

## Supplementary Information

### **Promotional Effect of Rare Earth (Er, Pr, Nd, Gd and Sm) Metals on the Photocatalytic H<sub>2</sub>O Splitting Activity of Ni-Al doped TiO<sub>2</sub> Catalysts for H<sub>2</sub> Production**

Mandari Kotesh Kumar<sup>a,b, #</sup>, Pasham Madhavi<sup>a, #</sup>, Chatla Anjaneyulu<sup>a</sup>, Misook Kang<sup>b</sup> and Akula Venugopal<sup>a,\*</sup>

<sup>a</sup> Catalysis and Fine Chemicals Division, CSIR - Indian Institute of Chemical Technology, Hyderabad-500 007, Telangana State, India. \*Corresponding author E-mail address: [akula.iict@csir.res.in](mailto:akula.iict@csir.res.in) (Akula Venugopal) Tel.: +91-40-27193165 / +91-40-27193510; Fax: +91-40-27160921.

<sup>b</sup> Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.

# Equal contribution

## 1. Catalyst characterization

The photocatalysts were examined by using different characterization techniques. The powder X-ray diffraction patterns of the samples were recorded by Rigaku miniflex X-ray diffractometer using Ni filtered Cu K radiation ( $\lambda = 0.15406$  nm) in the range  $2\theta = 10\text{--}80^\circ$  at a scan rate of  $2^\circ\text{min}^{-1}$  with a beam voltage and beam current of 30 kV and 15 mA respectively. The Brunnauer–Emmett–Teller (BET) surface areas of samples were measured by  $\text{N}_2$  adsorption at  $-196^\circ\text{C}$  in an Autosorb-I (Quan tachrome) instrument. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDS) was conducted for surface morphology, microstructural, and elemental characterizations (SEM-HITACHI S-4800). The transmission electron microscopic (TEM) images were captured by dispersing the sample in ethanol solution which was suspended on a Cu grid (400-mesh 3.5 mm diameter) using JEOL JEM 2010 electron microscope. In a typical method of  $\text{H}_2\text{-TPR}$  about 50 mg of the calcined sample loaded in a tubular sample tube. Subsequently, 10%  $\text{H}_2\text{/Ar}$  flow was continued while increasing the temperature to  $800^\circ\text{C}$  at a ramp of  $10^\circ\text{C min}^{-1}$ . The total amount of  $\text{H}_2$  consumption was determined. The Fourier transform infrared spectra (FT-IR) of the samples were recorded in the range  $4000\text{--}400\text{ cm}^{-1}$  at ambient temperature using Agilent Cary 600 FT-IR spectrometer. The electron paramagnetic resonance (EPR) spectra of the samples were recorded on a JEOL/JES-FA200 EPR spectrometer at room temperature using the X-band equipment with an operating frequency of  $= 9.029$  GHz. Raman spectra of the samples were recorded with Horiba Jobin Yvon lab ram HR spectrometer using  $\lambda = 632.81$  nm laser beam excitation. The diffuse reflectance (DR) UV–Vis spectra were recorded on a UV-2000, Shimadzu Spectrophotometer equipped with a diffuse reflectance attachment with an integrating sphere consisting of the  $\text{BaSO}_4$  as a reference standard. At ambient temperature the spectra were recorded in the range between 185 to 800 nm with sampling interval of 0.5 nm and a slit width of 2 nm and the spectra were converted to Kubelka-Munk function. X-ray photoelectron spectroscopy (XPS) was conducted using a Thermo Scientific K-Alpha spectrometer with a monochromatic Al  $\text{K}\alpha$  source (1486.6 eV) to examine surface composition and elemental oxidation states. PL spectra were obtained using a Spectrofluorometer (FLUORA MAX 4P) with an excitation wavelength of 330 nm, enabling the analysis of the

photoluminescent properties of the samples across the relevant emission wavelengths. Electrochemical impedance spectroscopy (EIS) was performed using an IVIUM nSTAT (Ivium Technologies, Netherlands) with a 5 mV amplitude over a frequency range of 0.01 Hz to 100 kHz. Experimental results are reported relative to the reversible hydrogen electrode (RHE).

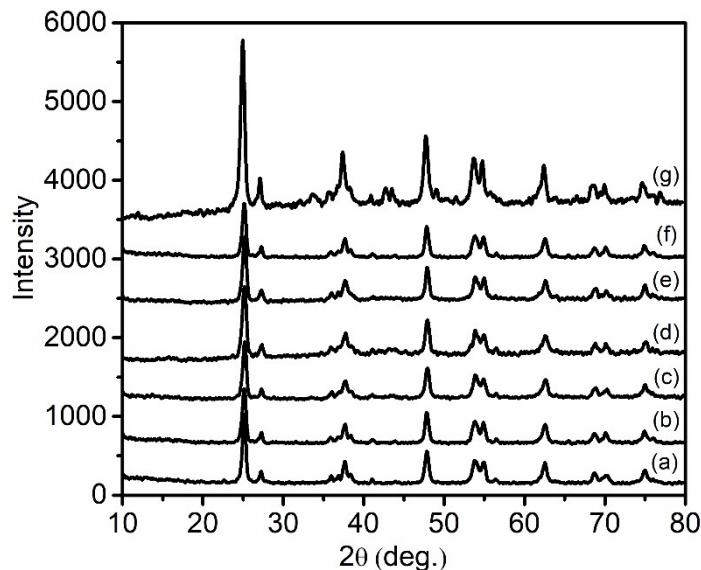
## 2. Photocatalytic activity measurements

The photocatalytic  $\text{H}_2\text{O}$  splitting experiments were carried out in an air tight quartz reactor (capacity: 150 mL) using pure water and/or in aqueous methanol solution (methanol as scavenger) at ambient temperature under the natural solar irradiation (between 10 AM to 3 PM Sunny days, Hyderabad, India) and/or in the artificial solar irradiation (Solar Simulator, 1600 W  $\text{m}^{-2}$ , artificial Sun A.M1.5 Make: Science tech, Ontario, Canada). Solar simulator equipped with a UV-visible filter, with a defined cut-off wavelength of  $\lambda > 420$  nm. The photocatalytic reactions were carried out at ambient temperature. During the long-term tests (10–60 h), the reaction suspension was maintained under continuous magnetic stirring, and the temperature was monitored periodically using a thermocouple. No significant temperature variation was observed throughout the experiments. In a typical experiment, required amount of powdered photocatalyst was suspended in a 50 mL of pure water and/or the 5 vol. % aqueous methanol. The reactor was charged with the pure water and/or the aqueous methanol along with catalyst and sealed with an air tight rubber septum (Aldrich) and the solution was magnetically stirred for at least 30 min to ensure the uniformity of the system. Then the reactor was purged with high purity nitrogen gas to remove the dissolved gases in the solution and the purging continued to ensure an inert atmosphere in the reactor. Prior to the photoreaction, the suspension was magnetically stirred in the dark for 30 min to establish an adsorption/desorption equilibrium condition. Subsequently the aqueous suspension contained water and/or aqueous alcohol and photocatalyst was then irradiated by artificial light and/or natural solar light under constant stirring. At regular time intervals, the hydrogen produced was collected from the suspension and analysed immediately by a gas chromatograph (GC) with thermal conductivity detector (TCD) using molecular Sieve 5A packed column and N2as a carrier gas.

