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Scheme 2. Process chemistry route for the production of albuterol sulfate.
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Fig. S1. Representative High Performance Liquid Chromatograms for Amination Species Quantification.
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Fig. S2. Example liquid chromatography mass spectrometry analysis for species identification from early batch study.

Table S1. Example liquid chromatography mass spectrometry analysis for species identification from early batch study.



RT (min) 260 nm Area % m/z Comments

0.702 Not Detected 227 (ESI+); 232 (ESI-) 1 Br; 2 Br

2.670 76% 238 (M+H); 236 (M-H) Key Intermediate

4.146 1.00% 457 (ESI+); 455 (ESI-) Dimer

4.238 1.40% 457 (ESI+); 455 (ESI-) Dimer

4.614 11.80% 402 (ESI+); 400 (ESI-) Dimer

4.877 4.40% 402 (ESI+); 400 (ESI-) Dimer

5.068 0.90% 199 (ESI-) 1Cl1

5.217 2.00% 238 (ESI+); 236 (ESI-) Decomposed

5.480 0.80% 566 (ESI+); 564 (ESI-) Trimer

5.947 0.20% 363 (ESI-) 1Cl1

6.929 0.09% 453 (ESI-) 1 Br

7.178 0.08% 617 (ESI-) 1 Br

Response Factor Scaling: Chemi = Lone Pair Double Bond Chromophore Response
emical Species

Methodology: Approximate the concentration of dimer. Zount 2ount Count Racioy
Relate chromophore count to the response factor of Starting Material (1) 9 4 13 1078.6
known standards, extrapolate response factor of dimer Aminated Product (3) 7 4 1 846.2
and create an approximate calibration curve. Dimer Byproduct (4) 13 8 21 2012.9
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Fig. S3. Response Factor Estimation via Chromophore Analysis for Quantification of the Dimer.



Batch Amination Kinetics
* Methodology: Determine the kinetic rate constants

(k) and reaction rates (r) via batch laboratory studies.

k = Ae—Ea/(RT)

k = Rate Constant
A= Pre-exponential Factor

ink =

—Eq (1
R (?)+ln.4

Eg1
Ink = InA—-S—

RT
. . E, = Activation Energy
® Arrhenius Equation R'= Gas Constant y=mx+b
— Calculates the rate constant T = Temperature
— Relates reaction rate to Temp.
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Figure S4. Kinetic Modeling and Arrhenius Plots.
Calorimetry
* Heat of Reaction Study (AHg,,)
. Quantify the Heat of Reaction through calorimetry.
. System: EasyMax 102 Reactor from Mettler Toledo
* Overview:
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Fig. S5. Representative Batch Amination Reaction Calorimetry Data.
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Fig. S6. '"H NMR simulation of key protons as predicted by ChemDraw.

Table S2. Solubility limits of albuterol sulfate in key solvent mediums.

Solute Solvent Weight % Solute
Albuterol Sulfate Deionized Water 16.7+ 1.0
Albuterol Sulfate Methanol 0.85+0.01
Albuterol Sulfate Ethanol 0.175+£0.025

Albuterol Sulfate Isopropyl Alcohol 0.0225 £ 0.0025

Table S3. Solubility limits of the Bromo-Diol Starting Material in key solvent mediums.

Solute Solvent Temp. Concentration Weight % Solute
Bromo-Diol SM Methanol RT 120 mg/mL 13.2 wt%
Bromo-Diol SM Methanol 40°C 190 mg/mL 19.4 wt%
Bromo-Diol SM IPA RT 50 mg/mL 5.9 wt%

Bromo-Diol SM IPA 40°C 120 mg/mL 13.2 wt%



DAD1 A, Sig=220.4 Ref=450,80 (061-0101.D)
mAU

Batch Amination (220 nm)
Oligomers

350 Solvent Front

300
250
200
150 |
100
50

= 0.992
1 F2.148
1 [3.054

Key Aminated Product

~ 5,954

76.380
1 8.507

5 10

417.319

SM Oligomer

-19.252

== 18.207
| T19.002

n

0

> 20.275

= 20.997

mAU 3

175
150
125
1005
75
505
255

DAD1 A, 5ig=220,4 Ref=450,80 (051-0201.D)

0.995

- 6.861

Flow Amination (220 hm)
>Key Aminated Product

Dimer

— 19.925

- 3298
5.862

19.353
16.382
18.786

o3—Jd—

- i - P I S ¥ £ § -

5 10 15 20

Fig. S7. Representative HPLC Chromatograms of a batch versus flow amination reaction

Table S4. A representative comparison of HPLC peak areas for a batch versus flow study.

