# An *N*-Phosphinoamidinato Borasilenide: A Vinyl-Analogous Anion Containing a Base-Stabilised B=Si Double Bond

Si Jia Isabel Phang,<sup>a</sup> Zheng-Feng Zhang,<sup>b</sup> Ming-Der Su,<sup>\*b,c</sup> and Cheuk-Wai So<sup>\*a</sup>

<sup>a</sup>School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore, Email: CWSo@ntu.edu.sg.

<sup>b</sup>Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan, Email: midesu@mail.ncyu.edu.tw.

<sup>c</sup>Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.

## **Table of Contents**

- S1. Experimental Section
- S2. Selected NMR Spectra
- S3. UV-vis Spectra
- S4. X-Ray Data Collection and Structural Refinement
- S5. Theoretical Studies

#### **S1. Experimental Section**

General procedure. All manipulations were carried out under an argon atmosphere with Schlenk techniques and glovebox. Hexane, toluene and diethyl ether were purified through a MBRAUN solvent purification system. Tetrahydrofuran and benzene were purified by distillation over potassium/benzophenone. Fluorobenzene was purified by distillation over calcium hydride. Benzene- $d_6$  and tetrahydrofuran- $d_8$  were distilled over potassium metal. Chemicals were purchased from Sigma-Aldrich and directly used without purification. Compound 1 and CuCl(PMe<sub>3</sub>) were synthesized according to reported procedures.<sup>[S1,S2]</sup> <sup>1</sup>H, <sup>11</sup>B{<sup>1</sup>H}, <sup>31</sup>P{<sup>1</sup>H}, <sup>13</sup>C{<sup>1</sup>H}, and <sup>29</sup>Si{<sup>1</sup>H} NMR spectra were measured on a Bruker Avance III 400 with a Dual Resonance Probe (BBFO) or JEOL (ECA 400) spectrometer. Deuterated solvents were used for the recording of NMR spectra, and chemical shifts are given in  $\delta$  (ppm) and coupling constants J in Hz. NMR multiplicities are abbreviated, where s = singlet, d = doublet, m = multiplet, sep = septet and br = broad signal. The solid-state <sup>31</sup>P, <sup>29</sup>Si and <sup>11</sup>B NMR experiments were conducted at 11.7 T on a 500 MHz JEOL NMR spectrometer (JNM-ECZL500G) and equipped with a 3.2 mm double-resonance HXMAS probe. The <sup>29</sup>Si and <sup>11</sup>B solid state NMR spectroscopy were ran using Cross-Polarization Magic Angle Spinning (CPMAS) experiment at 12 kHz with reference to silicone rubber (-21.50 ppm) and NaBH<sub>4</sub> (-3.61 ppm), respectively. The <sup>31</sup>P solid state NMR spectroscopy was ran using CPMAS at 6 kHz with reference to NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> (2.14 ppm). UV-vis was ran using Shimadzu UV Spectrophotometer UV-1800. HRMS spectra were obtained at the Mass Spectrometry Laboratory in the School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University.



Synthesis of **2**. *N*-phosphinoamidinato chlorosilylene **1** (0.974 g, 2 mmol) and PhBCl<sub>2</sub> (0.349 g, 2.2 mmol) were dissolved in toluene in two separate 100 mL flasks. PhBCl<sub>2</sub> was added to **1** dropwise at -78 °C and the reaction mixture was allowed to warm to room temperature and stirred for 16 hours. Resulting suspension was filtered and filtrate was concentrated and stored at room temperature to yield colourless crystals. Yield: 0.632 g (49%). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz, 25 °C):  $\delta$  8.26 (d, 2H, Ar-H, *J* = 7.5 Hz), 7.27 (t, 2H, Ar-H, *J* = 7.5 Hz), 7.18 – 7.07 (m, 5H, Ar-H), 6.92 (dd, 1H, Ar-H, *J* = 6.8, 2.5 Hz), 6.80 (d, 3H, Ar-H, *J* = 3.0 Hz), 4.47 (sep, 1H, CHMe<sub>2</sub>, *J* = 6.8 Hz), 3.27 (sep, 1H, CHMe<sub>2</sub>, *J* = 6.6 Hz), 1.51 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.6 Hz), 1.41 (d, 9H, C(CH<sub>3</sub>)<sub>3</sub>, *J* = 14.3 Hz), 1.36 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.6 Hz), 1.33 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.5 Hz), 1.21 (d, 9H, C(CH<sub>3</sub>)<sub>3</sub>, *J* = 14.1 Hz), 0.19 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.6 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (THF-*d*<sub>8</sub>, 101 MHz, 25 °C):  $\delta$  171.93 (d, NCN, *J* = 9.6 Hz), 148.77 (Ar-C), 147.74 (Ar-C), 140.72 (Ar-C), 125.96 (Ar-C), 125.39 (Ar-C), 129.96 (Ar-C), 129.47 (Ar-C), 129.18 (Ar-C), 127.91 (Ar-C), 127.24 (Ar-C), 125.96 (Ar-C), 125.39 (Ar-C), 41.61 (d, C(CH<sub>3</sub>)<sub>2</sub>), *J* = 30.8 Hz), 39.22 (d, C(CH<sub>3</sub>)<sub>3</sub>), *J* = 35.1 Hz), 29.52 (CH(CH<sub>3</sub>)<sub>2</sub>), 28.90 (C(CH<sub>3</sub>)<sub>3</sub>), 28.62 (C(CH<sub>3</sub>)<sub>3</sub>), 27.96 (CH(CH<sub>3</sub>)<sub>2</sub>), 27.32 (CH(CH<sub>3</sub>)<sub>2</sub>), 22.77 (CH(CH<sub>3</sub>)<sub>2</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 6, 79 MHz, 25 °C):  $\delta$  3.10. HRMS (ESI): m/z calcd for: 645.2327 [(M + H)]<sup>+</sup>; found: 645.2328.



**Synthesis of 3.** THF (30 mL) was added to a 100 mL flask containing **2** (0.646 g, 1 mmol) and excess KC<sub>8</sub> (0.811 g, 6 mmol) at -78 °C. The reaction mixture was allowed to warm to room temperature and stirred for 2 hours. The resulting suspension was filtered and volatiles in the filtrate were removed. The crude solid was extracted with toluene and the solution was concentrated to yield reddish-brown crystals. Yield: 0.241 g (42%). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz, 25 °C):  $\delta$  7.82 (d, 2H, Ar-H, *J* = 7.5 Hz), 7.53 (d, 2H, Ar-H, *J* = 8.0 Hz), 7.05 – 6.91 (m, 4H, Ar-H), 6.89 – 6.55 (m, 5H, Ar-H), 3.50 (dd, 2H, CHMe<sub>2</sub>, *J* = 13.7, 6.9 Hz), 1.45 (d, 18H,

C(CH<sub>3</sub>)<sub>3</sub>, J = 13.4 Hz), 1.27 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 6.7 Hz), 0.96 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 7.1 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>7</sub>D<sub>8</sub>, 101 MHz, 25 °C): δ 165.70 (NCN), 148.54 (Ar-C), 146.37(Ar-C), 132.79 (Ar-C), 129.33 (Ar-C), 129.11 (Ar-C), 128.57 (Ar-C), 127.36 (Ar-C), 127.14 (Ar-C), 125.94 (Ar-C), 125.70 (Ar-C), 124.03 (Ar-C), 122.77 (Ar-C), 36.60 (d, C(CH<sub>3</sub>)<sub>3</sub>, J = 40.1 Hz), 28.53 (d, C(CH<sub>3</sub>)<sub>3</sub>, J = 3.6 Hz), 28.38 (CH(CH<sub>3</sub>)<sub>2</sub>), 26.08 (CH(CH<sub>3</sub>)<sub>2</sub>), 23.23 (CH(CH<sub>3</sub>)<sub>2</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 162 MHz, 25 °C): δ 47.79. <sup>11</sup>B{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 128 MHz, 25 °C): δ 30.34 (m). <sup>29</sup>Si{<sup>1</sup>H} (C<sub>6</sub>D<sub>6</sub>, 79 MHz, 25 °C): δ 208.40. HRMS (ESI): m/z calcd for: 1157.5718 [(M + H)]<sup>+</sup>; found: 1157.5732.

Synthesis of 4. Benzene (20 mL) was added to a 100 mL flask containing 3 (0.116 g, 0.1 mmol) and CuCl(PMe<sub>3</sub>) (0.0350 g, 0.2 mmol) at room temperature, and the reaction mixture was stirred for 4.5h to quantitatively form compound 4, traced by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy. X-ray-crystallography-quality brown crystals (isolated yield: 0.0335 g (23%)) were afforded from the concentrated filtrate. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz, 25 °C): δ 8.11 (d, 3H, Ar-H, J = 7.3 Hz), 7.37 (t, 4H, Ar-H, J = 7.4 Hz), 7.20 (d, 6H, Ar-H, J = 7.2 Hz), 7.07 – 6.94 (m, 3H, Ar-H), 6.93 – 6.84 (m, 5H, Ar-H), 6.84 – 6.72 (m, 5H, Ar-H), 3.65 – 3.49 (m, 2H, CHMe<sub>2</sub>), 3.26 – 3.10 (m, 2H, CHMe<sub>2</sub>), 1.54 (d, 13H, C(CH<sub>3</sub>)<sub>3</sub>, J = 13.1 Hz), 1.43 (d, 3H, C(CH<sub>3</sub>)<sub>3</sub>, J = 9.3 Hz), 1.39 (d, 8H, C(CH<sub>3</sub>)<sub>3</sub>, J = 13.1 Hz), 1.25 (d, 12H, C(CH<sub>3</sub>)<sub>3</sub>, J = 13.1 Hz), 1.20 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 7.1 Hz), 1.15 (dd, 6H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 9.3, 5.4 Hz), 1.13 – 1.07 (m, 3H, P(CH<sub>3</sub>)<sub>3</sub>), 0.96 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 6.7 Hz), 0.65 (br, 6H, P(CH<sub>3</sub>)<sub>3</sub>), 0.24 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 5.8 Hz).<sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 101 MHz, 25 °C): δ 163.63 (d, NCN, J = 10.3 Hz), 146.77 (Ar-C), 144.96 (Ar-C), 140.62 (Ar-C), 138.52 (Ar-C), 128.89 (Ar-C), 127.31 (Ar-C), 127.18 (Ar-C), 127.03 (Ar-C), 126.90 (Ar-C), 124.73 (Ar-C), 124.02 (Ar-C), 122.98 (Ar-C), 38.35 (d, C(CH<sub>3</sub>)<sub>3</sub>, J = 37.8 Hz), 37.50 (d, C(CH<sub>3</sub>)<sub>3</sub>, J = 40.7 Hz), 34.42 (CH(CH<sub>3</sub>)<sub>2</sub>), 34.28 (CH(CH<sub>3</sub>)<sub>2</sub>), 29.32  $(C(CH_3)_3)$ , 28.93  $(C(CH_3)_3)$ , 28.84  $(C(CH_3)_3)$ , 28.76  $(C(CH_3)_3)$ , 28.68  $(C(CH_3)_3)$ , 28.51  $(C(CH_3)_3)$ , 26.93(CH(CH<sub>3</sub>)<sub>2</sub>), 24.75 (CH(CH<sub>3</sub>)<sub>2</sub>), 23.37 (CH(CH<sub>3</sub>)<sub>2</sub>), 22.76 (CH(CH<sub>3</sub>)<sub>2</sub>), 16.26 (P(CH<sub>3</sub>)<sub>3</sub>), 16.11 (P(CH<sub>3</sub>)<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 162 MHz, 25 °C): δ 43.14, -51.05. <sup>11</sup>B{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 128 MHz, 25 °C): δ 23.80 (br). <sup>29</sup>Si{<sup>1</sup>H} (C<sub>6</sub>D<sub>6</sub>, 79 MHz, 25 °C): δ 234.96 (br). HRMS (ESI): m/z calcd for: 1283.5459 [(M + H)]<sup>+</sup>; found: 1283.5504.