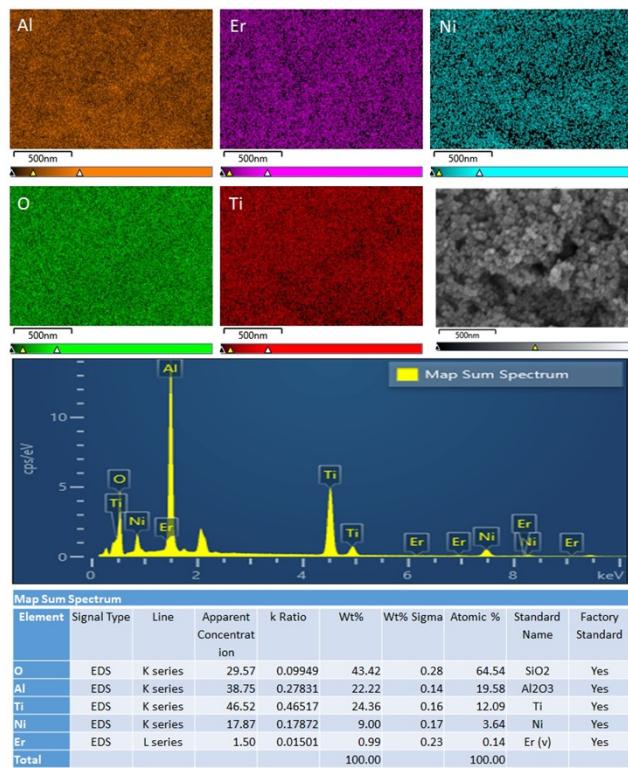
The recycle studies were carried out to evaluate the stability of the photocatalyst for 3 cycles. The 1<sup>st</sup> cycle of experiment was carried out for ~10 h under light irradiation. After the 1<sup>st</sup> cycle, reactor was kept in the dark over-night ensuring the reactor is air-tight at room temperature. Prior to 2<sup>nd</sup> cycle, the gaseous products present in the reactor was evacuated and then purged with nitrogen gas to ensure the absence of H<sub>2</sub> and O<sub>2</sub> gas dissolved by GC analysis and the experiment was performed for 10 h. The same procedure was repeated for the 3<sup>rd</sup> cycle of experiment.

### Apparent Quantum Yield (AQY) Calculation

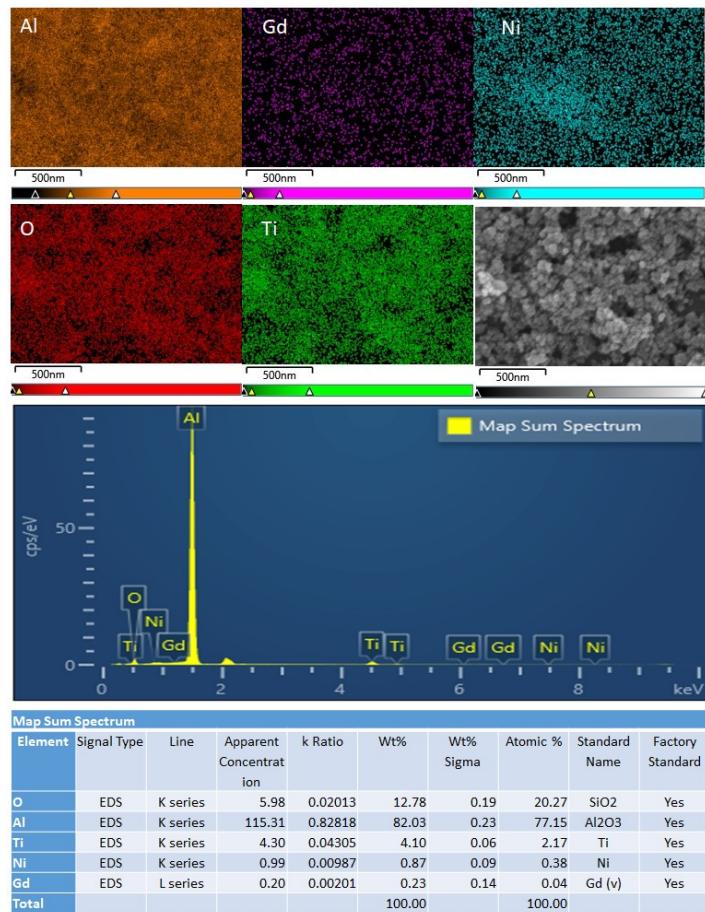
The apparent quantum yield is calculated using:


$$\text{AQY}(\%) = 2 \times N_{\text{H}_2} / N_{\text{photons}} \times 100$$

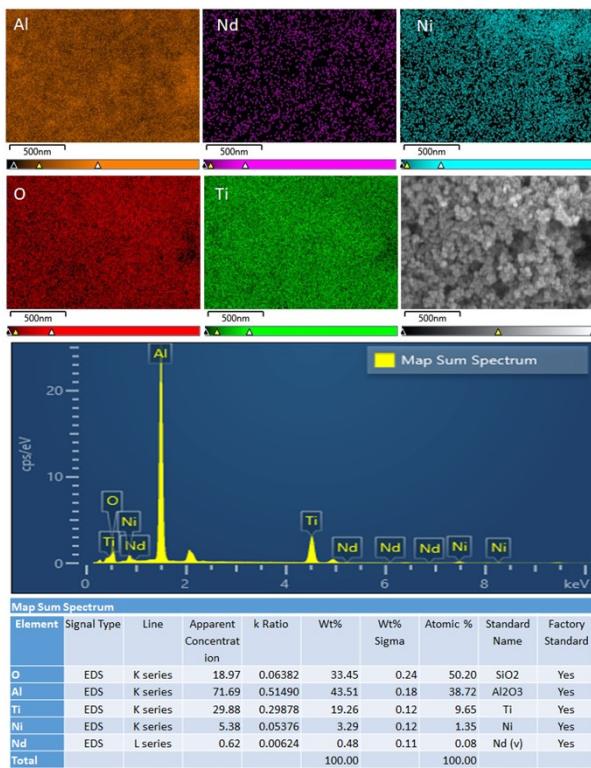
where:


$N_{\text{H}_2}$  = number of H<sub>2</sub> molecules evolved

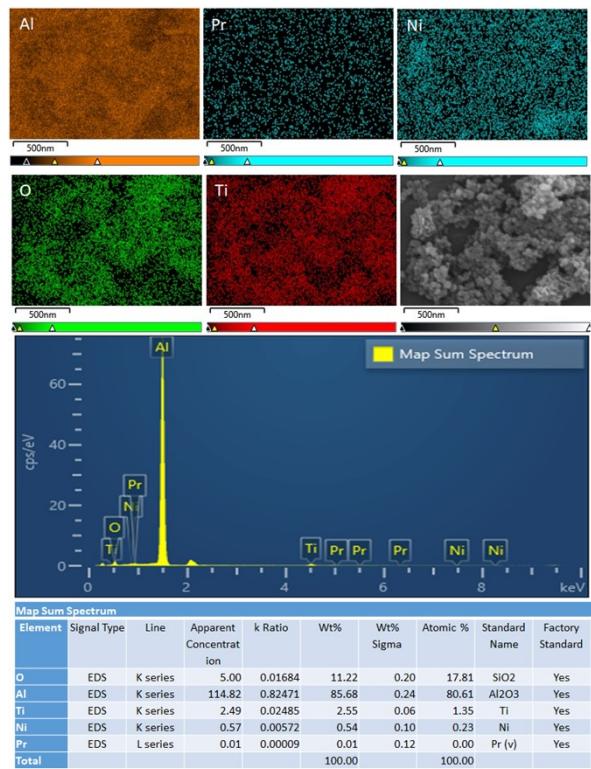
$N_{\text{photons}}$  = number of incident photons


### 3. Figures:

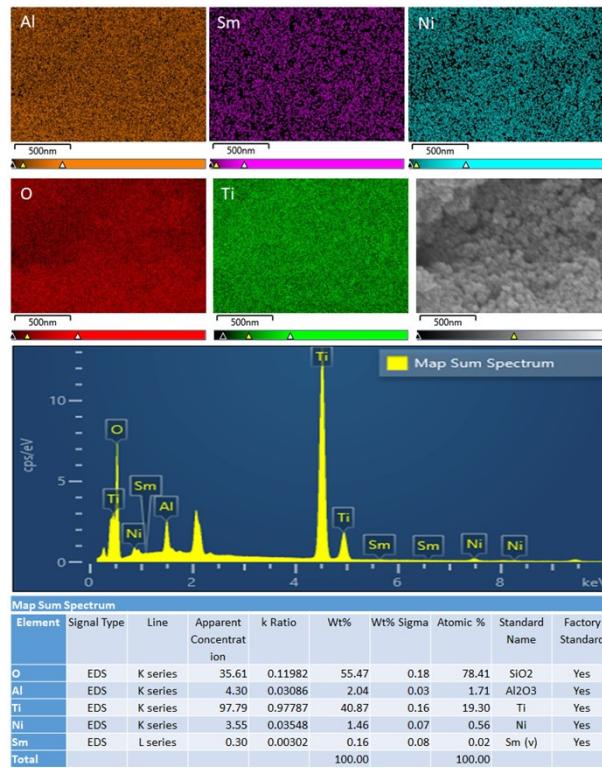



**Figure S1:** XRD patterns of (a) NiAl/TiO<sub>2</sub>, (b) NiErAl/TiO<sub>2</sub>, (c) NiPrAl/TiO<sub>2</sub>, (d) NiNdAl/TiO<sub>2</sub>, (e) NiSmAl/TiO<sub>2</sub>, (f) NiGdAl/TiO<sub>2</sub> and (g) P25-TiO<sub>2</sub>.

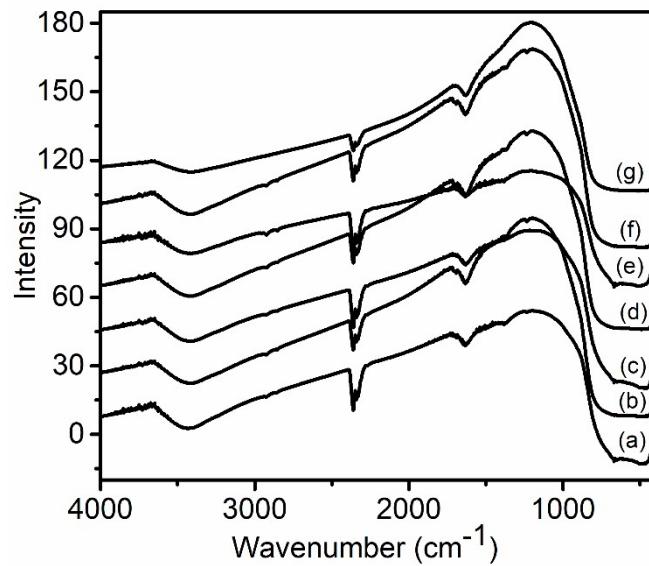



**Figure S2:** SEM-EDS elemental mapping of NiErAl/TiO<sub>2</sub>; secondary electron image and analogous elemental mapping of the element Al, Er, Ni, O and Ti elements. EDS spectrum and right table for the atomic and weight percentage of various elements.

