert-butylsalicylidene)-1,2-
Q cyclohexanediamine (3g):° Yellow solid, yield: 86%
~ N (0.2986 g, 0.6871 mmol); Rf = 0.8 (hexane/EtOAc 6:4); 'H
‘B“dOH Hoi%}mu NMR (400 MHz, CDCl5) & 13.14 (s, 2H), 8.26 (s, 2H), 7.28
(dd, J = 8.6, 2.4 Hz, 2H), 7.12 (d, J = 2.4 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 3.35-3.24 (m,
2H), 1.92-1.85 (m, 4H), 1.77-1.66 (m, 2H), 1.46 (t, J = 9.9 Hz, 2H), 1.23 (s, 18H); *C NMR
(101 MHz, CDCls) & 165.0, 158.6, 141.2, 129.4, 127.9, 117.9, 116.2, 72.8, 33.9, 33.2, 31.4,
24.2.
(R,R)-N,N’-Bis(3-iso-propyl,5-tert-butylsalicylidene)-
o Q . 1,2-cyclohexanediamine (3h):2* Yellow solid, yield: 78%
N N (1.0091 g, 1.9451 mmol); Rf = 0.8 (hexane/EtOAc 6:4); 'H
tB“dOH Hoi%}@“ NMR (400 MHz, CDCl;) & 13.74 (s, 2H), 8.34 (s, 2H), 7.34
iPr iPr (s, 2H), 7.02 (s, 2H), 3.41-3.31 (m, 2H), 1.98 (d, J = 13.8
Hz, 2H), 1.91 (d, J = 9.0 Hz, 2H), 1.83-1.72 (m, 2H), 1.53-1.48 (m, 2H), 1.44 (s, 18H), 1.27
(s, 12H); *C NMR (101 MHz, CDCl3) 6 165.8, 158.0, 139.9, 136.3, 126.8, 126.0, 117.8, 72.3,
34.9, 34.0, 33.2, 31.4, 294, 24 3.
(R,R)-N,N’'-Bis(salicylidene)-1,2-cyclohexanediamine (3i):°
. Q . Yellow solid, yield: 97% (0.3952 g, 1.226 mmol); Rf = 0.8
dN Ni@ (hexane/EtOAc 6:4); 'H NMR (400 MHz, CDCl5) & 13.26 (s, 2H),
OH HO 8.18 (s, 2H), 7.21-7.12 (m, 2H), 7.07 (dd, J = 7.6, 1.5 Hz, 2H), 6.81
(d, J = 8.3 Hz, 2H), 6.72 (t, J = 7.6 Hz, 2H), 3.30-3.19 (m, 2H), 1.91—1.83 (m, 2H), 1.84-1.77

(m, 2H), 1.72—1.59 (m, 2H), 1.40 (t, J = 9.7 Hz, 2H); *C NMR (101 MHz, CDCl;) 5 164.7,
160.9, 132.1, 131.4, 118.6, 116.7, 72.6, 33.1, 24.1.



Q (R,R)-N,N’-Bis(3,5-di-tertbutylsalicylidene)-1,2-

S cyclohexanediamine (3j):® Yellow solid, yield: 90%
—N =

(0.6880 g, 1.258 mmol) after purification by flash
Bu OH HO tBu chromatography; Rf = 0.8 (hexane/EtOAc 6:4); '"H NMR
tBu tBu (400 MHz, CDCIs) 6 13.76 (s, 2H), 8.33 (s, 2H), 7.33 (d, J

