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1. Experiment details
The first stock solution was composed of N'-hydroxybenzimidamide (0.7 M) and 

hexafluorobenzene (0.416 M). The solution was prepared using the 50 mL volumetric flask, in 

which 4.77 g (0.035 mol) of N'-hydroxybenzimidamide and 2.40 mL (0.021 mol) of 

hexafluorobenzene were added. The flask was then filled to the mark with ethyl acetate. 

The second stock solution was composed of trifluoroacetic anhydride (0.8 M). The solution was 

prepared using the 50 mL volumetric flask, in which 5.64 mL (0.04 mol) was added. The flask 

was then filled to the mark with ethyl acetate. The experimental setup consisted of two reagent 

streams as depicted in Fig. 2. In the first stream, a solution of N-hydroxybenzimidamide (0.7 

M) and hexafluorobenzene (0.416 M) in ethyl acetate was continuously pumped and combined 

in a T-mixer (internal volume: 0.57 µL) with a second stream containing a solution of 

trifluoroacetic anhydride (0.8 M) in ethyl acetate. The combined stream was then passed 

through a tubular PEEK reactor (10 mL, 0.76 mm i.d.), immersed in a heated bath to control 

the reaction temperature. Afterward, the reaction mixture was cooled in a PFA loop (0.6 mL, 

0.75 mm i.d.) before being analyzed in real time by quantitative in-line 1D 19F NMR 

spectroscopy using a benchtop spectrometer, which has been successfully used in the field of 

flow synthesis. All units equipped with a RS-232 port were autonomously controlled with 

MATLAB through the use of communication protocols provided by the manufacturer.  

2. NMR details
1D 19F NMR experiments were recorded at 41.044 MHz on a 1H/19F benchtop spectrometer 

(Spinsolve, Magritek) equipped with a flow cell (4 mm id). Experiments were conducted at 

28.5°C.

2.1. NMR acquisition
All the instructions about NMR data acquisition were called through the Spinsolve Expert 

software. The shimming procedure was performed prior to each NMR experiment. 1D 19F 

spectra were acquired in a stopped-flow mode and in a single scan, using the following 

parameters: a recovery delay of 3.7 s followed by a 90° pulse and an acquisition time of 1.3 s 

with 65k data points, and a spectral width of 50 ppm centered at -130 ppm.
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2.2. NMR processing 
All the instructions about NMR processing were called through the Spinsolve Expert software. 

The obtained free induction decays were zero-filled up to 128k points, Fourier transformed, 

apodized using an exponential function (lb = 1 Hz) and finally automatically phased. 

The peak area of the product was obtained by integrating the spectral region from -68.5 to -66.4 

ppm; for the reference compound (hexafluorobenzene), this was from -166.5 to -164.2 ppm as 

shown in Fig.  S1. 

Fig.  S1  19F 1D spectrum of the reaction mixture containing peaks of the product, a reactant 

and a reference.

3. Optimization Strategy details

3.1. Pareto-oriented approach
We used the MVMOO1 (Mixed Variable Multi-Objective Optimization) solver for this 

approach. MVMOO employs a Gaussian Process (GP) as the surrogate model and the Expected 

Improvement Matrix2 as the acquisition function. The solver is available at 

https://github.com/jmanson377/MVMOO?tab=readme-ov-file. 

3.2. Adaptive Boundary Constraint in Bayesian Optimization (ABC-BO)
We proposed ABC-BO3 for Single-Objective Optimization (SOO) problems to avoid futile 

experiments in reaction optimization. For certain objective functions , such as throughput 𝑓(𝑥)

https://github.com/jmanson377/MVMOO?tab=readme-ov-file
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or E-factor, it is possible to estimate the maximum achievable objective  by  𝑓max 𝑎𝑐ℎ𝑒𝑖𝑣𝑎𝑏𝑙𝑒

assuming a 100% yield for each specific experimental condition. In standard Bayesian 

Optimization (BO), the algorithm may suggest experiments where the maximum achievable 

objective is worse than the current best . Such experiments, in our opinion, are futile to 𝑓 ∗

perform. Although BO proposes these points to improve the knowledge of the search space, we 

avoided exploring these conditions since they are already known not to improve the objective. 