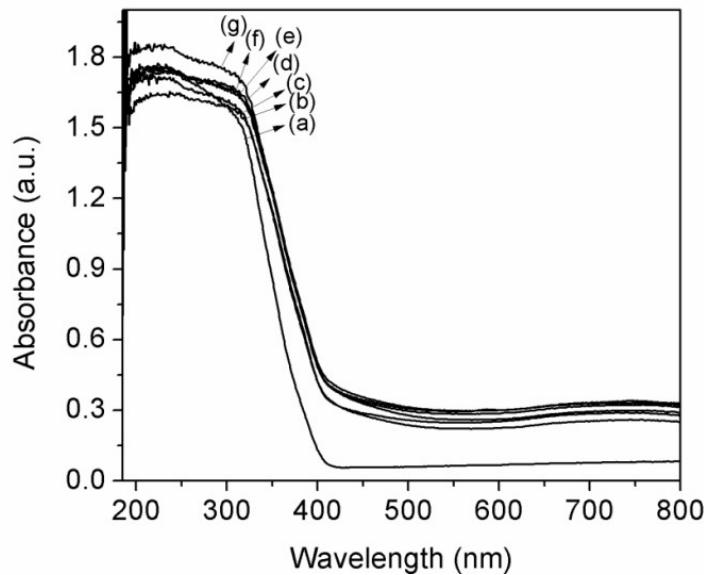



**Figure S3:** SEM-EDS elemental mapping of NiGdAl/TiO<sub>2</sub>; secondary electron image and analogous elemental mapping of the element Al, Gd, Ni, O and Ti elements. EDS spectrum and right table for the atomic and weight percentage of various elements.




**Figure S4:** SEM-EDS elemental mapping of NiNdAl/TiO<sub>2</sub>; secondary electron image and analogous elemental mapping of the element Al, Gd, Ni, O and Ti elements. EDS spectrum and right table for the atomic and weight percentage of various elements.

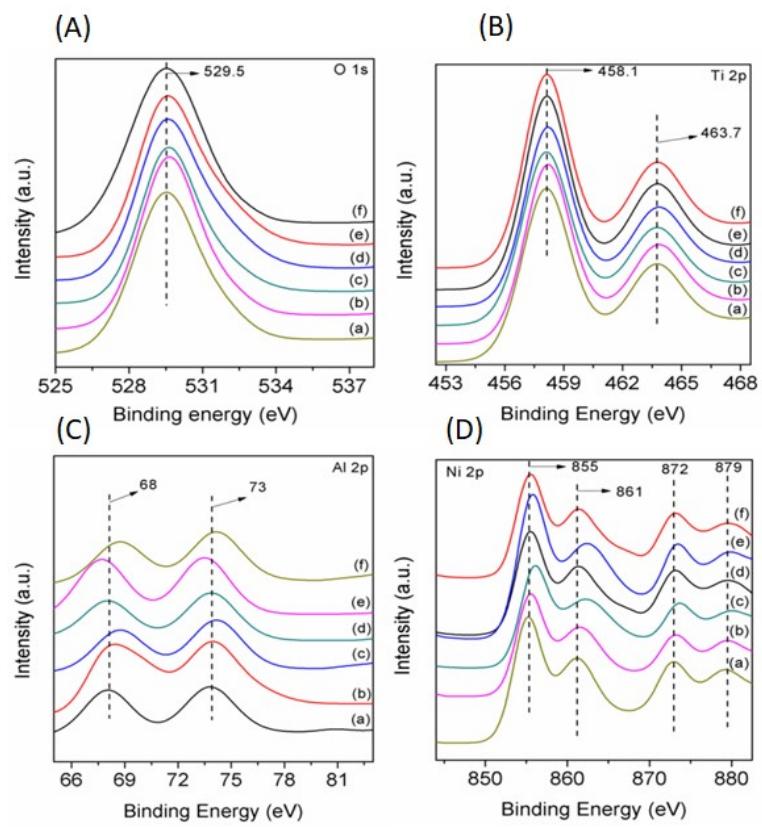



**Figure S5:** SEM-EDS elemental mapping of NiPrAl/TiO<sub>2</sub>; secondary electron image and analogous elemental mapping of the element Al, Gd, Ni, O and Ti elements. EDS spectrum and right table for the atomic and weight percentage of various elements.

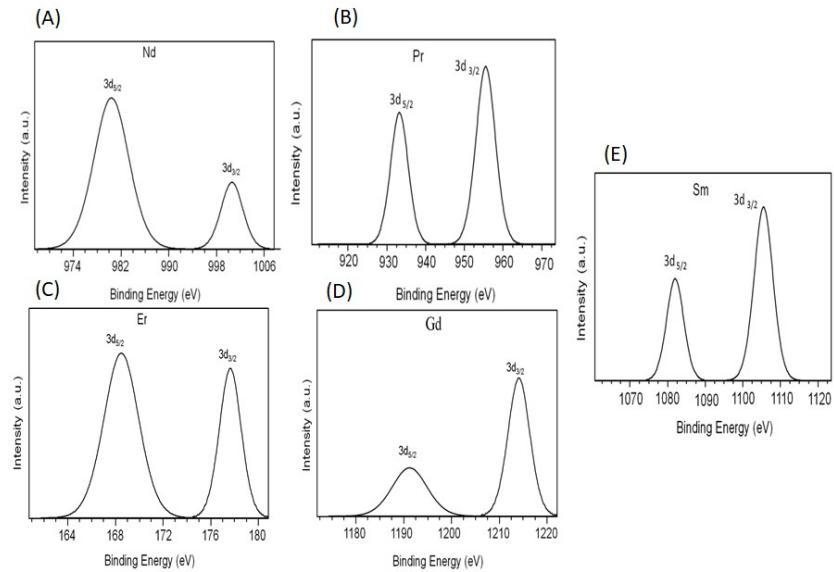


**Figure S6:** SEM-EDS elemental mapping of NiSmAl/TiO<sub>2</sub>; secondary electron image and analogous elemental mapping of the element Al, Gd, Ni, O and Ti elements. EDS spectrum and right table for the atomic and weight percentage of various elements.