**Synthesis of 5.** Benzene (20 mL) was added to a 100 mL flask containing **3** (0.116 g, 0.1 mmol) and [lr(cod)Cl]<sub>2</sub> (0.0671g, 0.1 mmol) at room temperature. The reaction mixture was stirred for 30 mins to quantitatively form compound **5**, traced by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy. X-ray-crystallography-quality orange crystals (isolated yield: 0.0268 g (16%)) were afforded from the concentrated filtrate. <sup>1</sup>H NMR (THF- $d_8$ , 400 MHz, 25 °C):  $\delta$  7.80 – 7.69 (m, 2H, Ar-H), 7.29 – 7.09 (m, overlapping signals, 8H, Ar-H), 7.08 – 7.01 (m, 2H, Ar-H), 7.01 – 6.95 (m, 1H, Ar-H), 3.87 (t, 1H, CHMe<sub>2</sub>, *J* = 8.3 Hz), 3.81 – 3.70 (m, 1H, cod-H), 3.51 – 3.40 (m, 2H, cod-H), 3.12 – 3.00 (m, 1H, cod-H), 2.97 (sept, 1H, CHMe<sub>2</sub>, *J* = 6.7 Hz), 2.85 – 2.67 (m, 1H, cod-H), 2.66 – 2.50 (m, 1H, cod-H), 2.50 – 2.40 (m, 1H, cod-H), 2.40 – 2.32 (m, 1H, cod-H), 2.32 – 2.22 (m, 1H, cod-H), 2.21 – 2.10 (m, 1H, cod-H), 2.07 – 1.97 (m, 2H, cod-H), 1.96 – 1.88 (m, 1H, cod-H), 1.55 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.7 Hz), 1.53 – 1.40 (m, 6H, C(CH<sub>3</sub>)<sub>2</sub>), 1.32 (br, 1H, Ir-CH<sub>2</sub>), 1.19 (d, 9H, C(CH<sub>3</sub>)<sub>3</sub>, *J* = 13.8 Hz), 1.07 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.7 Hz), 1.01 – 0.85 (m, overlapping signals, 2H, Ir-CH<sub>2</sub>, Si-CH<sub>2</sub>), 0.47 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.7 Hz), -0.09 (dd, 1H, Si-CH<sub>2</sub>, *J* = 30.7, 12.2 Hz). <sup>13</sup>C{<sup>1</sup>H</sup> NMR (THF- $d_8$  101 MHz, 25 °C):  $\delta$  168.31 (NCN), 145.47(Ar-C), 143.86(Ar-C), 141.47(Ar-C), 139.38 (Ar-C), 138.13 (Ar-C), 130.06 (Ar-C), 129.48 (Ar-C), 127.98 (Ar-C), 127.51 (Ar-C), 126.96 (Ar-C), 125.40 (Ar-C), 122.02 (Ar-C), 77.94 (cod-CH<sub>2</sub>), 76.42 (cod-CH<sub>2</sub>), 63.16 (cod-CH<sub>2</sub>), 57.41 (cod-CH<sub>2</sub>), 41.03 (C(CH<sub>3</sub>)<sub>2</sub>/C(H<sub>2</sub>)r)), 36.96

(C(CH<sub>3</sub>)<sub>3</sub>), 36.59 (cod-CH), 35.31 (cod-CH), 33.57 (CH(CH<sub>3</sub>)<sub>2</sub>), 32.90 (cod-CH), 32.24 (cod-CH), 28.79 (CH(CH<sub>3</sub>(CH<sub>2</sub>Si)), 28.66 (CH(CH<sub>3</sub>)<sub>2</sub>), 27.02 (C(CH<sub>3</sub>)<sub>3</sub>), 26.30 (CH(CH<sub>3</sub>(CH<sub>2</sub>Si)), 21.64 (overlapping signals, C(CH<sub>3</sub>)<sub>2</sub>(CH<sub>2</sub>Ir)), 19.51 (CH(CH<sub>3</sub>(CH<sub>2</sub>Si)).<sup>31</sup>P NMR (THF-*d*<sub>8</sub>, 162 MHz, 25 °C): δ 60.75 (br). <sup>11</sup>B{<sup>1</sup>H} NMR (THF-*d*<sub>8</sub>, 128 MHz, 25 °C): δ -58.93 (br). HRMS (ESI): m/z calcd for: 839.3673 [(M + H)]<sup>+</sup>; found: 839.3658.

$$\begin{array}{c} \mathsf{Dipp} \\ \mathsf{Ph} \underbrace{\bigvee_{N \in \mathcal{S}} \mathsf{SiMe}_3}_{N \in \mathcal{S}} \\ || & || \\ \mathsf{N} \\ \mathsf{P} \underbrace{\bigvee_{Bu}}^{\mathsf{B}} \mathsf{Ph} \\ \mathsf{^tBu} \\ \end{array}$$

**Synthesis of 6.** TMSOTf (2 mL, 0.1M in toluene, 0.2 mmol) was added to a solution of **3** (0.116 g, 0.1 mmol) in benzene at room temperature. The reaction mixture was stirred for 15 mins to quantitatively form compound **6**, traced by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy. X-ray-crystallography-quality orange crystals (isolated yield: 0.021 g (17%)) were afforded from the concentrated filtrate. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>, 400 MHz, 25 °C):  $\delta$  7.90 – 7.84 (m, 2H, Ar-H), 7.40 – 7.35 (m, 2H, Ar-H), 7.29 (t, 2H, Ar-H, *J* = 7.4 Hz), 7.11 (dd, 1H, Ar-H, *J* = 7.4, 1.7 Hz), 7.06 (t, 1H, Ar-H, *J* = 7.7 Hz), 6.97 – 6.78 (m, 5H, Ar-H), 3.52 (sept, 2H, CHMe<sub>2</sub>, *J* = 6.9 Hz), 1.39 (d, 18H, C(CH<sub>3</sub>)<sub>3</sub>, *J* = 14.0 Hz), 1.34 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.8 Hz), 0.93 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>, *J* = 6.8 Hz), -0.09 (s, 9H, (CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 101 MHz, 25 °C): δ 160.23 (d, NCN, *J* = 10.8 Hz), 145.63 (Ar-C), 141.02 (Ar-C), 140.59 (Ar-C), 140.45 (Ar-C), 135.87 (Ar-C), 129.55 (Ar-C), 128.45 (Ar-C), 127.19 (Ar-C), 126.95 (Ar-C), 125.22 (Ar-C), 124.90 (Ar-C), 123.61 (Ar-C), 37.85 (d, C(CH<sub>3</sub>)<sub>3</sub>), *J* = 43.2 Hz), 29.01 (C(CH<sub>3</sub>)<sub>3</sub>), 28.38 (CH(CH<sub>3</sub>)<sub>2</sub>), 28.36 (CH(CH<sub>3</sub>)<sub>2</sub>), 28.02 (CH(CH<sub>3</sub>)<sub>2</sub>), 27.87 (CH(CH<sub>3</sub>)<sub>2</sub>), 25.26 (C(CH<sub>3</sub>)<sub>3</sub>), 24.47 (CH(CH<sub>3</sub>)<sub>2</sub>), 23.70 (C(CH<sub>3</sub>)<sub>3</sub>), 21.93 (CH(CH<sub>3</sub>)<sub>2</sub>), 2.32 (Si(CH<sub>3</sub>)<sub>3</sub>). <sup>31</sup>P{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 162 MHz, 25 °C): 49.66 (br). <sup>11</sup>B{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>, 128 MHz, 25 °C): δ 25.30 (br). <sup>29</sup>Si{<sup>1</sup>H} (C<sub>6</sub>D<sub>6</sub>, 79 MHz, 25 °C): δ 110.06 (*Si*=B), -12.64 (d, *Si*Me<sub>3</sub>, *J* = 12.9 Hz). HRMS (ESI): m/z calcd for: 613.3734 [(M + H)]<sup>+</sup>; found: 613.3758.

Synthesis of 7. MeOTf (2 mL, 0.1M in toluene, 0.2 mmol) was added to a solution of 3 (0.116 g, 0.1 mmol) in benzene at room temperature. The reaction mixture was stirred for 50 mins and resulting suspension was filtered to quantitatively form compound 7, traced by <sup>1</sup>H and <sup>31</sup>P NMR spectroscopy. X-raycrystallography-quality colorless crystals (isolated yield: 0.0448 g (28%)) were afforded from the concentrated filtrate. <sup>1</sup>H NMR (THF-*d*<sub>8</sub>, 400 MHz, 25 °C): δ 7.60 – 7.56 (m, 2H, Ar-H), 7.32 – 7.20 (m, 5H, Ar-H), 7.20 - 7.10 (m, 3H, Ar-H), 7.08 - 6.97 (m, 1H, Ar-H), 6.85 - 6.71 (m, 2H, Ar-H), 3.34 (sept, 1H, CHMe<sub>2</sub>, J = 6.9 Hz), 2.80 (sept, 1H, CHMe<sub>2</sub>, J = 7.6 Hz), 1.92 (d, 7H, C(CH<sub>3</sub>)<sub>3</sub>, J = 15.1 Hz), 1.63 (d, 2H,  $C(CH_3)_3$ , J = 13.8 Hz), 1.37 (overlapping signals, 10H,  $CH(CH_3)_2$ ,  $C(CH_3)_3$ ), 1.19 (d, 3H,  $CH(CH_3)_2$ , J = 6.8 Hz), 0.98 (d, 2H, C(CH<sub>3</sub>)<sub>3</sub>, J = 13.6 Hz), 0.89 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 6.8 Hz), 0.70 (d, 3H, CH(CH<sub>3</sub>)<sub>2</sub>, J = 6.9 Hz), 0.36 (s, 3H, Si(CH<sub>3</sub>)<sub>2</sub>), 0.16 (s, 3H, Si(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (THF-d<sub>8</sub>, 101 MHz, 25 °C): δ160.55 (d, NCN, J = 8.5 Hz), 144.16 (Ar-C), 140.25 (Ar-C), 137.75 (Ar-C), 137.04 (d, Ar-C, J = 9.6 Hz), 130.54 (Ar-C), 129.75 (Ar-C), 129.08 (Ar-C), 128.77 (Ar-C), 128.55 (Ar-C), 128.12 (Ar-C), 124.62 (Ar-C), 124.26 (Ar-C), 123.69 (O-CF<sub>3</sub>), 41.06 (d, C(CH<sub>3</sub>)<sub>3</sub>, J = 13.9 Hz), 40.69 (d, C(CH<sub>3</sub>)<sub>3</sub>, J = 4.7 Hz), 29.71 (CH(CH<sub>3</sub>)<sub>2</sub>), 29.42 (C(CH<sub>3</sub>)<sub>3</sub>), 28.73 (CH(CH<sub>3</sub>)<sub>2</sub>), 26.81 (CH(CH<sub>3</sub>)<sub>2</sub>), 26.21 (CH(CH<sub>3</sub>)<sub>2</sub>), 26.02 (C(CH<sub>3</sub>)<sub>3</sub>), 23.01 (CH(CH<sub>3</sub>)<sub>2</sub>), 22.86 (CH(CH<sub>3</sub>)<sub>2</sub>), 4.29 (d, Si(CH<sub>3</sub>)<sub>2</sub>, J = 8.1 Hz), 2.69 (d, Si(CH<sub>3</sub>)<sub>2</sub>, J = 4.3 Hz). <sup>31</sup>P NMR (THF-d<sub>8</sub>, 162 MHz, 25 °C): δ 87.11. <sup>31</sup>P solid state NMR (202 MHz, 25 °C): δ 89.60. <sup>11</sup>B and <sup>29</sup>Si solution state NMR signals cannot be obtained. <sup>11</sup>B solid state NMR (160 MHz, 25 °C): 1.73 (m). <sup>29</sup>Si solid state NMR (99 MHz, 25 °C): 31.70 (m). HRMS (ESI): m/z calcd for: 719.3251 [(M + H)]+; found: 719.3262.