=2.4 Hz, 2H), 7.01 (d, J = 2.4 Hz, 2H), 3.39-3.30 (m, 2H), 1.97 (d, J = 14.4 Hz, 2H), 1.90 (d,
J=9.7 Hz, 2H), 1.82-1.70 (m, 2H), 1.49 (t, J = 9.7 Hz, 2H), 1.44 (s, 18H), 1.26 (s, 18H); "*C
NMR (101 MHz, CDCl;) & 165.8, 158.0, 139.8, 136.3, 126.7, 126.0, 117.8, 72.4, 34.9, 34.0,
33.3,31.4,294, 24.3.
(R,R)-N,N’-Bis(5-nitrosalicylidene)-1,2-
cyclohexanediamine (3k):? Yellow solid, yield: 60%
(0.1970 g, 0.4777 mmol); Rf = 0.7 (hexane/EtOAc 6:4);
{ §OH HOQ } "H NMR (400 MHz, CDCl5) & 14.26 (s, 2H), 8.29 (s, 2H),
8.09-8.03 (m, 4H), 6.86 (d, J = 9.0 Hz, 2H), 3.47-3.35 (m, 2H), 2.00-1.91 (m, 2H), 1.91-1.82
(m, 2H), 1.76-1.62 (m, 2H), 1.49-1.40 (m, 2H); **C NMR (101 MHz, CDCl,) & 167.6, 163.7,
139.3, 128.1, 128.0, 118.4, 117.0, 71.7, 32.6, 23.9.
(R,R)-N,N’-Bis(3,5-di-chlorosalicylidene)-1,2-
. Q . cyclohexanediamine (3I):? Yellow solid, yield: 51% (0.1884
noR g; 0.4094 mmol); Rf = 0.3 (hexane/EtOAc 9:1); "H NMR (400
C'{go'* Hoi%}c' MHz, CDCls) 5 14.13 (s, 2H), 8.11 (s, 2H), 7.29 (d, J = 2.5
Cl cl Hz, 2H), 7.01 (d, J = 2.5 Hz, 2H), 3.35-3.24 (m, 2H), 1.93—

1.79 (m, 4H), 1.64 (q, J = 11.2 Hz, 2H), 1.46-1.35 (m, 2H); "*C NMR (101 MHz, CDCI;) &
163.4, 156.3, 132.3, 129.2, 122.9, 122.6, 119.2, 72.1, 32.8, 23.9.

(R,R)-N,N’-Bis(3-methoxysalicylidene)-1,2-

_Q_ cyclohexanediamine (3m):7 Yellow solid, yield: 96% (0.5001 g;
N N 1.307 mmol); Rf = 0.6 (hexane/EtOAc 6:4); '"H NMR (400 MHz,
CDCl3) 6 13.79 (s, 2H), 8.17 (s, 2H), 6.78 (dd, J = 7.8, 1.6 Hz, 2H),
OMe MeO 6.72 (dd, J=7.8, 1.6 Hz, 2H), 6.65 (t, J = 7.8 Hz, 2H), 3.80 (s, 6H),
3.29-3.20 (m, 2H), 1.89-1.79 (m, 4H), 1.64 (q, J = 11.2 Hz, 2H), 1.41 (t, J = 10.6 Hz, 2H);
3C NMR (101 MHz, CDCl;) & 164.7, 151.5, 148.2, 123.1, 118.3, 117.8, 113.7, 72.4, 56.0,

33.0, 24.0.

OH HO

(R,R)-N,N’'-Bis(3-ethoxysalicylidene)-1,2-cyclohexanediamino
R cobalt(ll) (4a):1” Brown solid, 66% yield (0.1441 g; 0.3083 mmol).
=N_ N=
ed
o ©

OEt EtO



HRMS (ESI) m/z: [M+Na]+ Calculated for C;4H;3CoN,O4Na*: 490.1279; Found: 490.1292.
IR (KBr, cm™): 3430, 3052, 2978, 2933, 2864, 2367, 1637, 1601, 1469, 1390, 1323, 1224,
1177, 1083, 1037, 905, 851, 734, 679, 565, 458.

(R,R)-N,N’-Bis(4-diethylaminosalicylidene)-1,2-
Q cyclohexanediamino cobalt(ll) (4b):25 Orange solid, 71%
_N;CO(N_ yield (0.1930 g; 0.3703 mmol). mp 297 °C. HRMS (ESI) m/z:
° 0 [M]+ Calculated for C,sHssCoN,O,: 521.2321; Found:
ELN NEt:  521.2316. IR (KBr, cm™): 3430, 2967, 2929, 2863, 2363,

1590, 1506, 1353, 1248, 1135, 1076, 1014, 822, 774, 714, 443.