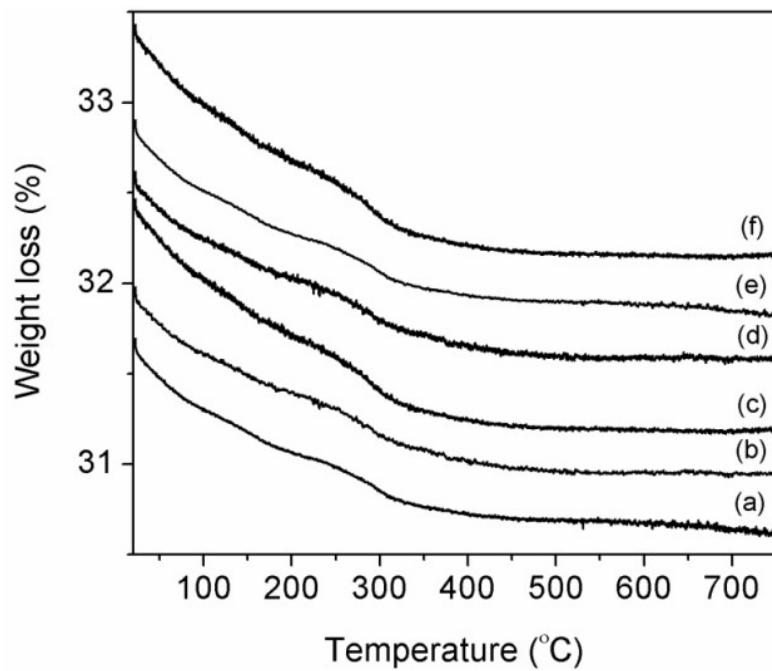



**Figure S7:** FT-IR spectra of (a) P25-TiO<sub>2</sub>, (b) NiAl/TiO<sub>2</sub>, (c) NiErAl/TiO<sub>2</sub>, (d) NiPrAl/TiO<sub>2</sub>, (e) NiNdAl/TiO<sub>2</sub>, (f) NiSmAl/TiO<sub>2</sub> and (g) NiGdAl/TiO<sub>2</sub> samples.

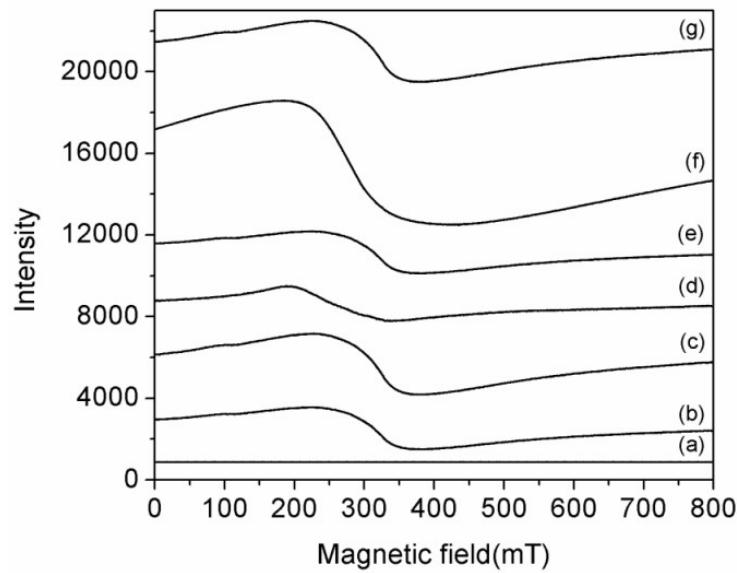



**Figure S8:** UV-DRS spectra of (a) P25-TiO<sub>2</sub>, (b) NiAl/TiO<sub>2</sub>, (c) NiErAl/TiO<sub>2</sub>, (d) NiPrAl/TiO<sub>2</sub>, (e) NiNdAl/TiO<sub>2</sub>, (f) NiSmAl/TiO<sub>2</sub>, and (g) NiGdAl/TiO<sub>2</sub> samples.

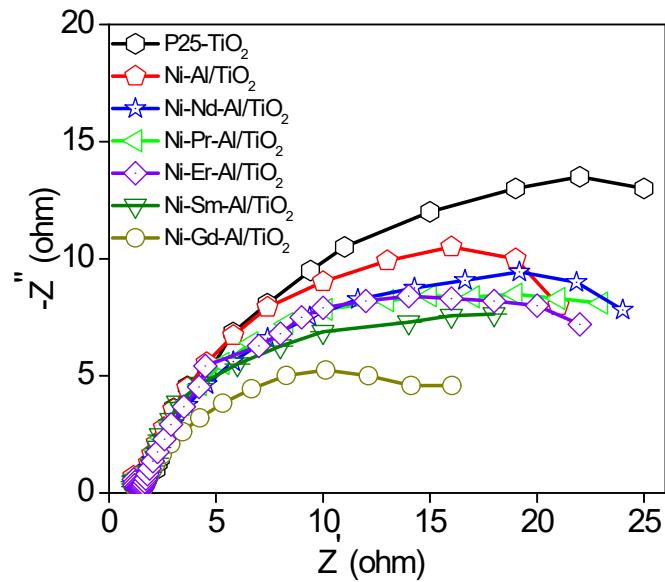
**Table S1** Binding energy values of Rare earth doped TiO<sub>2</sub> samples.


| Samples                 | O 1s  | Ti 2p <sub>3/2</sub> | Ti 2p <sub>1/2</sub> | Al 2p |      | RE 3d <sub>5/2</sub> | RE 3d <sub>3/2</sub> |
|-------------------------|-------|----------------------|----------------------|-------|------|----------------------|----------------------|
| NiAl/TiO <sub>2</sub>   | 529.5 | 458.1                | 463.7                | 68    | 73   | -                    | -                    |
| NiNdAl/TiO <sub>2</sub> | 529.9 | 458.5                | 463.9                | 68.6  | 73.2 | 981.6                | 1002.3               |
| NiPrAl/TiO <sub>2</sub> | 529.8 | 458.1                | 463.8                | 68.9  | 73.4 | 934.7                | 956.4                |
| NiGdAl/TiO <sub>2</sub> | 529.7 | 458.2                | 463.8                | 67.8  | 73   | 1190.1               | 1216.3               |
| NiErAl/TiO <sub>2</sub> | 529.6 | 458.1                | 463.7                | 67.6  | 72.9 | 169.1                | 178.2                |
| NiSmAl/TiO <sub>2</sub> | 529.5 | 458.1                | 463.7                | 68.3  | 73.2 | 1082.1               | 1106.3               |