## S2. Selected NMR Spectra



igure S1. <sup>1</sup>H NMR spectrum of 2.



Figure S2. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 2.









igure S8.  $^{31}P\{^{1}H\}$  NMR spectrum of 3.



S10



Figure S12. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 4.





- 235.46 - 234.93 - 234.49

75 270 265 260 255 250 245 240 235 230 225 220 215 210 205 200 195 190 185 180 175 170 165 Figure S15.  ${}^{29}Si{}^{1H}$  NMR spectrum of **4**.

# 



Figure S16. <sup>1</sup>H NMR spectrum of 5.



Figure S18. <sup>13</sup>C (DEPT135) NMR spectrum of 5.



- 60.75



Figure S22. <sup>13</sup>C{<sup>1</sup>H} NMR spectrum of 6.







**Figure S26.** <sup>1</sup>H NMR spectrum of **7**. (Circled signals corresponds to solvent/ silicon grease, triangled signals indicate slight decomposition)



Figure S28. <sup>31</sup>P NMR spectrum of 7.



Figure S29. Solid-state <sup>31</sup>P NMR spectrum of 7.



Figure S31. Solid-state <sup>29</sup>Si NMR spectrum of 7.

### S3. UV-Vis Spectra



Figure S32. UV-vis spectrum of 3.



Figure S33. UV-vis spectrum of 4.



Figure S34. UV-vis spectrum of 5.



Figure S35. UV-vis spectrum of 6.

## S4. X-ray Data Collection and Structural Refinement

The X-ray diffraction intensity data of all compounds were measured using a Bruker D8 Quest diffractometer equipped with a CCD detector at 100 K and employing Mo K  $\alpha$  radiation ( $\lambda$  = 0.71073 Å) with the SMART suite of programs. SAINT was used to correct Lorentz and polarization effects and SADABS was used to correct absorption effects. The SHELXTL suite of programs were employed for solving of structures and structural refinement.<sup>[S3,S4]</sup> Direct methods were employed for the location of the heavier atoms, ensued by difference maps for the lighter, non-hydrogen atoms for structural solution. Anisotropic thermal parameters were used for the refinement of all non-hydrogen atoms. Deposition numbers 2394597 for **2**, 2394598 for **3**, 2394599 for **4**, 2394600 for **5**, 2394601 for **6**, 2394602 for **7** contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe <u>Access Structures</u> service.

|                                              | •                                                                   | •                              | 4                                |
|----------------------------------------------|---------------------------------------------------------------------|--------------------------------|----------------------------------|
|                                              | 2                                                                   | 3                              | 4                                |
| Formula                                      | C <sub>33</sub> H <sub>45</sub> BCl <sub>3</sub> N <sub>2</sub> PSi | $C_{66}H_{90}B_2K_2N_4P_2Si_2$ | $C_{81}H_{111}B_2Cu_2N_4P_3Si_2$ |
| Fw                                           | 645.93                                                              | 1157.35                        | 1438.52                          |
| Temperature/K                                | 100(2)                                                              | 100(2)                         | 100(2)                           |
| crystal system                               | triclinic                                                           | triclinic                      | monoclinic                       |
| space group                                  | <i>P</i> -1                                                         | <i>P</i> -1                    | P 1 21/c 1                       |
| <i>a</i> (Å)                                 | 9.0296(4)                                                           | 8.9473(9)                      | 15.9089(9)                       |
| b (Å)                                        | 9.2046(4)                                                           | 12.2250(11)                    | 12.3323(6)                       |
| <i>c</i> (Å)                                 | 23.1133(12)                                                         | 15.6398(16)                    | 40.245(3)                        |
| α (deg)                                      | 89.022(2)                                                           | 87.641(3)                      | 90                               |
| β (deg)                                      | 79.051(2)                                                           | 89.746(4)                      | 100.860(2)                       |
| γ (deg)                                      | 63.4122(17)                                                         | 71.362(3)                      | 90                               |
| V (Å <sup>3</sup> )                          | 1681.56(14)                                                         | 1619.5(3)                      | 7754.4(8)                        |
| Z                                            | 2                                                                   | 1                              | 4                                |
| d <sub>calcd</sub> (g cm <sup>-3</sup> )     | 1.276                                                               | 1.187                          | 1.232                            |
| μ (mm <sup>-1</sup> )                        | 0.381                                                               | 0.275                          | 0.686                            |
| F (000)                                      | 684                                                                 | 620                            | 3064                             |
| crystal size (mm)                            | 0.160 x 0.220 x 0.240                                               | 0.160 x 0.200 x 0.220          | 0.120 x 0.140 x 0.160            |
| 2θ range (deg)                               | 5.295 < 2 <del>0</del> < 67.31                                      | 4.804 < 2 <i>θ</i> < 57.28     | 4.447 < 2 <i>θ</i> < 61.92       |
|                                              | -13 ≤ <i>h</i> ≤13,                                                 | $-12 \le h \le 12$ ,           | $-23 \le h \le 23$ ,             |
| index range                                  | -13 ≤ <i>k</i> ≤13,                                                 | -15 ≤ k ≤ 16,                  | $-17 \le k \le 15$ ,             |
|                                              | -33 ≤ <i>l</i> ≤33                                                  | -21 ≤ <i>I</i> ≤ 21            | <b>-</b> 58 ≤ <i>I</i> ≤ 58      |
| no. of reflections collected                 | 34931                                                               | 35840                          | 166025                           |
| no. of independent reflections               | 10481                                                               | 8351                           | 24733                            |
| R1, wR2 ( $I > 2\sigma(I)$ )                 | 0.0517/0.1281                                                       | 0.0795/0.1979                  | 0.0537/0.1142                    |
| <i>R1, wR2</i> (all data)                    | 0.0772/0.1445                                                       | 0.1355/0.2432                  | 0.1009/0.1363                    |
| goodness of fit, <i>F</i> <sup>2</sup>       | 1.036                                                               | 1.023                          | 1.030                            |
| no. of data/restraints/parameters            | 10481 / 0 / 380                                                     | 8351 / 315 / 441               | 24733 / 0 / 846                  |
| largest diff peak and hole, eÅ <sup>-3</sup> | 0.763 and -0.440                                                    | 0.784 and -0.501               | 0.778 and -0.612                 |

| Table S1. X-Ra | v cr | vstallogi | raphic | data | for | comp | ound | 2 | - 4 |
|----------------|------|-----------|--------|------|-----|------|------|---|-----|
|                |      | ,         |        |      |     |      |      | _ | -   |

|                                        | 5                                                     | 6                                                                | 7                                                                                  |
|----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Formula                                | C <sub>47</sub> H <sub>61</sub> BIrN <sub>2</sub> PSi | C <sub>36</sub> H <sub>54</sub> BN <sub>2</sub> PSi <sub>2</sub> | C <sub>43</sub> H <sub>59</sub> BF <sub>3</sub> N <sub>2</sub> O <sub>3</sub> PSSi |
| Fw                                     | 916.04                                                | 612.77                                                           | 810.85                                                                             |
| Temperature/K                          | 100(2)                                                | 101(2)                                                           | 100(2)                                                                             |
| crystal system                         | triclinic                                             | monoclínic                                                       | monoclinic                                                                         |
| space group                            | <i>P</i> -1                                           | P 1 21/c 1                                                       | P 1 21/n 1                                                                         |
| a (Å)                                  | 15.2155(19)                                           | 11.8487(6)                                                       | 16.6108(7)                                                                         |
| b (Å)                                  | 15.695(2)                                             | 10.1385(7)                                                       | 10.1947(4)                                                                         |
| <i>c</i> (Å)                           | 18.597(2)                                             | 30.475(2)                                                        | 25.8173(13)                                                                        |
| α (deg)                                | 90.735(4)                                             | 90                                                               | 90                                                                                 |
| β (deg)                                | 105.707(4)                                            | 94.814(4)                                                        | 90.0710(15)                                                                        |
| γ (deg)                                | 98.278(4)                                             | 90                                                               | 90                                                                                 |
| V (Å <sup>3</sup> )                    | 4224.5(9)                                             | 3648.0(4)                                                        | 4372.0(3)                                                                          |
| Z                                      | 4                                                     | 4                                                                | 4                                                                                  |
| <i>d<sub>calcd</sub></i> (g cm⁻³)      | 1.440                                                 | 1.116                                                            | 1.232                                                                              |
| μ (mm <sup>-1</sup> )                  | 3.261                                                 | 1.478                                                            | 0.190                                                                              |
| F (000)                                | 1872                                                  | 1328                                                             | 1728                                                                               |
| crystal size (mm)                      | 0.010 x 0.060 x 0.120                                 | 0.040 x 0.060 x 0.080                                            | 0.020 x 0.040 x 0.160                                                              |
| $2\theta$ range (deg)                  | 4.541 < 2 <i>θ</i> < 54.14                            | 5.820 < 2 <del>0</del> < 136.2                                   | 4.688 < 2 <i>θ</i> < 52.66                                                         |
|                                        | -19 ≤ <i>h</i> ≤ 19,                                  | -14 ≤ <i>h</i> ≤ 14,                                             | -20 ≤ <i>h</i> ≤ 18,                                                               |
| index range                            | $-20 \le k \le 20$ ,                                  | -12 ≤ <i>k</i> ≤ 12,                                             | -12 ≤ <i>k</i> ≤ 12,                                                               |
|                                        | -23 ≤ <i>l</i> ≤ 23                                   | <b>-</b> 36 ≤ <i>I</i> ≤ 36                                      | -32 ≤ <i>I</i> ≤ 32                                                                |
| no. of reflections collected           | 135351                                                | 31379                                                            | 43201                                                                              |
| no. of independent reflections         | 18422                                                 | 6688                                                             | 8940                                                                               |
| R1, wR2 (I > 2σ(I))                    | 0.0486/0.1054                                         | 0.0918/0.2090                                                    | 0.0606/0.1424                                                                      |
| <i>R1, wR2</i> (all data)              | 0.0780/0.1244                                         | 0.1430/0.2361                                                    | 0.1132/0.1789                                                                      |
| goodness of fit, <i>F</i> <sup>2</sup> | 1.044                                                 | 1.060                                                            | 1.020                                                                              |
| no. of data/restraints/parameters      | 18422 / 0 / 971                                       | 6688 / 877 / 485                                                 | 8940 / 580 / 593                                                                   |
| largest diff peak and hole, eÅ-3       | 2.272 and -1.339                                      | 0.549 and -0.483                                                 | 0.415 and -0.535                                                                   |

Table S2. X-Ray crystallographic data for compound 5 - 7

### **S5. Theoretical Studies**

Geometry optimizations were carried out using density functional theory at M06-2X level <sup>[S5]</sup> in conjunction with the def2-TZVP basis set. <sup>[S6]</sup> The single-point calculations were performed using the Gaussian 16 B.01 program. <sup>[S7]</sup> The TD-DFT <sup>[S8]</sup> and NBO <sup>[S9]</sup> analyses were all carried out at the M06-2X/def2-TZVP level of theory.

