Supplementary Information (SI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2025

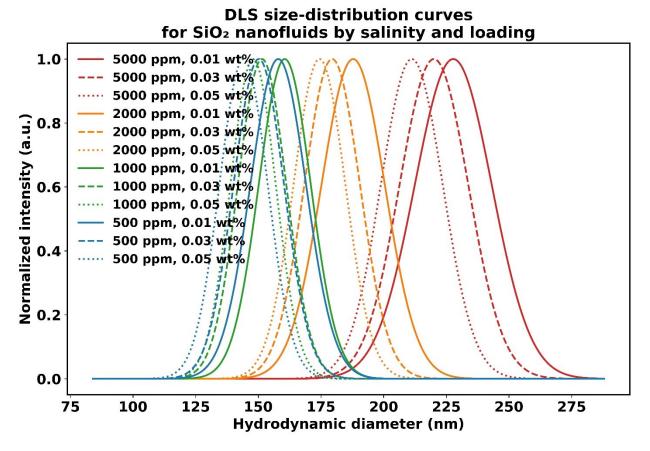


Figure S1: DLS size-distribution curves for SiO_2 nanofluids as a function of salinity and nanoparticle loading. Hydrodynamic diameter distributions are shown for 0.01, 0.03, and 0.05 wt% SiO_2 at 500, 1000, 2000, and 5000 ppm NaCl, with color indicating salinity and line style indicating loading. Peaks shift to smaller diameters and become narrower as salinity decreases and $|\zeta|$ increases, consistent with reduced aggregation and higher dispersion stability reported in Table 2A.

Sedimentation Stability of SiO₂ nanofluids at different salinities (0.05 wt% SiO₂)

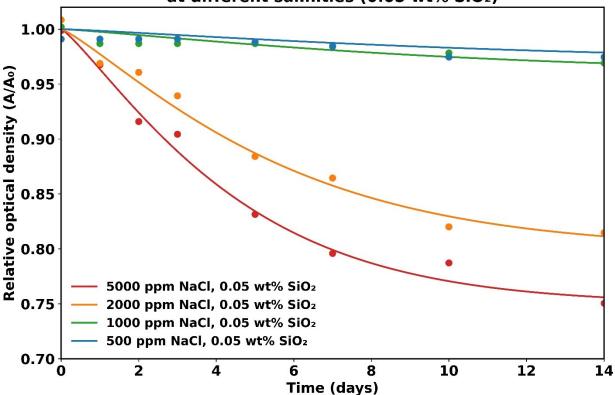


Figure S2: Sedimentation stability of $0.05~\rm wt\%~SiO_2$ nanofluids at different salinities. Relative optical density (A/A₀) is plotted over 14 days for 500, 1000, 2000, and 5000 ppm NaCl, with markers representing measurement points and smooth curves highlighting sedimentation trends. Low-salinity formulations (500–1000 ppm) maintain A/A₀ $\gtrsim 0.96$, whereas higher salinities (2000–5000 ppm) show progressively stronger decay, corroborating the electrostatic stability classifications derived from zeta potential and size data.

Table S1. One-way ANOVA summary for interfacial tension (IFT) responses to SiO_2 concentration and brine salinity in sandstone and carbonate cores (n = 3 per condition).

Comparison (factor)	Litholog	IFT range	df_effec	df_erro	F	p	η²
	y	(mN/m)*	t	r			
SiO ₂ concentration 0.00–	Sandston	27.5 ± 1.6 →	5	12	68.9	0.00	0.78
0.05 wt% at fixed 5000 ppm	e	18.9 ± 1.0				1	2
NaCl							
SiO ₂ concentration 0.00–	Carbonat	29.8 ± 1.9 →	5	12	61.3	0.00	0.76
0.05 wt% at fixed 5000 ppm	e	21.2 ± 1.2				1	1
NaCl							
Salinity $5000 \rightarrow 500$ ppm at	Sandston	18.9 ± 1.0 →	3	8	112.	0.00	0.87
fixed 0.05 wt% SiO ₂	e	4.6 ± 0.4			4	1	5
Salinity $5000 \rightarrow 500$ ppm at	Carbonat	21.2 ± 1.2 →	3	8	104.	0.00	0.86

fixed 0.05 wt% SiO ₂	e	5.2 ± 0.4		7	1	8

^{*}IFT ranges summarize the mean ± SD values between the highest and lowest levels of the factor within each ANOVA (from baseline to strongest hybrid condition described in the main text).