(R,R)-N,N’'-Bis(4-hydroxysalicylidene)-1,2-
Q cyclohexanediamino cobalt(ll) (4c): Brown solid, 46% yield
_N:Coi N= (0.7780 g; 0.1892 mmol). HRMS (ESI) m/z: [M]+ Calculated for
°© ° Ca0H20CON,0,: 411.0749; Found: 411.0749. IR (KBr, cm™):
HO OH 3449, 3200, 2937, 2862, 2365, 1607, 1449, 1342, 1230, 1183,

1127, 1042, 988, 848, 800, 760, 645, 548, 465.

(R,R)-N,N’'-Bis(3-phenylsalicylidene)-1,2-
Q cyclohexanediamino cobalt(ll) (4d):*® Red solid, 73% yield
Ny (0.7320 g; HRMS (ESI) m/z [M+] Calculated for CayHasCoN,Oy:
CéiO/ \0%3 531.1483; Found: 531.1483. IR (KBr, cm): 3054, 3022, 2930,
bh PH 2857, 1764, 1692, 1590, 1538, 1447, 1412, 1382, 1324, 1284,

1227, 1195, 1155, 1110, 1072, 1032, 941.2, 851.7, 798.5, 746.2, 695.9, 617.5, 570.4, 477 .3,
447 .1, 425.

(R,R)-N,N’'-Bis(5-chlorosalicylidene)-1,2-
cyclohexanediamino cobalt(ll) (4e):2” Orange solid, 84%
:/<_N N_>\: yield (0.1683 g; 0.3755 mmol). mp 389 °C. HRMS (ESI) m/z:
[M+Na]+ Calculated for C,,H;sCl,CoN,O,Na*: 469.9969;
Found: 469.9951. IR (KBr, cm™): 3551, 3449, 2931, 2855, 1721, 1605, 1536, 1479, 1432,
1354, 1279, 1232, 1191, 1107, 1044, 940, 842, 771, 720, 658, 584, 537, 442.
(R,R)-N,N’'-Bis(5-carbomethoxysalicylidene)-
Q 1,2-cyclohexanediamino cobalt(ll) (4f): Brown
_N:CoiN_
MeOzC—< S:o O:\< >*COzMe



solid, 85% vyield (0.2085 g; 0.4209 mmol). mp 376 °C. HRMS (ESI) m/z: [M]* Calculated for
C,4H,4,CoN,Oq: 495.0960; Found: 495.0948. IR (KBr, cm™): 3429, 3054, 2936, 2856, 2363,
1876, 1601, 1521, 1447, 1374, 1315, 1245, 1184, 1130, 1083, 1040, 926, 823, 736, 667,
585, 535, 444, 341.

(R,R)-N,N’'-Bis(5-tert-butylsalicylidene)-1,2-
cyclohexanediamino cobalt(ll) (4g):2® Red solid, 70%
yield (0.1689 g; 0.3436 mmol). mp 336-342 °C. HRMS
< § 2 > (ESI) m/z: [M]* Calculated for C,gH36CoN,O,: 491.2103;
Found: 491.2092. IR (KBr, cm™): 3431, 3050, 3018, 2929, 2855, 2363, 1602, 1530, 1444,
1389, 1319, 1201, 1147, 1025, 908, 846, 808, 755, 569, 516, 443.

(R,R)-N,N’'-Bis(3-iso-propyl,5-tert-butylsalicylidene)-

Q 1,2-cyclohexanediamino cobalt(ll) (4h): Orange solid,

_N:C(N_ 69% yield (0.5753 g; 0.9993 mmol). mp 380-392°C.

Bu < § © © %:> BU HRMS (ESI) m/z: [M+K]* Calculated for Cs4H,sCoN,O,K*:
iPr iPr 614.2679; Found: 614.2635. IR (KBr, cm™): 2954, 2865,

1596, 1525, 1463, 1427, 1358, 1319, 1253, 1174, 1131, 1047, 934, 868, 835, 785, 746, 641,
571.

(R,R)-N,N’-Bis(salicylidene)-1,2-cyclohexanediamino cobalt(ll)

Q (4i):'® Red solid, 65% vyield (0.3790 g; 0.9992 mmol). mp 365 °C.