#### Compound 3

![](_page_25_Figure_3.jpeg)

**Figure S36.** Optimized geometries of compound **3** at M06-2X/def2-TZVP level of theory. (Grey: C, Blue: N, Pink: B, Green: Si, Purple: K, Orange: P). Hydrogen atoms are omitted for clarity. The bond lengths displayed are measured in Angstroms (Å).

![](_page_26_Figure_0.jpeg)

**Figure S37.** UV-Vis spectrum and absorption band of compound **3** ( $f_{calc}$  = oscillator strength). Details of molecular orbitals were found in Figure S38.

![](_page_27_Figure_0.jpeg)

| Bond<br>type                                | Occupancy | Polarization                                     | Hybridization                                     | WBI   | NPA                                                                          |
|---------------------------------------------|-----------|--------------------------------------------------|---------------------------------------------------|-------|------------------------------------------------------------------------------|
| Si₁<br>(Lone Pair)                          | 1.84      | 100.00 % Si <sub>1</sub>                         | Si: sp <sup>0.56</sup>                            | -     |                                                                              |
| Si <sub>2</sub><br>(Lone Pair)              | 1.84      | 100.00 % Si <sub>1</sub>                         | Si: sp <sup>0.56</sup>                            | -     |                                                                              |
| Si <sub>1</sub> -B <sub>1</sub><br>(σ Bond) | 1.90      | 37.39 % Si <sub>1</sub> + 62.61 % B <sub>1</sub> | Si: sp <sup>2.42</sup><br>B: sp <sup>1.79</sup>   | 1 586 | -                                                                            |
| Si <sub>1</sub> -B <sub>1</sub><br>(π Bond) | 1.75      | 43.63 % Si <sub>1</sub> + 56.37 % B <sub>1</sub> | Si: sp <sup>99.99</sup><br>B: sp <sup>87.86</sup> | 1.000 | 0:0.24                                                                       |
| Si <sub>2</sub> -B <sub>2</sub><br>(σ Bond) | 1.90      | 37.39 % Si <sub>2</sub> + 62.61 % B <sub>2</sub> | Si: sp <sup>2.42</sup><br>B: sp <sup>1.79</sup>   | 1 586 | Si <sub>1</sub> : +0.34<br>Si <sub>2</sub> : +0.34<br>B <sub>1</sub> : -0.79 |
| Si <sub>2</sub> -B <sub>2</sub><br>(π Bond) | 1.75      | 43.61 % Si <sub>2</sub> + 56.39 % B <sub>2</sub> | Si: sp <sup>99.99</sup><br>B: sp <sup>87.82</sup> | 1.000 | B <sub>2</sub> : -0.79<br>K <sub>1</sub> : +0.86<br>K <sub>2</sub> : +0.86   |
| K <sub>1</sub><br>(Lone<br>Vacancy)         | 0.12      | 100.00 % K <sub>1</sub>                          | K: s                                              | -     |                                                                              |
| K <sub>2</sub><br>(Lone<br>Vacancy)         | 0.12      | 100.00 % K <sub>2</sub>                          | K: s                                              | -     |                                                                              |
| Si₁<br>(Lone<br>Vacancy)                    | 0.27      | 100.00 % Si <sub>1</sub>                         | Si: sp <sup>12.73</sup>                           | -     |                                                                              |
| Si <sub>2</sub><br>(Lone<br>Vacancy)        | 0.27      | 100.00 % Si <sub>2</sub>                         | Si: sp <sup>12.74</sup>                           | -     |                                                                              |

**Figure S39**. Natural bond orbital (NBO) analysis of compound **3** at M06-2X/Def2-TZVP level of theory.

## Compound 4

![](_page_29_Figure_1.jpeg)

**Figure S40.** Optimized geometries of compound **4** at M06-2X/def2-TZVP level of theory. (Grey: C, Blue: N, Pink: B, Green: Si, Orange: P). Hydrogen atoms are omitted for clarity. The bond lengths displayed are measured in Angstroms (Å).

![](_page_30_Figure_0.jpeg)

**Figure S41**. UV-Vis spectrum and absorption band of compound **4** ( $f_{calc}$  = oscillator strength). Details of molecular orbitals were found in Figure S42.

![](_page_31_Figure_0.jpeg)

| Bond<br>type                                     | Occupancy | Polarization                                     | Hybridization                                     | WBI  | NPA                                                |
|--------------------------------------------------|-----------|--------------------------------------------------|---------------------------------------------------|------|----------------------------------------------------|
| Cu <sub>1</sub><br>(Lone Pair)                   | 1.99      | 100.00 % Cu <sub>1</sub>                         | Cu: sp <sup>0.02</sup> d <sup>99.99</sup>         |      |                                                    |
| Cu <sub>1</sub><br>(Lone Pair)                   | 1.99      | 100.00 % Cu <sub>1</sub>                         | Cu: sp <sup>0.05</sup> d <sup>99.99</sup>         |      |                                                    |
| Cu₁<br>(Lone Pair)                               | 1.98      | 100.00 % Cu <sub>1</sub>                         | Cu: sp <sup>0.00</sup> d <sup>1.00</sup>          | -    |                                                    |
| Cu₁<br>(Lone Pair)                               | 1.97      | 100.00 % Cu <sub>1</sub>                         | Cu: sp <sup>0.02</sup> d <sup>99.99</sup>         |      |                                                    |
| Cu₁<br>(Lone Pair)                               | 1.97      | 100.00 % Cu <sub>1</sub>                         | Cu: sp <sup>0.02</sup> d <sup>99.99</sup>         |      |                                                    |
| Cu <sub>2</sub><br>(Lone Pair)                   | 1.99      | 100.00 % Cu <sub>2</sub>                         | Cu: sp <sup>0.00</sup> d <sup>1.00</sup>          |      |                                                    |
| Cu <sub>2</sub><br>(Lone Pair)                   | 1.99      | 100.00 % Cu <sub>2</sub>                         | Cu: sp <sup>0.03</sup> d <sup>99.99</sup>         |      |                                                    |
| Cu <sub>2</sub><br>(Lone Pair)                   | 1.98      | 100.00 % Cu <sub>2</sub>                         | Cu: sp <sup>0.01</sup> d <sup>99.99</sup>         | -    |                                                    |
| Cu <sub>2</sub><br>(Lone Pair)                   | 1.97      | 100.00 % Cu <sub>2</sub>                         | Cu: sp <sup>0.00</sup> d <sup>99.99</sup>         |      |                                                    |
| Cu <sub>2</sub><br>(Lone Pair)                   | 1.96      | 100.00 % Cu <sub>2</sub>                         | Cu: sp <sup>1.00</sup> d <sup>99.99</sup>         |      | Cu₁: +0.62                                         |
| Si₁<br>(Lone Pair)                               | 1.70      | 100.00 % Si <sub>1</sub>                         | Si: sp <sup>0.68</sup>                            |      | Cu <sub>2</sub> : +0.80<br>Si <sub>1</sub> : +0.37 |
| Si <sub>2</sub><br>(Lone Pair)                   | 1.72      | 100.00 % Si <sub>2</sub>                         | Si: sp <sup>0.67</sup>                            | -    | Si <sub>2</sub> : +0.38<br>B <sub>1</sub> : -0.90  |
| Si <sub>1</sub> -B <sub>1</sub><br>(σ bond)      | 1.92      | 38.91 % Si <sub>1</sub> + 61.09 % B <sub>1</sub> | Si: sp <sup>1.73</sup><br>B: sp <sup>2.23</sup>   | 1 51 | B <sub>2</sub> : -0.92                             |
| Si <sub>1</sub> -B <sub>1</sub><br>( $\pi$ bond) | 1.73      | 40.65 % Si <sub>1</sub> + 59.35 % B <sub>1</sub> | Si: sp <sup>99.99</sup><br>B: sp <sup>30.09</sup> | 1.51 |                                                    |
| Si <sub>2</sub> -B <sub>2</sub><br>(σ bond)      | 1.91      | 39.39 % Si <sub>1</sub> + 60.61 % B <sub>1</sub> | Si: sp <sup>1.79</sup><br>B: sp <sup>2.26</sup>   | 1.52 |                                                    |
| Si <sub>2</sub> -B <sub>2</sub><br>(π bond)      | 1.75      | 39.05 % Si <sub>1</sub> + 60.95 % B <sub>1</sub> | Si: sp <sup>99.99</sup><br>B: sp <sup>23.85</sup> | 1.52 |                                                    |
| Cu <sub>1</sub><br>(Lone<br>Vacancy)             | 0.43      | 100.00 % Cu <sub>1</sub>                         | Cu: sp <sup>0.00</sup> d <sup>0.01</sup>          |      |                                                    |
| Cu <sub>2</sub><br>(Lone<br>Vacancy)             | 0.26      | 100.00 % Cu <sub>2</sub>                         | Cu: sp <sup>0.00</sup> d <sup>0.01</sup>          |      |                                                    |
| Si <sub>1</sub><br>(Lone<br>Vacancy)             | 0.34      | 100.00 % Si <sub>1</sub>                         | Si: sp <sup>8.91</sup> d <sup>0.06</sup>          | -    |                                                    |
| Si <sub>2</sub><br>(Lone<br>Vacancy)             | 0.32      | 100.00 % Si <sub>2</sub>                         | Si: sp <sup>8.97</sup> d <sup>0.07</sup>          |      |                                                    |

Figure S43. Natural bond orbital (NBO) analysis of compound 4 at M06-2X/Def2-TZVP level of theory.

## Compound 5

![](_page_33_Figure_1.jpeg)

**Figure S44.** Optimized geometries of compound **5** at M06-2X/def2-TZVP level of theory. (Grey: C, Blue: N, Pink: B, Green: Si, Orange: P, Dark blue: Ir). Hydrogen atoms are omitted for clarity. The bond lengths displayed are measured in Angstroms (Å).

![](_page_34_Figure_0.jpeg)

**Figure S45.** UV-Vis spectrum and absorption band of compound **5** ( $f_{calc}$  = oscillator strength). Details of molecular orbitals were found in Figure S46.

