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Table. S1

Table S1. The grain size of the characteristic diffraction peaks

Materials Hkl FWHM Grain size
Bi,,0,,Cl, 117 0.332 24.5 nm
B-Bi,0; 222 0.243 35.2 nm
Bi;,0,,Cl,(heterojunction) 117 0.392 20.8 nm
B-Bi,03(heterojunction) 222 0.185 42.7 nm




S1 Raman spectrum

In order to further confirm the crystal structure, the Raman spectra are necessary
as these two phases have totally different Raman peaks. As for Bi;,07Cl,/B-Bi,0;
material’s characteristic peaks of the B-Bi,O; and Bi;;0;7;Cl, were present in the
heterostructures. Fig. S1 reveals from the Raman spectra of the B-Bi,O; that all the
peaks located at 119, 311, 463 and 600 cm™! in the pattern of the sample grown were
well assigned to the B-Bi,0s;. In fact, this material displays the Raman band pattern of
a typical Bi;;07Cl, compound with its main bands at 143, and a weak band at 377
cm!. These bands correspond to the A, internal Bi-Cl stretching mode, E,, internal
Bi-Cl stretching vibration. The Raman analysis further, confirmed the synthesis of

Bi,,0,;Cl,/B-Bi,0; heterostructures.
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Fig. S1. Raman shift of particles.



S2 TRPL measurements
The average carrier lifetime of the Flower-like Bi;,0,7,Cl,/B-B1,05 heterojunction

catalyst was 1=7.28 ns, which was obviously longer than that of the single-component
Bi1,,0,7Cl, (4.06 ns) and B-Bi,05 (3.68 ns). The longer carrier lifetime indicates that the
construction of the heterojunction effectively inhibits the recombination of
photogenerated electron-hole pairs, which further proves that the heterojunction

structure can optimize the photocatalytic performance of the material.
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Fig. S2. TRPL signals.



Table. S2

Table S2. Photocatalysis degradation comparison with previous works

Catalyst

MB

Time

Photocatalyst  pH loading  concentration Degradation (min) Ref.
GO/Ti0,/Si0, 10 0.3 g/L 0.5 mg/L 84.6% 120 1
Chlorophyll- 20 mg/L 85%
TiO, 6 2.5g/L 120 2
CuySe NPs 7 0.5g/L 10 mg/L 90.3% 90 3
MnTiO; 7 0.05gL 15 mg/L 5% 240 4
GO 6.8  02g/L 25 mg/L 99% 60 5
g-C3Ny/Fe;0, 3 0.4 g/L 20 mg/L 90% 90 6
Au-BiFeOs; 0.15g/L.  10mg/L 92% 120 7
N-TiO,/CNT 0.25 g/L 20 mg/L 94% 90 8
C0304/Zn0@ 12 mg/L 89.5%
MG-C;N, 7 025gL 120 9
Commercial 12 mg/L 85.7%
ZnO 68  0.4gL 60 10
Our work 6 0.04 g/L 10 mg/L 91.5% 120




S3 ESR analysis

Recognizing the significance of active radicals in photocatalytic wastewater
purification, ESR spin-trap experiments using DMPO were conducted. Fig. S3 present
the results, demonstrating that 250B did not show significant ESR signals of - O, in the
absence of light. However, under visible light exposure for 30 minutes, the
photoexcitation of the 250B composite resulted in pronounced peaks of DMPO--O,
and TEMPO-h", indicating the generation of h* and -O," radicals. Comparing the signal
peaks across the samples, it was observed that the signal intensities of the TEMPO- h*
spin adduct were slightly stronger than those of -O,". The presence of active radicals in
the Bi,,0,7Cl,/B-Bi,0; system was attributed to multiple electron transfer pathways at

heterojunction interfaces and the exposure of active crystal planes.
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Fig. S3. (a) DMPO--0, and (b) TEMPO- h*.
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