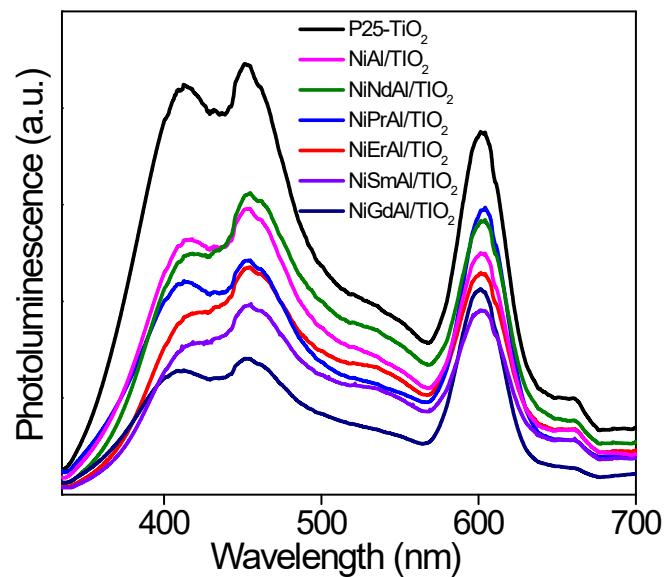



**Figure S9** (A) O 1s, (B) Ti 2p, (C) Al 2p and (D) Ni 2p XPS patterns of (a) NiAl/TiO<sub>2</sub>, (b) NiErAl/TiO<sub>2</sub>, (c) NiPrAl/TiO<sub>2</sub>, (d) NiNdAl/TiO<sub>2</sub>, (e) NiSmAl/TiO<sub>2</sub> and (f) NiGdAl/TiO<sub>2</sub>.

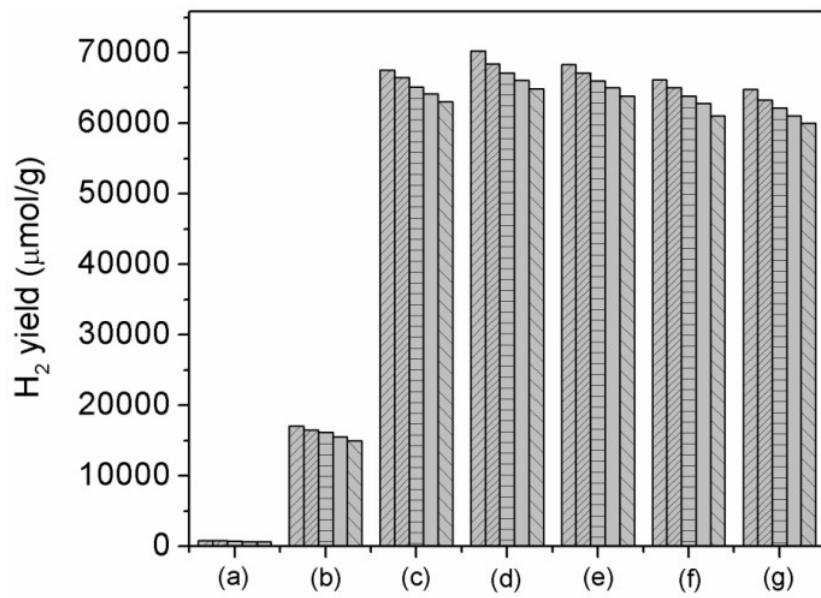



**Figure S10** XPS of rare earth 3d of Nd<sup>3+</sup>, Pr<sup>3+</sup>, Gd<sup>3+</sup>, Er<sup>3+</sup> and Sm<sup>3+</sup> of NiREAl/TiO<sub>2</sub> (RE = Er, Pr, Nd, Gd and Sm) samples.

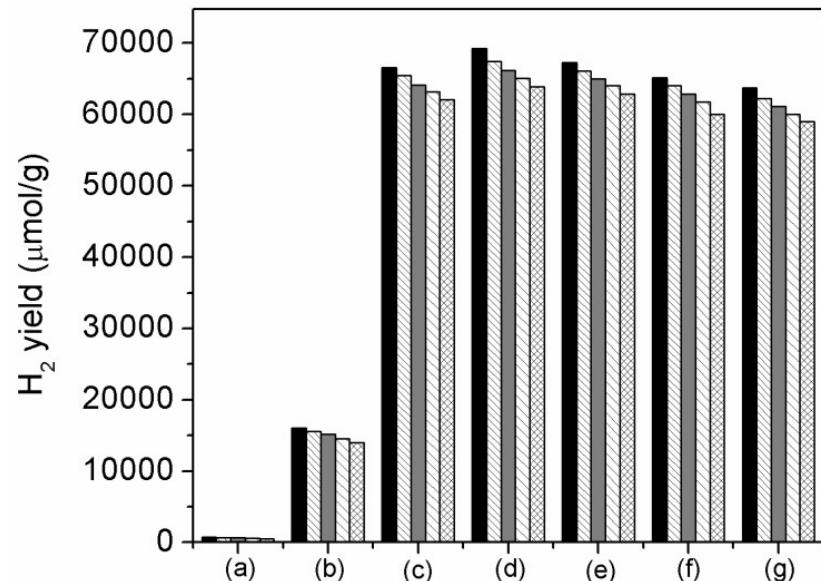



**Figure S11:** TGA patterns of (a) NiAl/TiO<sub>2</sub>, (b) NiErAl/TiO<sub>2</sub>, (c) NiPrAl/TiO<sub>2</sub>, (d) NiNdAl/TiO<sub>2</sub>, (e) NiSmAl/TiO<sub>2</sub> and (f) NiGdAl/TiO<sub>2</sub> samples

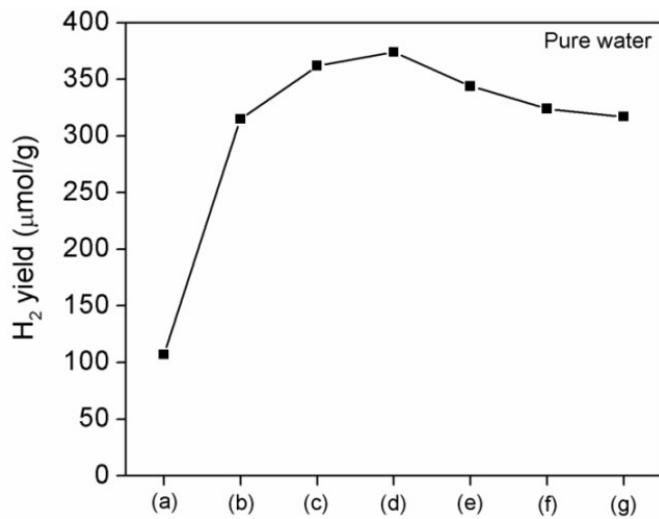



**Figure S12:** EPR spectra of (a) P25-TiO<sub>2</sub>, (b) NiAl/TiO<sub>2</sub>, (c) NiErAl/TiO<sub>2</sub>, (d) NiPrAl/TiO<sub>2</sub>, (e) NiNdAl/TiO<sub>2</sub>, (f) NiSmAl/TiO<sub>2</sub> and (g) NiGdAl/TiO<sub>2</sub> samples.