Table S2. Statistical summary of wettability alteration outcomes for sandstone and carbonate cores under SiO₂—low-salinity flooding

Outcome / factor	Lithology	Comparison / contrast	Test statistic	df (effect, error) / df_t	p- value	Effect size	values
Contact angle by treatment × time	Both	All treatments × 24–168 h	F = 54.2	(6, 24)	0.001	$\eta^2 = 0.871$	Strong overall reduction from oil-wet to mixed/water-wet
Contact angle over time (hybrid only)	Sandstone	24 h vs 72 h vs 168 h	F = 44.8	(2, 10)	0.001	$\eta^2 = 0.818$	$70 \pm 4^{\circ} \rightarrow 55 \pm 3^{\circ} \rightarrow 42 \pm 3^{\circ}$
Contact angle over time (hybrid only)	Carbonate	24 h vs 72 h vs 168 h	F = 42.3	(2, 10)	0.001	$\eta^2 = 0.809$	$80 \pm 4^{\circ} \rightarrow 65 \pm 3^{\circ} \rightarrow 50 \pm 3^{\circ}$
USBM wettability index by treatment	Sandstone	Baseline, LSW, SiO ₂ - only, hybrid	F = 39.6	(3, 8)	0.001	$\eta^2 = 0.789$	$-0.34 \pm 0.07 \rightarrow +0.21 \pm 0.06$
USBM wettability index by treatment	Carbonate	Baseline, LSW, SiO ₂ - only, hybrid	F = 32.8	(3, 8)	0.001	$\eta^2 = 0.766$	$-0.41 \pm 0.09 \rightarrow +0.15 \pm 0.05$
Maximum contact-angle reduction $(\Delta\theta)$	Sandstone vs Carbonate	62 ± 5° vs 60 ± 5°	t = 0.58	10	0.575	d = 0.33	No significant lithology difference
Maximum USBM index shift (ΔUSBM)	Sandstone vs Carbonate	+0.55 ± 0.06 vs +0.56 ± 0.05	t = 0.42	10	0.684	d = 0.24	No significant lithology difference
Time to stabilization of contact angle	Sandstone vs Carbonate	72 ± 5 h vs 96 ± 6 h	t = 7.18	10	0.001	d = 4.15	Faster stabilization in sandstone

Reversion rate of contact angle (hybrid, 24–168 h)	Sandstone	Slope of θ vs time	_	_	_	_	-0.17°/day; 100% θ < 60° at 168 h
Reversion rate of contact angle (hybrid, 24–168 h)	Carbonate	Slope of θ vs time	_	_	_	_	-0.18°/day; 95% θ < 60° at 168 h
Fraction of cores waterwet by USBM index	Sandstone	Baseline vs hybrid	_	_	_	_	0% → 85% water-wet
Fraction of cores waterwet by USBM index	Carbonate	Baseline vs hybrid	_	_	_	_	0% → 75% water-wet

Table S3. Statistical summary of oil recovery and permeability outcomes under low-salinity water, SiO₂-only, and hybrid flooding

Outcome / factor	Litholog y	Comparison / contrast	Test statistic	df (effect, error) / df _t	p- valu e	Effect size	Key quantitative values
Incremental recovery vs salinity (LSW flooding)	Sandston e	500 vs 1000 vs 2000 ppm NaCl	F = 18.6	(2, 6)	0.003	$\eta^2 = 0.861$	8.4 ± 0.9%, 11.7 ± 1.1%, 9.9 ± 1.0% OOIP
Incremental recovery vs salinity (LSW flooding)	Carbonat e	500 vs 1000 vs 2000 ppm NaCl	F = 14.2	(2, 6)	0.005	$\eta^2 = 0.826$	5.6 ± 0.8%, 7.9 ± 0.9%, 6.8 ± 1.0% OOIP
Incremental recovery vs SiO ₂ concentration	Sandston e	0.01 vs 0.03 vs 0.05 wt%	$\beta = 0.89;$ $R^2 = 0.92$	$df_t = 5$	0.001	_	6.2 ± 0.8% → 12.1 ± 1.2% OOIP with increasing loading
Incremental recovery vs SiO ₂ concentration	Carbonat e	0.01 vs 0.03 vs 0.05 wt%	$\beta = 0.84;$ $R^2 = 0.88$	$df_t = 5$	0.002	_	$4.1 \pm 0.7\% \rightarrow$ $9.0 \pm 0.9\%$ OOIP with increasing loading