_N\CO/N_ HRMS (ESI) m/z: [M+Na]* Calculated for C,oH,oCoN,O,Na*:

do/ \Oi@ 402.0749; Found: 402.0750. IR (KBr, cm™): 3427, 2951, 2862,
2363, 1612, 1527, 1466, 1316, 1257, 1183, 1039, 935, 831, 735, 672, 615, 552, 452, 360.

(R,R)-N,N’'-Bis(3,5-di-tertbutylsalicylidene)-1,2-

Q cyclohexanediamino cobalt(ll) (4j):2° Orange solid, 93%

_N:C(N_ yield (0.3388 g; 0.5611 mmol). HRMS (ESI) m/z: [M]*

Bu < § ° 0 §:> BU Calculated for CseHsCoN,O,:  603.3355;  Found:

tBu tBu 603.3346. IR (KBr, cm™): 3430, 2952, 2865, 2375, 1595,

1525, 1460, 1427, 1359, 1320, 1253, 1175, 1130, 1046, 936, 868, 835, 786, 636, 572, 302.

(R,R)-N,N’'-Bis(5-nitrosalicylidene)-1,2-

cyclohexanediamino cobalt(ll) (4k):3® Brown solid,

:/< >\: 40% yield (0.8810 g; 0.1877 mmol). HRMS (ESI) m/z:



[M]* Calculated for CoH;sCoN4Og: 469.0552; Found: 469.0539. IR (KBr, cm™): 3433, 2938,
2862, 2413, 1641, 1599, 1549, 1493, 1441, 1386, 1332, 1305, 1246, 1198, 1153, 1131, 1100,
1042, 946, 835, 755, 728, 660, 539, 442.

(R,R)-N,N’-Bis(3,5-di-chlorosalicylidene)-1,2-
Q cyclohexanediamino cobalt(ll) (41):3' Red solid, 85% vyield
_N:C(N_ (0.5149 g; 0.9957 mmol). HRMS (ESI) m/z: [M+Na]*
cl < § °© 0 %:> €l Calculated for C,oH16Cl,CoN,O,Na*: 537.9190; Found:
Cl cl 537.9167. IR (KBr, cm™): 3433, 2935, 2860, 1602, 1560,
1436, 1325, 1212, 1177, 1103, 1033, 971, 928, 864, 765, 675, 615, 587, 556, 481, 447.

(R,R)-N,N’-Bis(3-methoxysalicylidene)-1,2-
Q cyclohexanediamino cobalt(ll) (4m):3' Brown solid, 88% yield
CgN:C(Ni@ (0.1698 g: 0.3864 mmol). HRMS (ESI) m/z: [M]* Calculated for
°© © C,sH3sCON,O,: 439.1063; Found: 439.1066. IR (KBr, cm™): 3430,
OMe  MeO 3271, 3055, 2938, 2862, 1719, 1640, 1604, 1474, 1448, 1375, 1326,
1223, 1171, 1083, 1039, 979, 925, 865, 822, 729, 677, 646, 566, 490, 461, 377, 352.

$5.7. Synthesis of lignin models

S$5.7.1. Primary alcohol

HO Syringyl Alcohol (5):32 In a 100 mL flask, 50 mL of methanol and syringyl
aldehyde (2.00 g; 0.0110 mol) were added and stirred in an ice bath for 5

Moo OMe minutes. Then, small portions of NaBH,4 were added until a total of 1.25 g
OH (0.033 mol) was reached. The mixture was then removed from the ice bath

and stirred for 30 minutes at room temperature. After this period, 30 mL of a saturated NH,ClI
solution was added, and the mixture was stirred for another 30 minutes. At the end of the
reaction, the methanol was evaporated, and the product was extracted with ethyl acetate and
purified by flash chromatography, yielding 92% (1.86g; 10.1 mmol) of a white solid. Rf = 0.6
(Hexane/AcOEt/MeOH 4:4:2). 'TH NMR (400 MHz, CDCl3) d 6.63 (s, 2H); 5.55 (s, 1H); 4.63

(s, 2H); 3.92 (s, 6H). '3C NMR (101 MHz, CDCl;) 6 147.1; 134.1; 132.0; 103.8; 65.7; 56.3.