Species Rt Flow Batch

Peak Area  Area %  Peak Area  Area %

Solvent Front 0.9 105.0 3.7% 119.5 3.6%
Product 5.9-6.0 2384.9 83.6% 1262.2 37.7%
Oligomerized Byproduct 18.2 - - 305.4 9.1%
Dimerized Byproduct 19.2 362.5 12.7% 775.7 23.2%

Starting Material 20.2 - - 244.9 7.3%
Oligomerized Byproduct 20.9 - - 636.0 19.0%



Section 2. Kinetic Rate Laws.

Coupled ordinary differential equations (ODEs) used as rate laws to model the amination reaction as shown in Scheme 1:

ac M oH
rStarting Material — dt - - k1CSMCTBA - kZCSMCPrad SN oH .
I ] -k
l’ HNT
dCTBA e

Trga=—7—= —kiCsyCrpy 1 2

dt Starting Material t-Butylamine Key Aminated Product

(CAS#62932-94-9) (CAS#75-64-9) (CAS# 156547-62-5)
d CProd oH
TProduct = 57 T k1CsmCrpa= *2CsuCproa HC,»\T,)\
J
dC D o«fl‘-\.‘

TDimer = T = kyCoyCprog

NN
ACyet 1 3 4 L \‘Lo
= = > H
TNet = dt - klcSMCTBA + kZCSMCPTod Starting Material Key Product Dimerized Byproduct

(CAS#62932-94-9) (CAS# 156547-62-5) (Mw = 401 amu)



Section 3. Model Development for Laminar Flow Reactor.

For a reaction being performed in a continuous operation that is flowing through a tubular system with a high Reynold's
number (Re > 4,000), plug flow is the expected fluid behavior. Meanwhile, for that same system with a low Reynold's number
(Re <2,100), laminar flow is the expected fluid behavior. Additionally, both plug and laminar flow conversion models depend
on the order of the reaction. For a first or second order reaction with plug flow behavior, the design equation for predicting
conversion is already analytically solved,! however the derivation for a conversion model in laminar flow is as so:?

For a Newtonian fluid flowing with a fully developed laminar flow in a cylindrical pipe of length L and radius R, the
following velocity profile is obtained:

u=2u(1-(/p)? 0

b umax
u=
Where / 2 By performing a mass balance on species A, the following is obtained:
a*c, 9C, pag 9C, ac,
D “U——F —|r——) Ty =—
97% dz ror\ or ot o)
For non-dimensionalization, the following expressions can be made:
z r t Ca
Ezf;rlzf;gz:‘czi
'R ¢,

_ C th
Where ¢ = L/T_i, the mean residence time, and 4o is the initial concentration of species A. Therefore, for an ™ order reaction,
the following can be obtained:
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Assuming that the ratio between axial diffusion time to overall process time is significantly larger than 1 and that the system
is operating at steady-state, then a simplified version of Equation 11 can be obtained:

G
-2(1- nz)a?c’_ Da,c"=0

“
Da,=kC"; %t : . ,
Where 0 and is known as the Damkohler number. Therefore, the following conversion models can be obtained
for a reaction under laminar flow:
Da -Da\ Da_ (Da
o=l Jo () 5 () ®
Da’log (-Da) Da’log(-Da-2)
Coxit =Cy [ + -Da+1]
0 2 2 (0)

Here Equation 5 models a 1% order reaction and Equation 6 models a 2" order reaction. Ey is known as an exponential integral.
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