This is achieved by defining this condition as a constraint in the optimization problem: 
max

𝑥
𝑓(𝑥) 

𝑠.𝑡.  𝑓max 𝑎𝑐ℎ𝑒𝑖𝑣𝑎𝑏𝑙𝑒 > 𝑓 ∗ ‒ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

The tolerance is specified to avoid an overly strict constraint. Since the constraint restricts the 

search space, if the current best objective is overestimated due to noise, this could result in 

excluding theoretically valid conditions from the search space. This concept of a futile 

experiment applies only to certain objective functions whose calculations are influenced by the 

variables. For example, the throughput depends on the variable residence time. Although this 

constraint alone is sufficient to avoid futile experiments, in our methodology we further redefine 

the search space to exclude such regions, which helps reduce the computational burden during 

optimization. For more details, please refer to the original work.3

The constraint specified here falls under a known constraint, meaning any violation can be 

identified theoretically. Therefore, it can be ensured that the next suggested point does not 

violate this constraint. In this work, we also defined another constraint — the yield must be 

greater than or equal to a specified value. Unlike the earlier constraint on the maximum 

achievable objective, this is an unknown constraint, as its violation cannot be determined 

theoretically before performing the experiment.4 Because of this additional unknown constraint 

(on yield), the intrinsic constraint in ABC-BO had to be adjusted. Restricting the search space 

based solely on the current best objective value may lead to conditions where the yield 

constraint cannot be satisfied at all, causing the optimization to fail. To avoid this, we 

considered a solution as the current best only if it also satisfies the yield constraint. This 

relaxation allows conditions where the yield requirement is feasible while still ensuring that the 

improvement in the objective is theoretically valid. We used MATLAB’s built-in solver 

bayesopt which can handle these constraints. The problem was solved using the default settings, 

except that the acquisition function was set to the upper confidence bound (or lower confidence 

bound).
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4. Optimization results 

4.1. In silico results
To benchmark the performance between Pareto-oriented and constraint-oriented approaches, 

the multi-objective problems were constructed from six analytical functions. The optimization 

problem involves minimising the two objectives ( ) defined in Table S1. In the Pareto-𝑓1, 𝑓2

oriented approach, the problem is solved to identify the entire Pareto front. In the constraint-

oriented approach, we focus on minimising while constraining  to stay below a chosen 𝑓1 𝑓2

threshold. For each function, we set three threshold values based on the  values on the Pareto 𝑓2

front at 25%, 50%, and 75% from the minimum of the Pareto front. Each function was then 

optimised three times using these different constraint levels. Because the limits are defined this 

way, the feasible region (solutions that satisfy the constraint) changes for each case. The 

constraint values used for each function, and the corresponding percentage of feasible solutions 

in the search space, are given in Table 2. Fig. S2 shows the feasible points within the search 

space for the corresponding constraint level for each function. As the constraint becomes 

tighter, the percentage of feasible solutions decreases. This helps to assess the performance of 

the algorithms in more challenging situations, where the feasible region becomes smaller.

Since the concept of ABC-BO applies only to reaction optimization problems, the in silico study 

is solved only with the unknown constraint. The MATLAB’s built-in solver bayesopt is used 

with its default settings. Each problem has been solved with the budget of 50 iterations for 21 

runs.  

The results are presented in Fig. S3–Fig. S8. The top row compares the distribution of the best 

objective values obtained (that satisfy the constraint) at different iteration intervals, shown as 

box-and-whisker plots for the two approaches. It can be seen that the constraint-oriented 

approach (using bayesopt) identifies better objective values compared to the Pareto approach. 