$5.7.2. General procedure for the synthesis of secondary alcohols



R>MgBr

THF, Ar, 0 °C -> 25 °C
MeO R1 MeO R1
OH OH

R, = H, R, = Et (22), 60%
R, = OMe, R, = Me (23), 52%

In a 50 mL round-bottom flask, correspondent aldehyde (5 mmol) was dissolved in THF (25
mL) and stirred at 0°C. The corresponding alkyl magnesium bromide (5 mL; 15 mmol; 3 M)
was added dropwise, and the mixture was stirred for 1 hour. Subsequently, 5 mL of a 10%
HCI solution and 30 mL of water were added. The organic phase was then extracted with

DCM, concentrated using a rotary evaporator, and purified by flash chromatography.

HO 4-(1-Hydroxypropyl)-2,6-dimethoxyphenol (9): 33 White solid, 60% yield
(0.580 g; 2.73 mmol). Rf 0.4 (hexane/AcOEt 1:1). '"H NMR (400 MHz,

Moo OMe CDCl3) 6 6.60 (d, J = 3.7 Hz, 2H), 5.53 (d, J = 10.5 Hz, 1H), 4.53 (q, J =
OH 6.2, 5.3 Hz, 1H), 3.91 (d, J = 4.0 Hz, 6H), 1.87-1.68 (m, 2H), 0.93 (td, J =
7.4,2.9 Hz, 3H). *C NMR (101 MHz, CDCl;) & 146.9, 135.9, 133.9, 102.5, 76.3, 56.2, 31.9,

10.3.

HO 4-(1-Hydroxyethyl)-2-methoxyphenol (10): 33 White solid, 52% yield (0.526 g,
3.12 mmol). Rf 0.4 (hexane/AcOEt 1:1). '"H NMR (400 MHz, CDCl;) 6 6.85 (d, J
= 1.8 Hz, 1H), 6.80 (d, J = 8.1 Hz, 1H), 6.75 (dd, J = 8.1, 1.9 Hz, 1H), 5.62 (s,
oH 1H),4.76 (q, J =6.4 Hz, 1H), 3.82 (s, 3H), 1.88 (s, 1H), 1.40 (d, J = 6.4 Hz, 3H).
3C NMR (101 MHz, CDCl;) 6 146.6, 144.9, 137.9, 118.3, 114.1, 107.9, 70.3, 55.9, 25.1.

MeO

1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2-
OH OH

MeO methoxyphenoxy)propane-1,3-diol (12): The lignin model
OM
0 ¢ selected was prepared according to the synthesis reported by
HO
OMe \©

Burtoloso and coworkers (Org. Biomol. Chem., 2020, 18,

4815).

1H-NMR (400 MHz, CDCl3) & 7.06 (t, J = 7.6 Hz, 1H), 6.98 — 6.86 (m, 3H), 6.62 (s,
2H), 4.95 (d, J = 4.7 Hz, 1H), 4.14 (dd, J = 9.0, 4.9 Hz, 1H), 3.93 (d, J = 5.9 Hz, 1H), 3.88 (s,
3H), 3.86 (s, 6H), 3.66 (dd, J = 12.2, 3.2 Hz, 1H), 2.66 (s, 1H).



13C-NMR (101 MHz, CDCl3) & 151.7, 147.2, 146.9, 134.2, 131.1, 124.4,121.8, 121.0, 112.3,
102.9, 87.4, 73.0, 60.9, 56.5, 56.0.