![](_page_35_Figure_0.jpeg)

| Bond<br>type         | Occupancy | Polarization           | Hybridization                                                                                                           | WBI  | NPA                                |
|----------------------|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|
| Ir<br>(Lone Pair)    | 1.95      | 100.00 % lr            | Ir: sp <sup>0.01</sup> d <sup>99.99</sup> f <sup>0.01</sup>                                                             |      |                                    |
| Ir<br>(Lone Pair)    | 1.90      | 100.00 % lr            | Ir: sp <sup>0.03</sup> d <sup>99.99</sup> f <sup>0.01</sup>                                                             | _    |                                    |
| Ir<br>(Lone Pair)    | 1.68      | 100.00 % Ir            | Ir: sp <sup>1.00</sup> d <sup>99.99f0.30</sup>                                                                          |      | Si: +1.31<br>B: -0.36<br>Ir: +0.12 |
| Si<br>(Lone Pair)    | 0.88      | 100.00 % Si            | Si: sp <sup>6.24</sup> d <sup>0.03f<sup>0.00</sup></sup>                                                                |      |                                    |
| Si-B<br>(σ bond)     | 1.87      | 40.95 % Si + 59.05 % B | Si: sp <sup>2.19</sup> d <sup>0.01</sup> f <sup>0.00</sup><br>B: sp <sup>3.45</sup> d <sup>0.01</sup> f <sup>0.00</sup> | 1.08 |                                    |
| Si<br>(Lone Vacancy) | 0.34      | 100.00 % Si            | Si: sp <sup>8.11</sup> d <sup>0.05</sup> f <sup>0.00</sup>                                                              | -    |                                    |
| B<br>(Lone Vacancy)  | 0.68      | 100.00 % B             | B: sp <sup>9.50</sup> d <sup>0.03f0.00</sup>                                                                            |      |                                    |

**Figure S47**. Natural bond orbital (NBO) analysis of compound **5** at M06-2X/Def2-TZVP level of theory.

#### Compound 6

![](_page_37_Figure_1.jpeg)

**Figure S48** Optimized geometries of compound **6** at M06-2X/def2-TZVP level of theory. (Grey: C, Blue: N, Pink: B, Green: Si, Orange: P). Hydrogen atoms are omitted for clarity. The bond lengths displayed are measured in Angstroms (Å).

![](_page_37_Figure_3.jpeg)

![](_page_37_Figure_4.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_38_Figure_1.jpeg)

| Bond<br>type     | Occupancy | Polarization           | Hybridization                                   | WBI  | NPA       |
|------------------|-----------|------------------------|-------------------------------------------------|------|-----------|
| Si-B<br>(σ bond) | 1.93      | 42.18 % Si + 57.82 % B | Si: sp <sup>1.28</sup><br>B: sp <sup>1.87</sup> | 1.66 | Si: +0.75 |
| Si-B<br>(π bond) | 1.77      | 51.11 % Si + 48.89 % B | Si: sp <sup>99.99</sup><br>B: p <sup>1.00</sup> |      | B: -0.62  |

**Figure S51**. Natural bond orbital (NBO) analysis of compound **6** at M06-2X/Def2-TZVP level of theory.

Table S3. Cartesian coordinates and theoretical UV-Vis spectrum for 3.

#### M06-2X/def2-TZVP

| Atomic<br>Number | Coo:<br>X                  | rdinates (Angs<br>Y        | troms)                   | Z |
|------------------|----------------------------|----------------------------|--------------------------|---|
| к                | -0.33886300                | 0.56418100                 | 0.06990200               |   |
| P                | 0.03040700                 | -0.06689000                | 5.38358400               |   |
| Si               | 1.61792000                 | 0.87986200                 | 2.85413700               |   |
| N                | 2.91543100                 | 0.19367000                 | 4.05934500               |   |
| N                | 1.52988300                 | -0.69792300                | 5.76026300               |   |
| C                | 4.22292600                 | 0.29999400                 | 3.49194400               |   |
| C                | 4.88961100                 | 1.54834300                 | 3.53900900               |   |
| L<br>L           | 6 64018400                 | 2 64083000                 | 2.009/2300               |   |
| C                | 6 69702100                 | 2.04003000                 | 2 20580300               |   |
| Н                | 7.65825900                 | 0.73041400                 | 1.70399300               |   |
| C                | 6.03385000                 | -0.61405000                | 2.17043500               |   |
| Н                | 6.48355100                 | -1.45384700                | 1.63609800               |   |
| С                | 4.79643600                 | -0.79121900                | 2.80287300               |   |
| С                | 4.09870200                 | -2.13597000                | 2.69096800               |   |
| Н                | 3.21282200                 | -2.11739800                | 3.33941000               |   |
| С                | 3.59623900                 | -2.35613900                | 1.26062300               |   |
| Н                | 3.06754900                 | -3.31746900                | 1.17534000               |   |
| H                | 4.42847400                 | -2.36313500                | 0.53738500               |   |
| H                | 2.88775100                 | -1.56184700                | 0.97870400               |   |
| C                | 5.00339700                 | -3.28010200                | 3.15686/00               |   |
| H                | 4.43580300                 | -4.22152900                | 3.19//8400               |   |
| п                | 5 84643400                 | -3 43192200                | 4.13873800<br>2 46505000 |   |
| C                | 4 30912300                 | 2 74801500                 | 4 27290600               |   |
| Н                | 3.35992400                 | 2.42987500                 | 4.72406500               |   |
| C                | 4.00779500                 | 3.89656800                 | 3.30424000               |   |
| Н                | 3.56443900                 | 4.74674400                 | 3.84372400               |   |
| Н                | 3.28990700                 | 3.58148700                 | 2.53098600               |   |
| Н                | 4.92705900                 | 4.25169800                 | 2.81081700               |   |
| С                | 5.23250800                 | 3.22418700                 | 5.39989500               |   |
| Н                | 4.76614200                 | 4.06002700                 | 5.94168500               |   |
| H                | 6.19751500                 | 3.57864100                 | 5.00575600               |   |
| H                | 5.43648200                 | 2.42587900                 | 6.12764200               |   |
| C                | 2.68152100                 | -0.52826900                | 5.18/06300               |   |
| C                | 5 07757300                 | -0.74512900                | 6 09158200               |   |
| н                | 5,30551100                 | 0.27565900                 | 5.79012300               |   |
| C                | 6.05963800                 | -1.50202500                | 6.73092100               |   |
| Н                | 7.03973400                 | -1.06104400                | 6.91851800               |   |
| С                | 5.79273500                 | -2.81026400                | 7.12950500               |   |
| Н                | 6.56546200                 | -3.40264500                | 7.62190600               |   |
| С                | 4.52736000                 | -3.35326400                | 6.90285200               |   |
| Н                | 4.30505000                 | -4.37431400                | 7.21676500               |   |
| C                | 3.54350800                 | -2.59263200                | 6.27818400               |   |
| H                | 2.54676600                 | -3.00168900                | 6.10895000               |   |
| C                | -0.33354000                | 0.806/4600                 | 8.08582500               |   |
| п                | -1 21712500                | -3 23764400                | 7 10071000               |   |
| H                | 0.38716500                 | -2.44875700                | 7.11589300               |   |
| C                | -0.20364700                | 1.32054900                 | 6.65149300               |   |
| С                | 1.05127300                 | 2.19954000                 | 6.55744700               |   |
| Н                | 0.92246200                 | 3.07577400                 | 7.21285100               |   |
| Н                | 1.20673600                 | 2.55383800                 | 5.52675000               |   |
| Н                | 1.94728300                 | 1.65185400                 | 6.88620000               |   |
| Н                | 0.47423800                 | 0.10162000                 | 8.33064400               |   |
| Н                | -1.30132800                | 0.31715100                 | 8.26199000               |   |
| С                | -1.42188900                | 2.16231000                 | 6.25667400               |   |
| H                | -1.53057400                | 2.99573500                 | 6.96966100               |   |
| н                | -1.29936000                | 2.58616300                 | 5.24924200               |   |
| C                | -1.U84268UU<br>_0 60516500 | -1.34049200<br>-2.26711600 | J./86386UU<br>7 07072500 |   |
| \                | = 0,07,010,000             |                            | 1.01917.000              |   |

| -0.98281200                | -1.71257200 | 7.97968700  |
|----------------------------|-------------|-------------|
| -2.55217600                | -1.10715200 | 5.83989200  |
| -2.83972700                | -0.49598400 | 4.97126400  |
| -2.76863200                | -0.52982500 | 6.75037400  |
| -0.86345900                | -2.52179800 | 4.62456700  |
| -1.49494600                | -3.41197200 | 4.77517800  |
| -1.10149900                | -2.07522300 | 3.64948100  |
| -1.34301900                | 1.11331500  | 2.82916900  |
| -1.35563700                | 2.43051200  | 2.30493500  |
| -0.55983900                | 3.11473000  | 2.60815700  |
| -2.33002300                | 2.86963100  | 1.40429800  |
| -2.28564800                | 3.88997000  | 1.01701100  |
| -3.35645600                | 2.01453800  | 1.00091300  |
| -4.12223300                | 2.33310300  | 1 52010100  |
| -4.20146000                | 0.72003700  | 1.32919100  |
| -2 41769000                | 0.28652200  | 2 41991900  |
| -2 46582500                | -0.74364800 | 2 77970300  |
| -0.07884400                | 0.61157400  | 3 63686700  |
| 0 18887800                 | -2 84332800 | 4 58603300  |
| -3,19773800                | -2.00038100 | 5.85557000  |
| -2.35663500                | 1.58478400  | 6.27105900  |
| 3.98197600                 | 1.32317900  | 0.44523000  |
| 3.67201400                 | 1.61053100  | -4.90505000 |
| 1.94629200                 | 1.42992800  | -2.29734500 |
| 0.93612600                 | 0.56613500  | -3.65373000 |
| 2.48673600                 | 0.56479100  | -5.44351900 |
| -0.30410000                | 0.09492600  | -3.12208900 |
| -1.37008000                | 1.01264300  | -2.95895400 |
| -2.54605600                | 0.57727500  | -2.33834800 |
| -3.37062300                | 1.28126600  | -2.20496900 |
| -2.68200200                | -0.73326400 | -1.88421500 |
| -3.60572800                | -1.05528300 | -1.40117000 |
| -1.62834300                | -1.62//1500 | -2.05413100 |
| -1.73330300                | -2.03303700 | -2 66669300 |
| 0 70009400                 | -2 24339000 | -2.78277900 |
| 1,50067200                 | -1.79183000 | -3.38332400 |
| 1.29411200                 | -2.53747200 | -1.40169400 |
| 2.13010200                 | -3.24884300 | -1.47917500 |
| 0.54183600                 | -2.97317700 | -0.72354200 |
| 1.68580500                 | -1.61298500 | -0.94994400 |
| 0.24292200                 | -3.52358900 | -3.48764700 |
| 1.10441700                 | -4.17955900 | -3.68174400 |
| -0.23982900                | -3.29574800 | -4.44938900 |
| -0.4/068800                | -4.08909400 | -2.86846400 |
| -1.2/08/300                | 2.45391100  | -3.43/03800 |
| -0.2913/300                | 2.38287200  | -2 26304200 |
| -1,27729100                | 4.47036500  | -2.62015200 |
| -0.56592900                | 3.25697300  | -1.53483700 |
| -2.34232800                | 3.34276900  | -1.74687100 |
| -2.34372700                | 2.77077800  | -4.49097600 |
| -2.22267500                | 3.80261000  | -4.85206300 |
| -3.35898900                | 2.67924200  | -4.07492200 |
| -2.27217900                | 2.10143400  | -5.36014600 |
| 1.37238300                 | 0.19980300  | -4.88784900 |
| 0.56845800                 | -0.77527000 | -5.71620900 |
| -0.81631400                | -0.69238200 | -5.89936500 |
| -L.3856/300                | U.LU4366UU  | -5.42394300 |
| -1.40102400<br>-2 56075700 | -1.53503700 | -6 83777500 |
| -2.50075700                | -2.64845000 | -7.32303500 |
| -1.30094400                | -3.37780300 | -7.94215900 |
| 0.60654800                 | -2.73212300 | -7.15616400 |
| 1.17012700                 | -3.52875400 | -7.64428500 |
| 1.27188800                 | -1.79731300 | -6.36872600 |
| 2.35419700                 | -1.84448300 | -6.24302200 |
| 3.59493100                 | 3.05140700  | -7.37839500 |
| 3.20068300                 | 3.93869200  | -7.90014600 |
| 5.90861800                 | -0.51097200 | -7.15988100 |