In the Pareto approach, the algorithm focuses on capturing the entire Pareto front, so it 

overlooks the region of interest. In contrast, the constraint-oriented approach focuses on 

identifying the best solution within the feasible region (satisfying the constraint), so it is able 

to find better optimal solutions. The bottom row shows the percentage of runs (out of 21) where 

the algorithm fails to identify a feasible solution at each iteration interval. As the feasible space 

within the search space becomes smaller, the constraint-oriented approach has a higher chance 

of identifying feasible solutions than the Pareto-oriented approach.  
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Table S1. Analytical functions used for the benchmark study. The Pareto front for each function is identified using 
10,00,000 random points within the search space.

Function Objectives (Min) Bounds Pareto front

F1

Binh and 

Korn 

function

𝑓1 =  4𝑥2 + 4𝑦2

𝑓2 = (𝑥 ‒ 5)2 + (𝑦 ‒ 5)2

𝑥 ∈ [0, 5]

𝑦 ∈ [0, 3]

F2

Chankong 

and Haimes 

function

𝑓1 = 2 + (𝑥 ‒ 2)2 + (𝑦 ‒ 1)2

𝑓2 = 9𝑥 ‒ (𝑦 ‒ 1)2

𝑥 ∈ [ ‒ 20, 20]

𝑦 ∈ [ ‒ 20, 20]

F3

Fonseca-

Fleming 

function

𝑓1 = 1 ‒ 𝑒𝑥𝑝[ ‒ ((𝑥 ‒
1
2)2 + (𝑦 ‒

1
2)2)]⁡

𝑓2 = 1 ‒ 𝑒𝑥𝑝[ ‒ ((𝑥 +
1
2)2 + (𝑦 +

1
2)2)]
𝑥 ∈ [ ‒ 4, 4]

𝑦 ∈ [ ‒ 4, 4]

F4

Poloni’s two 

objective 

function

𝑓1 = [1 + (𝐴1 ‒ 𝐵1(𝑥,𝑦))2 + (𝐴2 ‒ 𝐵2(𝑥,𝑦))2]⁡

𝑓2 = (𝑥 + 3)2 + (𝑦 + 1)2

𝐴1 = 0.5sin (1) ‒ 2cos (1) + sin (2) ‒ 1.5cos (2)

𝐴2 = 1.5sin (1) ‒ cos (1) + 2sin (2) ‒ 0.5𝑐𝑜𝑠⁡(2)

𝐵1(𝑥,𝑦) = 0.5sin (𝑥) ‒ 2cos (𝑥) + sin (𝑦) ‒ 1.5 𝑐𝑜𝑠(2)

𝐵1(𝑥,𝑦) = 1.5sin (𝑥) ‒ cos (𝑥) + 2sin (𝑦) ‒ 0.5 𝑐𝑜𝑠(𝑦)

𝑥 ∈ [ ‒ 𝜋, 𝜋]

𝑦 ∈ [ ‒ 𝜋, 𝜋]
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F5

Zitzler-

DebThiele’s 

function N 3

𝑓1 = 𝑥

𝑓2 = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔 = 1 +
9

29
𝑦

ℎ(𝑓1, 𝑔) = 1 ‒
𝑓1

𝑔
‒ (𝑓1

𝑔 )𝑠𝑖𝑛⁡(10𝜋𝑓1)

𝑥 ∈ [0, 1]

𝑦 ∈ [0, 1]

F6

Kursawe 

function

𝑓1 =  ‒ 10𝑒
‒ 0.2 𝑥2 + 𝑦2

‒ 10𝑒
‒ 0.2 𝑦2 + 𝑧2

𝑓2 = |𝑥|0.8 + 5sin (𝑥3) + |𝑦|0.8 + 5sin (𝑦3) + |𝑧|0.8 + 5𝑠𝑖𝑛⁡(𝑧3)

𝑥 ∈ [ ‒ 5, 5]

𝑦 ∈ [ ‒ 5, 5]

𝑧 ∈ [ ‒ 5, 5]
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Fig. S2 Feasible space within the search space that satisfies the corresponding constraint value. The blue points 
represent the conditions that satisfy the constraint out of 10,000 random points sampled within the search space.