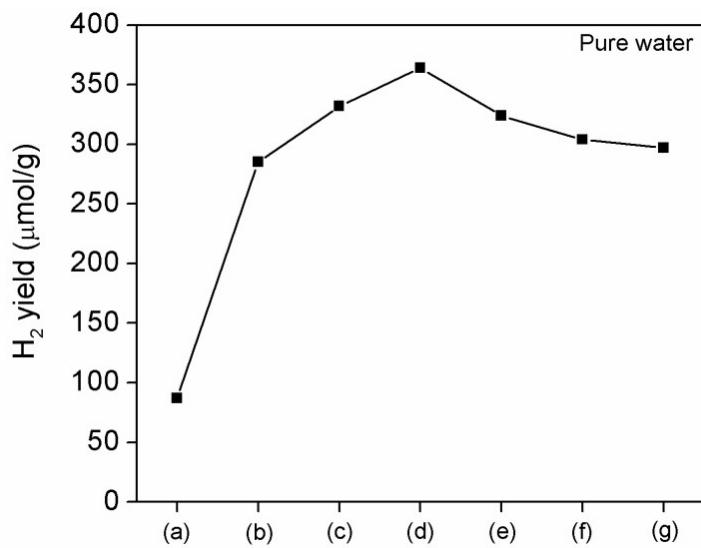



**Figure S13:** EIS spectra of the samples.

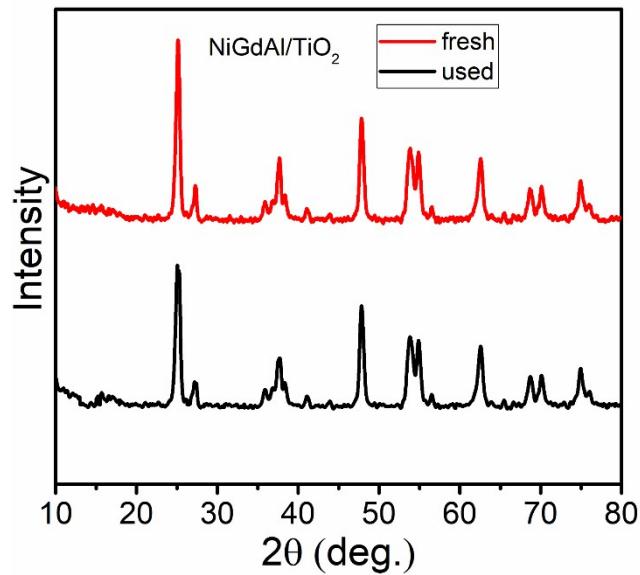



**Figure S14:** Photoluminescence spectra of the samples.




**Figure S15:** Recyclability tests over (a) P25-TiO<sub>2</sub>, (b) NiAl/TiO<sub>2</sub> (c) NiErAl/TiO<sub>2</sub>, (d) NiGdAl/TiO<sub>2</sub>, (e) NiSmAl/TiO<sub>2</sub>, (f) NiPrAl/TiO<sub>2</sub> and (g) NiNdAl/TiO<sub>2</sub> using methanol:water mixtures under solar irradiation.




**Figure S16:** Recyclability tests over (a) P25-TiO<sub>2</sub>, (b) NiAl/TiO<sub>2</sub> (c) NiErAl/TiO<sub>2</sub>, (d) NiGdAl/TiO<sub>2</sub>, (e) NiSmAl/TiO<sub>2</sub>, (f) NiPrAl/TiO<sub>2</sub> and (g) NiNdAl/TiO<sub>2</sub> using methanol:water mixtures under artificial solar irradiation.



**Figure S17:** Photocatalytic  $H_2O$  splitting activity data over (a) P25-TiO<sub>2</sub>, (b) NiAl/TiO<sub>2</sub> (c) NiErAl/TiO<sub>2</sub>, (d) NiGdAl/TiO<sub>2</sub>, (e) NiSmAl/TiO<sub>2</sub>, (f) NiPrAl/TiO<sub>2</sub> and (g) NiNdAl/TiO<sub>2</sub> using tap water under natural solar irradiation.



**Figure S18:** Photocatalytic  $H_2O$  splitting activities over (a) P25-TiO<sub>2</sub>, (b) NiAl/TiO<sub>2</sub> (c) NiErAl/TiO<sub>2</sub>, (d) NiGdAl/TiO<sub>2</sub>, (e) NiSmAl/TiO<sub>2</sub>, (f) NiPrAl/TiO<sub>2</sub> and (g) NiNdAl/TiO<sub>2</sub> using tap water under artificial solar irradiation.



**Figure S19:** XRD spectra fresh and used sample of NiGdAl/TiO<sub>2</sub> after reactions under natural solar light.

**Table S2:** Physicochemical properties of Rare earth doped TiO<sub>2</sub> samples

| Samples                 | Specific surface area (m <sup>2</sup> /g) | Band gap (eV) | Crystallite size (nm) |
|-------------------------|-------------------------------------------|---------------|-----------------------|
| P25-TiO <sub>2</sub>    | 50                                        | 3.20          | 27.00                 |
| NiAl/TiO <sub>2</sub>   | 112                                       | 3.12          | 21.5                  |
| NiPrAl/TiO <sub>2</sub> | 134                                       | 3.09          | 20.8                  |
| NiNdAl/TiO <sub>2</sub> | 135                                       | 3.08          | 20.7                  |
| NiErAl/TiO <sub>2</sub> | 138                                       | 3.09          | 20.8                  |
| NiGdAl/TiO <sub>2</sub> | 131                                       | 3.06          | 20.0                  |
| NiSmAl/TiO <sub>2</sub> | 140                                       | 3.07          | 20.6                  |