ноннонноонононононаяникроихосонононононниснинонниснинаетосонононононон

| Н | 4.12909300 | -0.36581900 | -7.06899300 |
|---|------------|-------------|-------------|
| С | 3.34261500 | 3.20220900  | -5.87768500 |
| С | 1.86003200 | 3.53510900  | -5.66065300 |
| H | 1.63937700 | 4.50487800  | -6.13477300 |
| H | 1.62764200 | 3.61016700  | -4.58718600 |
| Н | 1.20918100 | 2.77307700  | -6.11519300 |
| Н | 3.08501700 | 2.16377300  | -7.78059900 |
| Н | 4.66666100 | 2.98440700  | -7.61171900 |
| С | 4.18957100 | 4.33573400  | -5.28922300 |
| Н | 3.96290100 | 5.27120100  | -5.82617500 |
| Н | 3.96104700 | 4.48737500  | -4.22412000 |
| С | 5.22572400 | 0.74255100  | -5.54416800 |
| С | 5.07453300 | 0.18261300  | -6.96366200 |
| Н | 5.10932000 | 0.96251400  | -7.73223100 |
| С | 6.43634800 | 1.67721000  | -5.46557600 |
| Н | 6.51831900 | 2.17451300  | -4.48744800 |
| Н | 6.39529300 | 2.45508700  | -6.24172300 |
| С | 5.41681800 | -0.45251700 | -4.59699700 |
| Н | 6.32063000 | -1.00967300 | -4.89119700 |
| Н | 5.51348400 | -0.14173000 | -3.54775500 |
| С | 4.62661100 | 2.69831100  | -2.12824600 |
| С | 4.18564000 | 3.80760100  | -1.36340100 |
| Н | 3.18663300 | 4.20453000  | -1.55788000 |
| С | 4.97032200 | 4.38789800  | -0.36302300 |
| Н | 4.57750100 | 5.23126900  | 0.20921200  |
| С | 6.24914300 | 3.89795800  | -0.09436200 |
| Н | 6.86710200 | 4.35165900  | 0.68263100  |
| С | 6.73403800 | 2.83042800  | -0.85721100 |
| Н | 7.73714800 | 2.43961800  | -0.67242000 |
| С | 5.94065800 | 2.25066700  | -1.84708800 |
| Н | 6.34198000 | 1.39477900  | -2.39428300 |
| В | 3.59707400 | 1.93880700  | -3.05855900 |
| Н | 4.55307300 | -1.13277500 | -4.65553000 |
| Н | 7.35880000 | 1.09677000  | -5.62997200 |
| Н | 5.26838300 | 4.14887000  | -5.38233700 |
|   |            |             |             |

| Excited State    | 1: Triplet-?Sym 1          | .5837 eV    | 782.88 nm   | f=0.0000   | <s**2>=2.000</s**2>   |
|------------------|----------------------------|-------------|-------------|------------|-----------------------|
| 307 -> 315       | 0.10759                    |             |             |            |                       |
| 309 -> 312       | 0.27306                    |             |             |            |                       |
| 309 -> 313       | -0.19849                   |             |             |            |                       |
| 309 -> 315       | 0.32327                    |             |             |            |                       |
| 309 -> 319       | 0.12185                    |             |             |            |                       |
| 309 -> 323       | -0 10685                   |             |             |            |                       |
| 309 -> 325       | -0 14029                   |             |             |            |                       |
| 210 > 211        | -0.14020                   |             |             |            |                       |
| 310 -> 311       | 0.30252                    |             |             |            |                       |
| 310 -> 320       | 0.10013                    |             |             |            |                       |
| 310 -> 324       | -0.12967                   |             |             |            |                       |
| 310 -> 326       | -0.21408                   |             |             |            |                       |
| This state for   | optimization and/or secor  | nd-order co | rrection.   |            |                       |
| Total Energy, E  | (TD-HF/TD-DFT) = -5299.3   | 36534358    |             |            |                       |
| Copying the exc. | ited state density for th  | nis state a | s the 1-par | ticle RhoC | I density.            |
|                  |                            |             |             |            |                       |
| Excited          | state symmetry could not   | be determ   | ined.       |            |                       |
| Excited State    | 2: Triplet-?Sym            | 1.7264 eV   | 718.17 nm   | f=0.0000   | <s**2>=2.000</s**2>   |
| 309 -> 311       | 0.34271                    |             |             |            |                       |
| 309 -> 324       | -0 14389                   |             |             |            |                       |
| 309 -> 326       | -0 22971                   |             |             |            |                       |
| 210 > 212        | 0.22571                    |             |             |            |                       |
| 210 > 212        | 0.17771                    |             |             |            |                       |
| 310 -> 313       | -0.1///1                   |             |             |            |                       |
| 310 -> 315       | 0.29603                    |             |             |            |                       |
| 310 -> 319       | 0.11742                    |             |             |            |                       |
| 310 -> 325       | -0.10959                   |             |             |            |                       |
| 310 -> 329       | -0.11009                   |             |             |            |                       |
|                  |                            |             |             |            |                       |
|                  |                            |             |             |            |                       |
| Excited state s  | ymmetry could not be dete  | ermined.    |             |            |                       |
| Excited State    | 3: Triplet-?Sym            | 2.3322 eV   | 531.62 nm   | f=0.0000   | <s**2>=2.000</s**2>   |
| 307 -> 312       | 0.18841                    |             |             |            |                       |
| 307 -> 313       | -0.15179                   |             |             |            |                       |
| 307 -> 315       | 0 27770                    |             |             |            |                       |
| 307 -> 319       | 0 11370                    |             |             |            |                       |
| 307 -> 319       | 0.11570                    |             |             |            |                       |
| 307 -> 323       | -0.10129                   |             |             |            |                       |
| 307 -> 325       | -0.13109                   |             |             |            |                       |
| 308 -> 311       | 0.22317                    |             |             |            |                       |
| 308 -> 324       | -0.11073                   |             |             |            |                       |
| 308 -> 326       | -0.15053                   |             |             |            |                       |
| 309 -> 312       | -0.19043                   |             |             |            |                       |
| 309 -> 327       | -0.10041                   |             |             |            |                       |
| 310 -> 311       | -0.19252                   |             |             |            |                       |
|                  |                            |             |             |            |                       |
|                  |                            |             |             |            |                       |
| Excited state s  | vmmetry could not be dete  | rmined      |             |            |                       |
| Excited State    | A: Triplet=28vm            | 2 5200 017  | 490 08 nm   | f-0 0000   | <\$**2>-2 000         |
| 207 \ 211        |                            | 2.5255 ev   | 490.00 1111 | 1-0.0000   | <5 2/-2.000           |
| 307 -> 311       | 0.27654                    |             |             |            |                       |
| 307 -> 324       | -0.13231                   |             |             |            |                       |
| 307 -> 326       | -0.19664                   |             |             |            |                       |
| 308 -> 312       | 0.32824                    |             |             |            |                       |
| 308 -> 313       | -0.15360                   |             |             |            |                       |
| 308 -> 315       | 0.33085                    |             |             |            |                       |
| 308 -> 319       | 0.14058                    |             |             |            |                       |
| 308 -> 323       | -0.10687                   |             |             |            |                       |
| 308 -> 325       | -0.11572                   |             |             |            |                       |
| 308 -> 329       | -0.11835                   |             |             |            |                       |
|                  |                            |             |             |            |                       |
|                  |                            |             |             |            |                       |
| Ducited states a |                            |             |             |            |                       |
| EXCILED STATE S  | ynnnetry could not be dete | a zoco      | 450 00      | £_0 0000   | < + + 2 > - 2 . 0 0 0 |
| Excited State    | 5: Triplet-?Sym            | ∠./U69 eV   | 458.03 nm   | i=0.0000   | <\$^*2>=2.000         |
| 307 -> 312       | 0.16850                    |             |             |            |                       |
| 307 -> 315       | 0.12145                    |             |             |            |                       |
| 308 -> 311       | 0.25985                    |             |             |            |                       |
| 308 -> 326       | -0.14055                   |             |             |            |                       |
| 309 -> 312       | 0.24238                    |             |             |            |                       |
| 309 -> 313       | 0.16676                    |             |             |            |                       |
| 309 -> 315       | -0.24796                   |             |             |            |                       |
| 310 -> 311       | 0.13017                    |             |             |            |                       |
| 310 -> 314       | 0 23879                    |             |             |            |                       |
| 310 × 314        | 0.230/9                    |             |             |            |                       |
| SIC -> 3I8       | 0.10000                    |             |             |            |                       |