Table S2. Constraints applied to  in the constraint-oriented approach while minimising . The percentage of 𝑓2 𝑓1

feasible solutions within the search space that satisfy the constraint is shown. The feasible solutions are identified 
using 100,000 random points (21 runs) within the search space.

Function Constraint Feasible space (%)

38.44 94.65±0.05

26.96 72.46±0.13F1  < 𝑓2

15.48 30.95±0.15

-141.36 46.72±0.10

-300.90 16.08±0.09F2  <𝑓2

-460.44 2.90±0.05

0.73 6.54±0.08

0.49 3.33±0.06F3  < 𝑓2

0.24 1.38±0.04

18.77 61.73±0.13

12.51 44.92±0.16F4  <𝑓2

6.25 25.79±0.11

0.77 66.01±0.10

0.25 28.49±0.12F5  <𝑓2

-0.25 10.18±0.07

-2.71 7.45±0.08

-5.63 1.80±0.03F6  <𝑓2

-8.56 0.14±0.01
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Fig. S3 Results on optimising Function 1 for different constraint values. The top row shows the box-and-whisker 
plots comparing the distribution of the best objective values (that satisfy the constraint) obtained over 21 runs for 
the two approaches. The bottom row shows the bar plots representing the percentage of infeasible solutions 
(solutions that do not satisfy the constraint) out of the 21 runs.  

Fig. S4 Results on optimising Function 2 for different constraint values. The top row shows the box-and-whisker 
plots comparing the distribution of the best objective values (that satisfy the constraint) obtained over 21 runs for 
the two approaches. The bottom row shows the bar plots representing the percentage of infeasible solutions 
(solutions that do not satisfy the constraint) out of the 21 runs.  
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Fig. S5 Results on optimising Function 3 for different constraint values. The top row shows the box-and-whisker 
plots comparing the distribution of the best objective values (that satisfy the constraint) obtained over 21 runs for 
the two approaches. The bottom row shows the bar plots representing the percentage of infeasible solutions 
(solutions that do not satisfy the constraint) out of the 21 runs.  

Fig. S6 Results on optimising Function 4 for different constraint values. The top row shows the box-and-whisker 
plots comparing the distribution of the best objective values (that satisfy the constraint) obtained over 21 runs for 
the two approaches. The bottom row shows the bar plots representing the percentage of infeasible solutions 
(solutions that do not satisfy the constraint) out of the 21 runs.  
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Fig. S7 Results on optimising Function 5 for different constraint values. The top row shows the box-and-whisker 
plots comparing the distribution of the best objective values (that satisfy the constraint) obtained over 21 runs for 
the two approaches. The bottom row shows the bar plots representing the percentage of infeasible solutions 
(solutions that do not satisfy the constraint) out of the 21 runs.  

Fig. S8 Results on optimising Function 6 for different constraint values. The top row shows the box-and-whisker 
plots comparing the distribution of the best objective values (that satisfy the constraint) obtained over 21 runs for 
the two approaches. The bottom row shows the bar plots representing the percentage of infeasible solutions 
(solutions that do not satisfy the constraint) out of the 21 runs.  
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4.2. Experimental results

Table S3 Optimization results for MVMOO

Exp. No.
Reagent 

eq.
Res. time Temp. Yield Throughput

𝑒𝑞. 𝑚𝑖𝑛 𝑜𝐶 % 𝑔/ℎ

1 1.94 7.5 31.9 4.5 0.20

2 1.64 58.0 48.1 75.1 0.48

3 1.02 37.9 23.0 58.9 0.74

Sampling :