S$6. Quantitative data from GC-MS experiments

Table S5. Oxidation reaction without the use of pyridine additive

0.0 py in 5 min Average 0.0 py in 30min Average
Cat. 6 (%) Conv (%) 7 (%) 6 (%) Conv (%) 7 (%) 6 (%) Conv (%) 7 (%) 6 (%) Conv (%) 7 (%)
3.9 28.2 14.9 26.4 64.5 18.3
22+24 226+79 10.0+7.0
4a 0.5 17.0 5.0 16.9 54.7 17.8 18473 576 +6.0 17.8+£0.5
121 53.5 17.4
28.0 64.0 4.5 55.7 97.6 11.9
4b 20.8 +10.2 48.2 +22.3 52+1.0 514 +6.1 91685 17.8+4.9
13.6 325 5.9 471 85.6 18.8
1.1 1.7 3.5 23.4 33.1 4.6
0.6+0.7 145+ 3.9 44+13
4c 0.1 17.2 5.3 10.1 411 11.5 122+10.4 353+5.1 8.8+3.7
3.0 31.7 10.4
0.0 4.0 1.0 0.5 10.6 1.7
0.0+0.0 45+0.7 0.8+0.3 1.3+141 10.3+0.4 1.8+0.1
4d 0.0 5.0 0.6 2.0 10.1 1.9
0.1 3.7 0.5 7.5 34.3 1.7
0.1+0.1 55+26 04+0.1
4e 0.2 7.4 0.3 0.6 24.5 8.0 40+35 32471 10.5+2.1
3.8 38.3 1.7
1.6 15.6 8.4 31.9 77.4 24.2
0.8+1.1 11.3+£6.2 58+3.7
4f 0.0 6.9 3.2 23.8 77.8 36.9 22.1+£10.7 73.3+75 26.5+95
10.7 64.7 18.4
9.9 243 11.9 41.0 83.9 23.2
49 135+5.2 40.5+23.0 11.6+04 32.5+12.0 84.6+1.0 204+4.0
17.2 56.8 1.4 241 85.3 17.6
0.3 2.6 0.4 254 47.4 9.9
4h 04+0.1 9.8+ 10.1 04+0.0 154 £ 141 39.7 +10.8 9.0+1.3
0.5 16.9 0.4 5.5 321 8.1




14.4 44.0 13.3 55.3 88.2 18.8
8.6 £8.1 38.1+84 12.2+0.0
4i 2.9 321 11.2 42.9 90.4 27.8 41.5+14.6 87.7+29 24.7+51
26.3 84.6 275
0.0 1.0 0.0 9.1 40.9 8.7
4j 0.0 1.7 0.0 0.0£0.0 1405 0.0£0.0 14.3 22.7 2.3 8.6+6.0 25.7+13.9 41+£41
24 13.5 1.2
0.0 1.4 0.0 0.0 15.6 0.0
4k 0.0+£0.0 1.5+£0.1 0.0+£0.0 0.0£0.0 154 +04 0.0+£0.0
0.0 1.5 0.0 0.0 15.1 0.0
0.0 52 0.0 0.0 8.2 0.0
41 0.0+£0.0 41+1.6 0.0£0.0 0.0£0.0 8.4+03 0.0£0.0
0.0 2.9 0.0 0.0 8.6 0.0
12.3 41.5 29.7 16.7 66.0 253
4m 10.3+2.8 43.1+£23 241738 15.6+1.6 64.7+1.9 24117
8.3 447 18.6 14.5 63.3 229
Table S6. Oxidation reaction with the use of pyridine additive.
0.5 py in 5 min Average 0.5 py in 30min Average
Cat. 6 (%) Conv (%) | 7 (%) 6 (%) Conv (%) 7 (%) 6 (%) Conv (%) 7 (%) 6 (%) Conv (%) 7 (%)
0.4 4.4 1.3 7.4 231 2.7
4a 09+0.7 40+0.5 1.8+0.8 7104 242+16 19+1.2
1.4 3.7 24 6.9 253 1.0
31.3 52.4 0.6 100.0 100.0 0
4b 336+3.3 52.5+0.1 0.6+0.1 100.0 £ 0.0 100.0 £ 0.0 0.0+0.0
35.9 52.5 0.7 100.0 100.0 0
0.9 6.4 21 6.2 20.6 3.3
4d 1.1+0.2 53+34 19+04 59104 19.8+1.1 3.2+0.2
1.2 1.6 1.6 5.6 19.0 3.0
2.8 13.8 4.3 6.5 27.7 8.5
4c 15+18 85+74 3413 56+1.3 26.1+£23 59+3.6
0.2 3.3 25 4.6 244 34
4e 32.9 41.4 0.8 40.6 £ 10.9 41.5+0.1 0.9+0.1 90.0 92.2 0.7 90.8+1.0 92.6 £ 0.6 1.1+0.6