| 310     | -> 320                     | -0.11859      |             |           |                       |          |                     |
|---------|----------------------------|---------------|-------------|-----------|-----------------------|----------|---------------------|
|         |                            |               |             |           |                       |          |                     |
|         |                            |               | 1           | ا م م ما  |                       |          |                     |
| Excited | State symmetr              | Ty could not  | be determ   | 10ea.     | 452 41 mm             | f-0 0000 | < c + + 2 > - 2 000 |
| EXCILED | State 0:                   | 111pieu-:     | Sym Z.      | /34J ev   | 455.41 1111           | 1-0.0000 | <5**2>=2.000        |
| 309     | > 314                      | 0.29506       |             |           |                       |          |                     |
| 209     | -> 310                     | 0.10577       |             |           |                       |          |                     |
| 210     | -> 320                     | -0.18570      |             |           |                       |          |                     |
| 310     | -> 312                     | 0.32603       |             |           |                       |          |                     |
| 310     | -> 313                     | 0.23555       |             |           |                       |          |                     |
| 210     | -> 313                     | -0.20033      |             |           |                       |          |                     |
| 310     | -> 321                     | 0.10244       |             |           |                       |          |                     |
|         |                            |               |             |           |                       |          |                     |
| Freited | etato exampeta             | w could not   | he determ   | ined      |                       |          |                     |
| Excited | State Symmetri<br>State 7. | Singlet=2     | De decerm   | 7699 AV   | 117 61 nm             | f-0 0367 | < 5 * * 2 > - 0 000 |
| 309     | -> 312                     | 0 31883       | 5ym 2.      | 1000 60   | 447.01 IIII           | 1-0.0307 | <5 22-0.000         |
| 309     | -> 313                     | -0.20684      |             |           |                       |          |                     |
| 309     | -> 315                     | 0.18040       |             |           |                       |          |                     |
| 309     | -> 317                     | 0.11907       |             |           |                       |          |                     |
| 310     | -> 311                     | 0.50134       |             |           |                       |          |                     |
| 310     | -> 316                     | -0 10505      |             |           |                       |          |                     |
| 310     | -> 320                     | 0.11421       |             |           |                       |          |                     |
| 510     | > 520                      | 0.11121       |             |           |                       |          |                     |
|         |                            |               |             |           |                       |          |                     |
| Excited | state symmetr              | w could not   | he determ   | ined      |                       |          |                     |
| Excited | State 8.                   | Singlet-7     | Sym 2       | 7895 eV   | 444 47 nm             | f=0 1976 | <\$**2>=0 000       |
| 309     | -> 311                     | 0 47281       | 0 y 2 .     | ,000 01   | · · · · · · / · · · · | 1 0.1970 | 0.000               |
| 309     | -> 320                     | 0 12656       |             |           |                       |          |                     |
| 310     | -> 312                     | 0.31816       |             |           |                       |          |                     |
| 310     | -> 313                     | -0 24142      |             |           |                       |          |                     |
| 310     | -> 315                     | 0.21013       |             |           |                       |          |                     |
| 310     | -> 317                     | 0.11797       |             |           |                       |          |                     |
|         |                            |               |             |           |                       |          |                     |
|         |                            |               |             |           |                       |          |                     |
| Excited | state symmetr              | w could not   | he determ   | ined      |                       |          |                     |
| Excited | State 9.                   | Triplet-2     | Sym 2       | 8535 AV   | 434 50 nm             | f=0 0000 | <\$**2>=2 000       |
| 308     | -> 311                     | -0 10363      | 0 y 2 .     | 0000 00   | 101.00 111            | 1 0.0000 | 0 2/ 2.000          |
| 309     | -> 312                     | 0.11269       |             |           |                       |          |                     |
| 309     | -> 313                     | 0.19554       |             |           |                       |          |                     |
| 309     | -> 317                     | -0.17426      |             |           |                       |          |                     |
| 309     | -> 323                     | -0.22280      |             |           |                       |          |                     |
| 309     | -> 325                     | -0.26681      |             |           |                       |          |                     |
| 310     | -> 311                     | -0.26775      |             |           |                       |          |                     |
| 310     | -> 314                     | 0.13307       |             |           |                       |          |                     |
| 310     | -> 316                     | 0.16806       |             |           |                       |          |                     |
| 310     | -> 320                     | -0.16576      |             |           |                       |          |                     |
| 310     | -> 322                     | -0.10209      |             |           |                       |          |                     |
| 310     | -> 326                     | -0.21586      |             |           |                       |          |                     |
|         |                            |               |             |           |                       |          |                     |
|         |                            |               |             |           |                       |          |                     |
|         | Excited stat               | e symmetry o  | could not i | be detern | nined.                |          |                     |
| Excited | State 10:                  | Triplet-3     | Sym 2.      | 9146 eV   | 425.38 nm             | f=0.0000 | <s**2>=2.000</s**2> |
| 309     | -> 311                     | 0.29307       |             |           |                       |          |                     |
| 309     | -> 316                     | -0.10246      |             |           |                       |          |                     |
| 309     | -> 326                     | 0.27270       |             |           |                       |          |                     |
| 309     | -> 328                     | 0.11435       |             |           |                       |          |                     |
| 310     | -> 313                     | -0.17410      |             |           |                       |          |                     |
| 310     | -> 315                     | -0.17123      |             |           |                       |          |                     |
| 310     | -> 317                     | 0.20305       |             |           |                       |          |                     |
| 310     | -> 323                     | 0.22928       |             |           |                       |          |                     |
| 310     | -> 325                     | 0.25956       |             |           |                       |          |                     |
|         |                            |               |             |           |                       |          |                     |
|         | Excited state              | e symmetry co | ould not b  | e determi | ned.                  |          |                     |
| Excited | State 11:                  | Triplet-?     | PSym 2.     | 9826 eV   | 415.69 nm             | f=0.0000 | <s**2>=2.000</s**2> |
| 309     | -> 319                     | 0.18669       |             |           |                       |          |                     |
| 309     | -> 321                     | 0.37683       |             |           |                       |          |                     |
| 310     | -> 311                     | -0.10549      |             |           |                       |          |                     |
| 310     | -> 314                     | -0.16455      |             |           |                       |          |                     |
| 310     | -> 316                     | -0.30217      |             |           |                       |          |                     |
| 310     | -> 318                     | 0.10925       |             |           |                       |          |                     |

| 310<br>310<br>310 | -> 320<br>-> 322<br>-> 324 | -0.20505<br>0.11961<br>-0.18556 |               |             |           |                     |
|-------------------|----------------------------|---------------------------------|---------------|-------------|-----------|---------------------|
|                   |                            |                                 |               |             |           |                     |
|                   | Excited state              | symmetry could                  | not be determ | ined.       |           |                     |
| Excited           | State 12:                  | Singlet-?Sym                    | 2.9895 eV     | 414.73 nm   | f=0.0177  | <s**2>=0.000</s**2> |
| 307               | -> 311                     | 0.17356                         |               |             |           |                     |
| 308               | -> 312                     | 0.20642                         |               |             |           |                     |
| 308               | -> 315                     | 0.17279                         |               |             |           |                     |
| 309               | -> 314                     | 0.22448                         |               |             |           |                     |
| 309               | -> 318                     | 0.15032                         |               |             |           |                     |
| 309               | -> 320                     | -0.18778                        |               |             |           |                     |
| 310               | -> 312                     | 0.33448                         |               |             |           |                     |
| 310               | -> 313                     | 0.20885                         |               |             |           |                     |
| 310               | -> 315                     | -0.21761                        |               |             |           |                     |
| 310               | -> 321                     | 0.13907                         |               |             |           |                     |
|                   |                            |                                 |               |             |           |                     |
|                   | Excited state              | symmetry could                  | not be determ | ined.       |           |                     |
| Excited           | State 13:                  | Triplet-?Svm                    | 2.9986 eV     | 413.48 nm   | f=0.0000  | <s**2>=2.000</s**2> |
| 309               | -> 314                     | -0.15907                        |               |             |           |                     |
| 309               | -> 316                     | -0.32067                        |               |             |           |                     |
| 309               | -> 318                     | 0.12211                         |               |             |           |                     |
| 309               | -> 320                     | -0.19956                        |               |             |           |                     |
| 309               | -> 322                     | 0 13006                         |               |             |           |                     |
| 309               | -> 324                     | -0 17950                        |               |             |           |                     |
| 310               | -> 319                     | 0.19625                         |               |             |           |                     |
| 310               | -> 321                     | 0.38664                         |               |             |           |                     |
|                   |                            |                                 |               |             |           |                     |
|                   | Excited state              | symmetry could                  | not be determ | ined        |           |                     |
| Evcited           | State 14.                  | Singlet-?Sym                    | 3 0061 eV     | 412 44 nm   | f=0 0014  | < 5**2>=0 000       |
| 307               | -> 312                     | 0 13156                         | 3.0001 CV     | 112.11 1100 | 1 0.0014  | 0.000               |
| 308               | -> 311                     | 0.20511                         |               |             |           |                     |
| 300               | -> 312                     | 0.20011                         |               |             |           |                     |
| 309               | -> 313                     | 0.23/3/                         |               |             |           |                     |
| 309               | -> 315                     | -0.2/396                        |               |             |           |                     |
| 309               | -> 321                     | 0.12760                         |               |             |           |                     |
| 209               | > 214                      | 0.12760                         |               |             |           |                     |
| 210               | > 210                      | 0.20034                         |               |             |           |                     |
| 210               | -> 310                     | 0.10010                         |               |             |           |                     |
| 510               | => 320                     | -0.20103                        |               |             |           |                     |
|                   | Evolted state              | summetry could                  | not be determ | ined        |           |                     |
| Evaited           | State 15.                  | Synumeery courd                 | 3 0507 oV     | 406 41 nm   | f-0 0531  | < c**2>-0 000       |
| EXCILED           | State IJ:                  | 0 25560                         | 3.0307 eV     | 400.41 111  | 1-0.0331  | <5**2>=0.000        |
| 307               | -> 326                     | -0.12053                        |               |             |           |                     |
| 309               | -> 312                     | 0.12033                         |               |             |           |                     |
| 300               | -> 312                     | -0.13707                        |               |             |           |                     |
| 300               | -> 315                     | 0.25014                         |               |             |           |                     |
| 200               | -> JIJ                     | 0.23014                         |               |             |           |                     |
| 209               | > 216                      | -0.19990                        |               |             |           |                     |
| 209               | > 210                      | -0.12925                        |               |             |           |                     |
| 210               | > 212                      | -0.22044                        |               |             |           |                     |
| 210               | > 215                      | -0.1J100                        |               |             |           |                     |
| 510               | -> 515                     | 0.14433                         |               |             |           |                     |
|                   | Evolted atota              | eummetru could                  | not be dotor  | ined        |           |                     |
| Evoltor           | State 16.                  | Synumetry could                 | a non at      | 102 54 ~~~  | f-0 0000  | < S**2>-0 000       |
| EXCILED           | JUALE 10:                  | 0 25005                         | 3.0800 eV     | 402.34 IIM  | 1-0.0002  | \b``^Z/=U.UUU       |
| 207               | -/ 312                     | -0 10674                        |               |             |           |                     |
| 307               | -> 315                     | 0.17266                         |               |             |           |                     |
| 307               | > 211                      | 0.17200                         |               |             |           |                     |
| 308               | -/ JII                     | 0.42341                         |               |             |           |                     |
| 308               | -> 324                     | -U.1096/                        |               |             |           |                     |
| 308               | -> 320                     | -0.13396                        |               |             |           |                     |
| 309               | -> 312                     | -0.20954                        |               |             |           |                     |
| 309               | -> 313                     | -0.10898                        |               |             |           |                     |
| 310               | -> 314                     | -0.18249                        |               |             |           |                     |
| 310               | -> 310                     | -0.14181                        |               |             |           |                     |
|                   |                            |                                 |               |             |           |                     |
|                   | Excited state              | symmetry could                  | not be determ | ined.       | c 0 000 t |                     |
| Excited           | State 17:                  | Singlet-?Sym                    | 3.2332 eV     | 383.47 nm   | r=0.0004  | <\$^*2>=0.000       |
| 308               | -> 311                     | -0.15661                        |               |             |           |                     |
| 309               | -> 319                     | ∪.⊥∠ŏ⊥4                         |               |             |           |                     |
| 0.00              | > 201                      | 0 26500                         |               |             |           |                     |