LHS

4 1.02 49.3 22.6 62.2 0.60

5 1.09 60.0 39.0 85.1 0.65

6 1.00 52.3 43.1 85.6 0.79

7 1.00 60.0 50.0 81.0 0.65

8 1.00 60.0 41.5 85.4 0.68

9 1.00 43.2 50.0 85.5 0.95

10 1.00 34.7 50.0 82.5 1.14

11 1.00 14.7 37.5 69.1 2.25

12 1.00 29.7 49.3 92.0 1.48

13 1.00 10.1 50.0 88.3 4.18

14 1.20 5.7 46.4 62.3 4.81

15 1.12 5.0 50.0 84.4 7.67

Optimization : 

MVMOO

The constraint used for ABC-BO are defined as follows:

For Phase 1:

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑚𝑎𝑥. 𝑎𝑐ℎ𝑒𝑖𝑣𝑎𝑏𝑙𝑒 > 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗

where  is the best throughput adjusted for yield noise (5%)𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗

For Phase 2: 

𝑌𝑖𝑒𝑙𝑑 ≥ 85% 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑚𝑎𝑥. 𝑎𝑐ℎ𝑒𝑖𝑣𝑎𝑏𝑙𝑒 > 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗
85% 𝑦𝑖𝑒𝑙𝑑

Where  is the best throughput that satisfies the yield constraint, adjusted for 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ∗
85% 𝑦𝑖𝑒𝑙𝑑

yield noise (5%)
Table S4. Optimization results for ABC-BO
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Exp. No.
Reagent 

eq.
Res. time Temp. Yield Throughput

𝑒𝑞. 𝑚𝑖𝑛 𝑜𝐶 % 𝑔/ℎ

1 1.50 32.5 35.0 71.5 0.86
Sampling :

Center point

2 1.79 15.6 42.0 49.5 1.11

3 1.41 12.7 37.1 57.0 1.80

4 1.66 20.5 22.1 19.9 0.35

5 1.36 10.7 32.2 35.8 1.38

6 1.00 13.4 48.6 94.0 3.39

7 1.21 5.0 50.0 76.8 6.68

8 1.97 5.0 49.9 16.9 1.11

9 1.31 6.1 50.0 73.4 5.03

10 1.18 6.4 44.6 74.3 5.12

Optimization: 

ABC-BO

 Phase 1

11 1.18 13.1 50.0 94.9 3.20

12 1.04 8.5 49.9 79.2 4.41

13 1.13 11.2 49.9 96.7 3.92

14 1.13 9.1 49.7 86.2 4.30

15 1.15 9.0 49.5 81.1 4.01

Optimization:

ABC-BO

 Phase 2
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Fig. S9 Optimization results presented as a parallel coordinate plot. Three Pareto solutions were obtained from 
MVMOO. The best solution from ABC-BO in phase 1 corresponds to the maximum throughput, while the best 
solution from ABC-BO in phase 2 corresponds to the maximum throughput satisfying the yield constraint (≥85%).

Fig. S10 Evolution of the futile space within the search space, represented in terms of residence 

time and reagent equivalent, for the problem solved using ABC-BO. For the first 10 

experiments (phase 1), the orange star represents the condition corresponding to the best 

throughput (adjusted) at that point, and the light grey regions indicate the futile conditions 

associated with that best solution. For the last 5 experiments (phase 2), the blue star represents 

the condition corresponding to the best throughput (adjusted) that satisfy the yield constraint 
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(≥85%), and the dark grey regions indicate the futile conditions for this best solution. The 

difference between the dark grey and light grey regions illustrates the relaxation in the restricted 

search space due to the additional constraint applied in this phase of optimization.

Fig. S11 Boundary reduction of the variables (reagent excess and residence time) during optimization using ABC-
BO. The boundaries of these variables are redefined to eliminate futile experiments. For phase 1, the refinement 
is based on the best adjusted throughput, and for phase 2, it is based on the best throughput that satisfies the yield 
constraint (≥85%).

Fig. S12 Hypervolume trend during optimization using MVMOO.
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