48.3 41.5 1.0 914 93.1 1.5
13.8 49.4 8.2 88.8 94.6 29

4f 13.6+0.2 48.4+0.7 8.2+0.0 879+1.3 93.1+2.1 27+0.2
13.5 48.4 8.2 86.9 91.6 2.6
47.4 52.4 0.4 100.0 100.0 0

49 46.9+0.7 516+0.8 04+0.0 100.0 £0.0 100.0 £0.0 0.0+0.0
46.4 51.3 0.4 100.0 100.0 0
0.0 131 0.0 24 28.2 2.0

4h 0.0+0.0 129+0.2 0.6+0.8 24+0.0 27.8+0.6 2.0x0.0
0.0 12.8 1.1 24 27.4 2.0
37.0 48.3 2.5 100.0 100.0 0

4i 40.0+£4.2 474 +£13 2205 100.0+0.0 100.0+0.0 0.0+0.0
43.0 46.5 1.8 100.0 100.0 0
0.4 5.5 0.3 13.7 27.8 0.7

4 04+0.0 5.0+0.7 04+0.1 10.1 £5.1 21.4£91 05+0.3
0.4 4.5 0.4 6.5 15.0 0.3
0.0 1.5 0.0 0.0 15.9 0.9

4k 0.0£0.0 1.5+£0.1 0.0+0.0 0.0+0.0 15.6 £ 0.4 05+0.6
0.0 1.4 0.0 0.0 15.3 0.0
0.0 35.9 0.0 0.0 52.8 0.0

4] 0.0+0.0 36.6 1.1 0.0+0.0 0.0+0.0 52901 0.0+0.0
0.0 37.4 0.0 0.0 52.9 0.0
0.0 2.9 0.1 0.0 12.5 0.4

4m 8.6+0.0 4.4 +21 0.1+0.0 0.0+0.0 1.3+£17 0.3+0.1
0.0 5.8 0.1 0.0 101 0.2




S7. Green and efficiency metrics

TableS7. Metrics for Model S oxidation

1st Gen 2nd Gen 3rd Gen This work

Catalyst (loading) Co(saleon) (10 s3 . s10o 4b . 4b , 4b ,

mol%) (5 mol%) (5 mol%) (5 mol%) (0.5 mol%) (0.05 mol%)
Base (equiv.) Pyridine (1.0) — — KsPO, (0.5) Ks;PO, (0.5) KsPO, (0.5)
Yield 99% 74% 71% 99% 93% 70%
PMI 25.6 33.6 35.0 25.5 27.2 36.1
E-factor 24.6 32.6 34.0 24.6 26.2 35.1
TON 9.9 14.8 14.2 20 186 1400

S8. Effect of pyridine: quantitative comparison of ligand-dependent trends with and

without pyridine (4a-m)

To evaluate whether pyridine merely enhances overall activity or fundamentally
changes ligand-dependent trends in the newly developed catalyst set (4a—4m), we performed
correlation analyses comparing outcomes obtained under otherwise identical conditions with
and without pyridine. For each catalyst, we compared (i) yield of product 6, (ii) conversion of
the starting material, and (iii) yield of product 7, at 5 min (0 versus 0.5 equiv of pyridine) and
30 min (0 versus 0.5 equiv of pyridine). Pearson correlations (r) probe linear association of
absolute values, while Spearman rank correlations (rs) test whether the ordering of catalyst
performance is preserved (monotonic relationship), which is the key question when assessing

whether ligand structure still governs relative trends after adding pyridine.

The results show moderate-to-strong positive correlations for yield of 6 and conversion
at both 5 and 30 min, indicating that catalysts that perform better without pyridine generally
remain among the better performers with pyridine. This supports the interpretation that
pyridine acts primarily as a global activity promoter by affecting the electronics of Co (raising
conversion/yield for most ligands), while ligand structure still controls relative performance
within the 4a-m series. In contrast, the yield of side product 7 shows weak or inconsistent

correlations, consistent with 7 being more sensitive to competing pathways.