**Table S3:** Comparison between H<sub>2</sub> evolutions of the different TiO<sub>2</sub> based photocatalysts

| Photocatalyst                                          | H <sub>2</sub> evolution (μmol g <sup>-1</sup> h <sup>-1</sup> ) | Light source  | Ref.      |
|--------------------------------------------------------|------------------------------------------------------------------|---------------|-----------|
| N <sub>2</sub> -TiO <sub>2</sub>                       | 103.6                                                            | Visible-Light | [1]       |
| 25 wt% BiVO <sub>4</sub> /Nd-TiO <sub>2</sub>          | 538.44                                                           | Visible-Light | [2]       |
| 5.0 wt% Cu0.59Ni0.41-TiO <sub>2-X</sub>                | 389.88                                                           | Visible-Light | [3]       |
| 4 % CuSe/TiO <sub>2</sub>                              | 1318                                                             | Visible-Light | [4]       |
| g-C <sub>3</sub> N <sub>4</sub> /TiO <sub>2</sub>      | 1200                                                             | 300 W Xe lamp | [5]       |
| Cu <sub>2</sub> Ni <sub>1</sub> /TiO <sub>2</sub>      | 285.4                                                            | Visible-Light | [6]       |
| Pt-loaded TiO <sub>2</sub>                             | 105                                                              | 450 W Xe lamp | [7]       |
| SnS <sub>2</sub> (5 wt%) GO-RGO (0.01 wt%)             | 61.5                                                             | Visible light | [8]       |
| TiO <sub>2</sub> /CdS/TiN NRA                          | 129.6                                                            | Visible-Light | [9]       |
| CuInS <sub>2</sub> /TiO <sub>2</sub> /MoS <sub>2</sub> | 1034                                                             | 300 W Xe lamp | [10]      |
| Pt NCs/TiO <sub>2</sub>                                | 540                                                              | 300 W Xe lamp | [11]      |
| NiGdAl/TiO <sub>2</sub>                                | 1503.4                                                           | Visible light | This work |

## References

1. Z. Xu, Y. Chen, J. Zhong, J. Chen, M. Li , Q. Wang, H. Yang, Plasma surface treatment facilitated visible light-driven H<sub>2</sub> production over TiO<sub>2</sub>. *Surfaces and Interfaces*, 36, 2023, 102626. <https://doi.org/10.1016/j.surfin.2022.102626>
2. J. Dai , C. Wu , J. Ma , T. Zhang , Z. Liang , J. Zhang , G. Li , K. Gong , S. H. Chang , Regulating the electronic structure to construct root-soil-like S-scheme BiVO<sub>4</sub>/Nd-TiO<sub>2</sub> heterojunction for visible degradation and hydrogen evolution, *Separation and Purification Technology*, 354, 2025, 129037. <https://doi.org/10.1016/j.seppur.2024.129037>
3. Y. Wang , Z. Wei , Y. Wu , L. Zhang, S. Liu, K. Xu , H.H. Liu , G. Du , X. Chai , Enhanced photocatalytic H<sub>2</sub> evolution from glucose reforming on CuNi-decorated oxygen-vacancy-rich black TiO<sub>2</sub> nanosheets, *Fuel*, 408, 2026, 137665. <https://doi.org/10.1016/j.fuel.2025.137665>
4. Y. Zhu , B. Wang , J. Zhong , J. Li , X. Zheng , C. Tian , *In-situ* construction of S-scheme CuSe/TiO<sub>2</sub> heterojunctions with enhanced photocatalytic H<sub>2</sub> production

performance, Molecular Catalysis, 582, 2025, 115204.  
<https://doi.org/10.1016/j.mcat.2025.115204>

5. C. Hu, Y. K. Jhao, Y. T. Chang, L. H. Kao, K. S. Chuang, J. H. Huang, A. Wibowo, Type-II heterojunction of g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> hollow spheres for photocatalytic H<sub>2</sub> production and degradation of organic contaminants in water, Journal of Alloys and Compounds, 1032, 2025, 181104.  
<https://doi.org/10.1016/j.jallcom.2025.181104>
6. R. Ren, H. Yang, B. Xia, Y. Xia, J. Zhang, Q. Yi, CuNi alloy nanoparticles supported on TiO<sub>2</sub> nanofiber for efficient photocatalytic H<sub>2</sub> evolution from aqueous ammonia, Journal of Materials Science & Technology, 238, 2025, 294-302.  
<https://doi.org/10.1016/j.jmst.2025.02.064>
7. M.Umair, L. Palmisano, M. Bellardita, Comparison between the efficiency of bare and Pt-loaded TiO<sub>2</sub> and ZnIn<sub>2</sub>S<sub>4</sub> for H<sub>2</sub> production in the presence of triethanolamine, methanol, furfuryl alcohol used as sacrificial agents, Journal of Molecular Structure, 1340, 2025, 142567. <https://doi.org/10.1016/j.molstruc.2025.142567>.
8. K. Perović, M. Kovačić, M. Kraljić Roković, H. Kušić, B. Genorio, U. Lavrenčić Štangar, A. L. Božić, The development of ternary-based TiO<sub>2</sub>-SnS<sub>2</sub>/GO-RGO composite material for photocatalytic H<sub>2</sub> production under Solar light irradiation, Materials Research Bulletin, 167, 2023, 112418.  
<https://doi.org/10.1016/j.materresbull.2023.112418>.
9. J. Li, L. Wang, W. Wang, X. Jia, Y. Zhang, H. Yang, Y. Li, Q. Zhou, Cooperative effects of surface plasmon resonance and type-II band alignment to significantly boost photoelectrochemical H<sub>2</sub> generation of TiO<sub>2</sub>/CdS/TiN nanorod array photoanode, Applied Catalysis B: Environmental, 334, 2023, 122833.  
<https://doi.org/10.1016/j.apcatb.2023.122833>.
10. Y. J. Yuan, G. Fang, D. Chen, Y. Huang, L.X. Yang, D. P. Cao, J. Wang, Z. T. Yu, Z. G. Zou, High light harvesting efficiency CuInS<sub>2</sub> quantum dots/TiO<sub>2</sub>/MoS<sub>2</sub> photocatalysts for enhanced visible light photocatalytic H<sub>2</sub> production, Dalton Trans., 2018, 47, 5652-5659.  
<https://doi.org/10.1039/C8DT00356D>
11. Z. X. Huang, C. Ma, F. G. Zhang, Q. Cheng, Q.Y. Liu, Y. J. Yuan, X. Zhang Sub-10 nm anatase TiO<sub>2</sub> nanoparticles for rapid photocatalytic H<sub>2</sub> production from lignocellulosic biomass, J. Mater. Chem. A, 2023, 11, 7488-7497.  
<https://doi.org/10.1039/D3TA00553D>