Treatment comparison (Baseline vs LSW vs SiO ₂ vs Hybrid)	Sandston e	Recovery across four flooding modes	F = 41.5	(3, 8)	0.001	$\eta^2 = 0.839$	Baseline 28.7 \pm 2.8% \rightarrow LSW 11.7 \pm 1.1% \rightarrow SiO ₂ 12.1 \pm 1.2% \rightarrow Hybrid 18.6 \pm 1.3% OOIP*
Post hoc contrast Hybrid vs LSW	Sandston e	Incremental recovery difference	Δ = +6.9%		0.004		Hybrid 18.6 ± 1.3% vs LSW 11.7 ± 1.1% OOIP
Treatment comparison (Baseline vs LSW vs SiO ₂ vs Hybrid)	Carbonat e	Recovery across four flooding modes	_	_	_	_	Baseline 22.5 \pm 3.1% \rightarrow LSW 7.9 \pm 0.9% \rightarrow SiO ₂ 9.0 \pm 0.9% \rightarrow Hybrid 14.1 \pm 1.1% OOIP*
Post hoc contrast Hybrid vs LSW	Carbonat e	Incremental recovery difference	Δ = +6.2%	_	0.005		Hybrid 14.1 ± 1.1% vs LSW 7.9 ± 0.9% OOIP
Permeability change after SiO ₂ -only flooding	Sandston e	Pre vs post flooding	_	_	_	_	-1.4 ± 0.3% relative change
Permeability change after hybrid flooding	Sandston e	Pre vs post flooding	_	_			-1.6 ± 0.3% relative change
Permeability change after SiO ₂ -only flooding	Carbonat e	Pre vs post flooding	_	_	_	_	-1.1 ± 0.2% relative change
Permeability change after hybrid flooding	Carbonat e	Pre vs post flooding	_	_	_		-1.7 ± 0.3% relative change
Nanoparticle breakthrough and retention	Sandston e	SiO ₂ -only vs Hybrid	_	_		_	Effluent 17.2 ± 1.1 vs 15.3 ± 1.0 mg/L; retention 0.52 ± 0.06 mg/g rock (Hybrid)
Nanoparticle breakthrough	Carbonat e	SiO ₂ -only vs Hybrid			_	_	Effluent 15.3 \pm 1.0 vs 13.6 \pm 0.9

and retention				mg/L; retention
				$0.47 \pm 0.05 \text{ mg/g}$
				rock (Hybrid)

^{*}Cumulative recovery including baseline and subsequent flooding stages reached $48.3 \pm 2.6\%$ OOIP in sandstone and $36.8 \pm 2.4\%$ OOIP in carbonat

Table S4. Integrated Performance Outcomes and Predictive Relationships

Category	Metric	Sandstone	Carbonate	Notes
Regression models	$\%\Delta IFT \rightarrow \%OOIP$	$B=0.42\pm0.08$,	$R^2=0.64$	t(5)=5.25, p=0.002
(n=6)				
	Δ Contact angle \rightarrow	$B=0.31\pm0.07$,	$R^2=0.59$	t(5)=4.43, p=0.004
	%OOIP			
	Combined (%ΔIFT +		$B=0.22\pm0.05$,	p=0.010; p=0.014
	$\Delta\theta$) \rightarrow %OOIP	R ² =0.78		
Hybrid efficiency	Mean IFT (mN/m)	4.2 ± 0.5	4.8 ± 0.6	t(4)=2.14, p=0.097
	Mean ΔContact angle	46.3 ± 4.2	41.8 ± 3.9	t(4)=2.59, p=0.062
	(°)			
	Mean Incremental	18.6 ± 1.3	14.1 ± 1.1	t(4)=4.72, p=0.009
	Recovery (% OOIP)			
Proportion meeting	IFT<5 mN/m	3/3 (100%)	3/3 (100%)	RR=1.33, p=0.042;
targets		Hybrid	Hybrid	RR=1.50, p=0.039
	$\Delta\theta > 40^{\circ}$	3/3 (100%)	3/3 (100%)	
		Hybrid	Hybrid	
	Recovery ≥10% OOIP	3/3 (100%)	3/3 (100%)	
		Hybrid	Hybrid	
Ranked	IFT (mN/m)	4.2 (95% CI: 3.	6–4.8)	p=0.041, stable 168 h
performance	ΔContact angle (°)	46.3 (41.2–51.4	4)	p=0.038, no reversion
(Hybrid)	Incremental Recovery	18.6 (16.3–20.9	9)	p=0.009, plateau 3.2
	(% OOIP)			PV
	Retention efficiency	0.52 (0.44–0.60	<u> </u>	p=0.062, Δk<2%
	(mg/g rock)			