Table S8. Pearson and Spearman correlations between conditions without pyridine and with
pyridine for the same catalyst set (4a—4m).

Pearson Spearman

Time Metric r r rs rs?

5 min Yield of 6 (%) 0.63 0.40 0.65 0.42
5 min Conversion (%) 0.41 0.17 0.42 0.17
5 min Yield of 7 (%) -0.02 0.00 0.36 0.13
30 min Yield of 6 (%) 0.71 0.50 0.72 0.52
30 min Conversion (%) 0.63 0.40 0.54 0.29
30 min Yield of 7 (%) -0.23 0.05 -0.18 0.03

S9. Two-parameter threshold analysis on 4a-m: steric boundary condition and

electronic gating for activity.

We first splitting the 4a-m dataset into training and validation subsets (Figure S6). The

training set contains 21 entries and the validation set contains 5 entries.
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Figure S6: Train/validation split used for the threshold analysis on the 4a-m dataset. Training

set (n = 21): [[4a_py, 4c_py, 4d, 4d_py, 4e, 4e_py, 4f, 4f_py, 49, 4g_py, 4h, 4h_py, 4i, 4i_py,

4j, 4j_py, 4k, 4k_py, 4l_py, 4m, 4m_py]. Validation set (n = 5): [4a, 4b, 4b_py, 4c, 4l]. Training

set mean conversion: 49.681; validation set mean conversion: 53.580.

Catalysts were then classified into two activity classes using an operational conversion

criterion (inactive: conversion < 35%; active: conversion > 35%). Using the training set, we



searched for a compact and chemically interpretable two-threshold decision rule combining
one electronic descriptor and one steric descriptor. The optimal model (Figure S7) uses the
following thresholds: BOLTZ _BD1_N1_C1 > -0.675 and BOLTZ BVol_2.25 02 < 0.930.

BOLTZ BD1 N1 _C1 x BOLTZ_BVol_2.25_02
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Figure S7. Two-parameter threshold classifier for activity in the 4a-m dataset. Catalysts are
classified as inactive (conversion < 35%) or active (conversion > 35%). Total accuracy with
2 thresholds: 0.885. |Initial accuracy with no thresholds: 0.500. Thresholds:
BOLTZ_BD1_N1_C1>-0.675 with Added accuracy of 0.154; BOLTZ BVol_2.25 02<0.930
with Added accuracy of 0.231. Accuracy/ Weighted Accuracy (all 0.885; train 0.905; validation
0.800). F1/ Weighted F1 (all 0.897; train 0.909; validation 0.857).



$10. NMR spectra

Parameter Valuer
Name 1B405_MC_35_fim.1.fid R ©
Solvent cociz ° )
Temperature 298.2
Number of Scans 16
Receiver Gain 105.7
Relaxation Delay 1.0000
Pulse Width 11.5000 f
Spectrometer Frequency 400.15
Spectral Width 6818.2 o
Lowest Frequency -439.7
Nucleus 1H
Acquired Size 32768
Spectral Size 65536
HC 5 & CHy
o
] J L ! -
g y
3 o
o ©
T T T T T T T T T T T T T T T T T
15 14 13 12 11 10 9 5 4 3 2 1 0 -1

7
f1 (ppm)
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3C NMR spectrum of 2-methoxybenzoquinone (6) (101 MHz, CDCl3)
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"H NMR spectrum of 2-methoxybenzoquinone (8) (400 MHz, CDCI5)
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3C NMR spectrum of 0d (101 MHz, CDCl3)
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3C NMR spectrum of 1h (101 MHz, CDClI3)
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3C NMR spectrum of 4-(1-Hydroxypropyl)-2,6-dimethoxyphenol (9) (101 MHz, CDCl5)
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3C NMR spectrum of 4-(1-Hydroxyethyl)-2-methoxyphenol (10) (101 MHz, CDCl5)
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13C NMR spectrum of 1-(4-Hydroxy-3,5-dimethoxyphenyl)-2-(2-
methoxyphenoxy)propane-1,3-diol (12) (101 MHz, CDCl5)
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$12. Infrared spectra
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