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Figure S1: Examples of linear, branched and cyclic tetramer structures. Each of them
is assigned to unique name which includes the position numbers through which adjacent
monomers are connected and the oxidation states of the oxygen. DHI (dihydroxyindole),
MKI (monoketoindole) and DKI (diketoindole) refers to the different oxidation states.
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Section S1: Fingerprint Generation Method:

Figure S2: Molecular fingerprints generation. Bit strings to codify the connectivity pat-
terns, oxidation state of the monomer oxygens, oligomer type and geometrical isomerism are
shown here (see text for explanations).

The fingerprints are generated based on the following structural information: (i) connec-

tivity pattern between the adjacent monomers; (ii) oxidation states of the hydroxyl oxygens;

(iii) cis/trans isomerism about the connecting bonds; and (iv) nature of the tetramer. These

structural information are encoded sequentially into bit strings to produce the final finger-

print as illustrated in Fig. S2.

Connectivity: Each monomer unit has five positions available for oligomerization. We

encode these positions by ‘1’ if the monomer is connected to another monomer through

this position (represented with arrows in Fig. S2), otherwise it is encoded by ‘0’. For each

monomer it produces a bit string of length 5 and thus for a tetramer it is a bit string of

length 20.

Oxidation states: Experiments have identified three types of monomer units in melanin,
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namley dihydroxyindole (DHI), monoketoindole (MKI) and diketoindole (DKI) due to dif-

ferent oxidation states of the hydroxyl oxygens. We encode DHI as ‘100’, MKI as ‘010’ and

DKI as ‘001’.

Oligomer type: In our dataset there are three types of tetramer molecules: linear, branched

and cyclic. As there are only 16 cyclic tetramers, we excluded them from our machine

learning modeling. As shown in the figure, there are connections such as AB and BC which

are present for linear and branched both tetramers. However, the only difference between

linear and branched structure is whether there is CD or BD connection. Thus based on

the ‘AB,BC,CD,BD’ connection string, linear structure can be characterized as ‘1110’ and

branched structure can be characterized as ‘1101’. Here the presence/absence of a connection

is encoded by ‘1’/‘0’. Since the first two bits in ‘1110’ and ‘’1101 are ‘11’, we removed them

to simply the representation as ‘10’ and ‘01’, respectively.

Geometrical isomerism: The cis/trans isomerism about specific torsional angles between

two adjacent monomers are also encoded in the fingerprint. The torsional angles along which

we infer the cis/trans isomerism are mentioned in Fig. S2 for all possible connections be-

tween two adjacent monomers (one example torsional angle is also drawn). Along these

torsional angles, cis geometry is encoded by ‘10’ and trans geometry is encoded by ‘01’.
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Table S1: Optimized hyperparameter values of multi-output KRR for learning excitation
energies of lowest 60 excited states.

Input Kernel function Hyperparameter

Fingerprint gaussian σ = 10, λ = 10−3

Fingerprint laplacian σ = 102, λ = 10−2

SLATM gaussian σ = 102, λ = 10−6

SLATM laplacian σ = 103, λ = 10−3

Coulomb matrix gaussian σ = 105, λ = 10−7

Coulomb matrix laplacian σ = 106, λ = 10−4

Table S2: Optimized hyperparameter values of multi-output KRR for learning oscillator
strengths of lowest 60 excited states.

Input Kernel function Hyperparameter

Fingerprint gaussian σ = 1, λ = 1
Fingerprint laplacian σ = 102, λ = 103

SLATM gaussian σ = 102, λ = 103

SLATM laplacian σ = 10, λ = 1
Coulomb matrix gaussian σ = 103, λ = 103

Coulomb matrix laplacian σ = 104, λ = 103

Table S3: Optimized hyperparameter values of multi-output KRR for learning bin intensi-
ties using fingerprint input.

Bin resolution Kernel function Hyperparameter

25 nm gaussian σ = 10, λ = 10−2

laplacian σ = 10, λ = 1
50 nm gaussian σ = 10, λ = 10−2

laplacian σ = 10, λ = 1
100 nm gaussian σ = 10, λ = 10−2

laplacian σ = 10, λ = 10−1

Table S4: Optimized hyperparameter values of single-output KRR for learning relative
stability using fingerprint input.

Input Kernel function Hyperparameter

Fingerprint gaussian σ = 1, λ = 10−3

Fingerprint laplacian σ = 1, λ = 10−1
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Figure S3: Learning excitation energies and oscillator strengths of the lowest 60 excited
states. The test errors calculated over a hold-out dataset are shown by color bars. The X-
axis represents the individual excited states and the Y-axis represents the training dataset
size. Learning is shown for 3D geometry-based ML input (a) SLATM and (b) Coulomb
matrix which are derived from B3LYP/6-31G(d) optimized geometries. (c) Learning for
fingerprint-based input.
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Table S5: Nature of the excited states within each bin for three representative tetramers.
LE: local excitation; CT: charge transfer; Mixed: combination of LE and CT.
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Figure S4: Learning curves showing the overlap metric for 50 nm bin resolution using
fingerprint, SLATM and Coulomb matrix input. The vertical error bars correspond to the
uncertainty over 20 independent runs.
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Figure S5: Predicted UV-visible absorption spectra of molecules not present in the training
dataset using multi-output KRR-ML model trained on 10k dataset with fingerprint input.
The vertical lines with circles on the top refer to the intensity value of the bins and the
curves are Gaussian broadening with FWHM equal to the bin resolution (i.e. 50 nm)

11



Figure S6: Relative energies (in kcal/mol) for five random molecules using DLPNO-
CCSD(T)/cc-pVDZ, B3LYP/6-31G(d) and ML prediction.

Figure S7: Scatter plots of DFT vs. ML-predicted relative energies (in kcal/mol) for
different proportions of reduced and oxidized monomers in the tetramer structures.
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Figure S8: The Boltzmann-weighted average spectrum of DHI-melanin containing linear,
branched and cyclic tetramers.

Figure S9: Electronic absorption spectrum of DHI monomer at CAM-B3LYP/6-31G(d)
level of theory.
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