| 310     | -> 3  | 314                   | -0.18719           |          |           |        |                     |             |                     |  |
|---------|-------|-----------------------|--------------------|----------|-----------|--------|---------------------|-------------|---------------------|--|
| 310     | -> 3  | 316                   | -0.34682           |          |           |        |                     |             |                     |  |
| 310     | -> 3  | 318                   | 0.17991            |          |           |        |                     |             |                     |  |
| 310     | -> 3  | 320                   | -0.22481           |          |           |        |                     |             |                     |  |
| 310     | -> 3  | 322                   | 0.11465            |          |           |        |                     |             |                     |  |
| 310     | -> 3  | 324                   | -0.12622           |          |           |        |                     |             |                     |  |
|         |       |                       |                    |          |           |        |                     |             |                     |  |
|         | Exc   | ited                  | l state svmmetr    | v could  | not be de | term   | ined.               |             |                     |  |
| Excited | Stat  | .e                    | 18: Single         | et-?Svm  | 3,2500    | eV     | 381.49 nr           | n f=0.0357  | <s**2>=0.000</s**2> |  |
| 308     | -> 3  | 312                   | -0.14411           |          |           |        |                     |             |                     |  |
| 309     | -> 3  | 314                   | -0.18330           |          |           |        |                     |             |                     |  |
| 309     | -> ?  | 316                   | -0 32534           |          |           |        |                     |             |                     |  |
| 309     | -> 3  | 318                   | 0.16980            |          |           |        |                     |             |                     |  |
| 309     | -> 3  | 320                   | -0 21580           |          |           |        |                     |             |                     |  |
| 309     | -> 3  | 322                   | 0.11794            |          |           |        |                     |             |                     |  |
| 309     | -> 3  | 324                   | -0 12807           |          |           |        |                     |             |                     |  |
| 310     | -> 3  | 319                   | 0.12007            |          |           |        |                     |             |                     |  |
| 310     |       | 321                   | 0.19994            |          |           |        |                     |             |                     |  |
| 310     |       | 323                   | 0.30202            |          |           |        |                     |             |                     |  |
| 510     |       |                       | 0.11107            |          |           |        |                     |             |                     |  |
|         | Exc   | ited                  | l state symmetry   | , could  | not he de | torm   | ined                |             |                     |  |
| Excited | Stat  | - 0                   | 19. Single         | 2+=2517m | 3 3665    | OV     | 368 28 nr           | n f=0 2059  | <\$**2>=0 000       |  |
| 309     | -> 3  | 311                   | -0 16894           | .oym     | 3.3003    | 01     | 500 <b>.</b> 20 III | . 1 0.2000  | (0 2) 0.000         |  |
| 309     | -> 3  | 316                   | -0 10180           |          |           |        |                     |             |                     |  |
| 309     | -> 3  | 318                   | -0 11635           |          |           |        |                     |             |                     |  |
| 309     | -> 3  | 326                   | -0 14853           |          |           |        |                     |             |                     |  |
| 310     | -> 3  | 312                   | 0.14000            |          |           |        |                     |             |                     |  |
| 310     | -> 3  | 313                   | 0.20312            |          |           |        |                     |             |                     |  |
| 310     |       | 315                   | 0.46018            |          |           |        |                     |             |                     |  |
| 310     |       | 217                   | -0.23166           |          |           |        |                     |             |                     |  |
| 310     |       | 303<br>)T (           | -0.23100           |          |           |        |                     |             |                     |  |
| 210     |       | ) <u>/ )</u><br>) ^ 5 | -0.13201           |          |           |        |                     |             |                     |  |
| 510     | -/ .  | 525                   | -0.13127           |          |           |        |                     |             |                     |  |
|         | Evo   | +                     | l stato summotri   | r could  | not bo do | +0.000 | inod                |             |                     |  |
| Evaited | C+ o+ |                       | 20. State Symmetry | y coura  | 3 4122    | oW     | 363 35 nr           | m f-0 0000  | <u> </u>            |  |
| EXCILEU | Stat  | 212                   | 20. SINGLE         | et-:Sym  | 5.4122    | ev     | 505.55 III          | II 1-0.0098 | <5~~2>=0.000        |  |
| 209     |       | ンエム<br>ン1 つ           | 0.211/4            |          |           |        |                     |             |                     |  |
| 209     |       | ) I 5<br>) 1 5        | 0.22044            |          |           |        |                     |             |                     |  |
| 309     |       | ע⊥ט<br>217            | -0 10002           |          |           |        |                     |             |                     |  |
| 309     |       | 303<br>)T (           | -0.11071           |          |           |        |                     |             |                     |  |
| 209     |       | ン <u>と</u> ン<br>マクト   | -0.11071           |          |           |        |                     |             |                     |  |
| 309     | -> :  | JZJ<br>N11            | -0.10096           |          |           |        |                     |             |                     |  |
| 310     | -> :  |                       | -U.10511           |          |           |        |                     |             |                     |  |
| 310     | -> :  | 5⊥6<br>210            | -U.13/43           |          |           |        |                     |             |                     |  |
| 310     | -> :  | δTΩ                   | -U.123/3           |          |           |        |                     |             |                     |  |
| 310     | -> :  | o∠0                   | -0.14433           |          |           |        |                     |             |                     |  |
|         |       |                       |                    |          |           |        |                     |             |                     |  |

Table S4. Cartesian coordinates and theoretical UV-Vis spectrum for 4.

#### M06-2X/def2-TZVP

| Atomic<br>Number | Cc<br>X     | oordinates (Angs<br>Y | troms)      | Z |
|------------------|-------------|-----------------------|-------------|---|
| с                | -3.90808300 | 1.74088000            | 0.54458300  |   |
| С                | -3.91979700 | 1.91772200            | 1.94205100  |   |
| С                | -4.27786200 | 3.16236700            | 2.44782400  |   |
| Н                | -4.26227900 | 3.30657500            | 3.38668000  |   |
| С                | -4.65717600 | 4.19702200            | 1.60503700  |   |
| H                | -4.91214000 | 5.03789900            | 1.96560700  |   |
| С                | -4.66155000 | 3.99513600            | 0.23208200  |   |
| H                | -4.93703700 | 4.70241500            | -0.33924300 |   |
| С                | -4.27245000 | 2.78274500            | -0.32870000 |   |
| С                | -4.26500100 | 2.63980100            | -1.84097600 |   |
| H                | -4.11853800 | 1.67528100            | -2.06049700 |   |
| С                | -5.59265800 | 3.07618100            | -2.47561700 |   |
| H                | -5.57550900 | 2.88104800            | -3.43620500 |   |
| H                | -5.71862200 | 4.03901200            | -2.34082800 |   |
| H                | -6.33163600 | 2.58835600            | -2.05651900 |   |
| С                | -3.11016100 | 3.44753600            | -2.45121100 |   |
| H                | -3.10026800 | 3.31998100            | -3.42298100 |   |
| H                | -2.26027900 | 3.13975400            | -2.07271800 |   |
| H                | -3.23325700 | 4.39826300            | -2.24783300 |   |
| C                | -3.62593200 | 0.75253600            | 2.88257900  |   |
| H                | -3.86995900 | -0.08778900           | 2.39865600  |   |
| С                | -4.44391500 | 0.78395000            | 4.17870400  |   |
| H                | -4.30776600 | -0.05199100           | 4.67149500  |   |
| H                | -5.39456100 | 0.88485000            | 3.96273100  |   |
| H                | -4.15261600 | 1.53967300            | 4.73080400  |   |
| C                | -2.14425600 | 0.66552000            | 3.21/98200  |   |
| H                | -1.97059500 | -0.15914600           | 3.71889800  |   |
| Н                | -1.88630600 | 1.43838900            | 3.76267700  |   |
| H                | -1.62110800 | 0.66042300            | 2.38950000  |   |
| C                | -4.569/5/00 | -0.42815500           | -0.26614600 |   |
| C                | -5.99/29100 | 0.06395000            | -0.21416700 |   |
| C II             | -6.62662400 | 0.51992500            | U.931/6800  |   |
| H                | -6.13883100 | 0.58285900            | 1.74471800  |   |
|                  | -7.96813200 | 1 10477700            | 1 60407400  |   |
| п                | -0.39400300 | 0 01676200            | 1.0949/400  |   |
| U<br>U           | -0.000/2000 | 1 09794400            | -0.27313600 |   |
| п<br>С           | -9.09042400 |                       | -1 42221400 |   |
| u<br>u           | -8.56132100 | 0.34/40100            | -2 23359300 |   |
| C                | -6 73625000 |                       | _1 3900/300 |   |
| с<br>u           | -6 32685300 |                       | -2 17399700 |   |
| C                | -3 76275300 |                       | -2 55992900 |   |
| C                | -5 27378900 | -3 78885700           | -2 46466100 |   |
| н                | -5 58411400 | -4 15958100           | -3 31700400 |   |
| Н                | -5.76852500 | -2.96688500           | -2.26599900 |   |
| н                | -5 42551300 | -4 44237500           | -1 74992200 |   |
| C                | -3 57019000 | -2 47955300           | -3 71556000 |   |
| н                | -3,93446800 | -2.86417400           | -4.53978200 |   |
| н                | -2,61439800 | -2.29845800           | -3.83382300 |   |
| Н                | -4.03828100 | -1.64381400           | -3.50961700 |   |
| С                | -3.00770600 | -4.77046800           | -2.86932700 |   |
| H                | -3.37589100 | -5.17634100           | -3.68187900 |   |
| Н                | -3.10715800 | -5.39250400           | -2.11910600 |   |
| Н                | -2.05789600 | -4.57117500           | -3.00533600 |   |
| С                | -3.02214000 | -3.74138300           | 0.45674400  |   |
| С                | -3.02228100 | -2.84467400           | 1.70374700  |   |
| Н                | -2.83705800 | -3.38823000           | 2.49738000  |   |
| Н                | -3.89893100 | -2.41653700           | 1.79812400  |   |
| Н                | -2.33118300 | -2.15575200           | 1.61072100  |   |
| С                | -1.69263000 | -4.50728500           | 0.40842200  |   |
| Н                | -1.59340700 | -5.04134400           | 1.22412900  |   |
| н                | -0.95086100 | -3.87025500           | 0.34275000  |   |

| ч        | _1 60400000 | -5 00034400       | -0 37259400 |
|----------|-------------|-------------------|-------------|
|          | 1.00405000  | 3.03334400        | 0.57250400  |
| C        | -4.19/00500 | -4./2351400       | 0.5/994600  |
| H        | -4.13046500 | -5.20753000       | 1.42923600  |
| Н        | -4.16889300 | -5.36137700       | -0.16322400 |
| Н        | -5.04176600 | -4.22686000       | 0.55221200  |
| C        | -0 47053600 | -1 92218200       | -2 36/92700 |
| C        | -0.47033000 | -1.92218200       | -2.30492700 |
| C        | 0.01829500  | -0.97097600       | -3.28346200 |
| H        | -0.29064200 | -0.07433700       | -3.22527500 |
| С        | 0.93644500  | -1.30237400       | -4.27130400 |
| Н        | 1,25350400  | -0.63015100       | -4.86287400 |
| C        | 1 39486700  | -2 60190500       | -4 40332100 |
|          | 1.33400700  | 2.00190900        |             |
| H        | 2.01305100  | -2.83251200       | -2.08/03100 |
| C        | 0.93310300  | -3.55547100       | -3.51811200 |
| Н        | 1.23264800  | -4.45329100       | -3.59889100 |
| С        | 0.04162200  | -3.22280700       | -2.51655200 |
| Н        | -0 23547500 | -3 89768600       | -1 90804500 |
| C        | 3 65092500  | 2 09664400        | _0 89898200 |
| e        | 2.00072000  | 2.0004400         | 0.00000200  |
| C        | 3.08277900  | 2.6/524900        | -2.04831400 |
| C        | 3.42599700  | 3.99574800        | -2.36938500 |
| Н        | 3.05490700  | 4.39036900        | -3.14985000 |
| С        | 4.28515400  | 4.74024400        | -1.58917800 |
| Н        | 4.48567300  | 5.64068900        | -1.81587100 |
| C        | 4 84986600  | 4 15491900        | -0 47140400 |
|          | E /E110F00  |                   | 0.00000000  |
| н        | 5.45112500  | 4.65946200        | 0.06389300  |
| С        | 4.55643300  | 2.84127500        | -0.11305400 |
| С        | 5.20316600  | 2.29457600        | 1.15131600  |
| Н        | 5.04687100  | 1.30721500        | 1.17256800  |
| С        | 6.71979300  | 2.53071800        | 1.19073000  |
| ц<br>ц   | 7 10788200  | 2 03711400        | 1 9/296500  |
| 11       | 6 00047000  | 2.03/11400        | 1 20127700  |
| H        | 6.89847000  | 3.48812400        | 1.3013//00  |
| Н        | 7.12080800  | 2.21831600        | 0.35303200  |
| С        | 4.53411400  | 2.90265700        | 2.39093400  |
| Н        | 4.96223500  | 2.54914000        | 3.19912300  |
| Н        | 3,58273900  | 2,66807900        | 2.39653700  |
|          | 4 63096600  | 3 87704200        | 2 36969000  |
| 11<br>C  | 2.00172200  | 1 07002200        | 2.0000000   |
|          | 2.091/3200  | 1.9/882600        | -2.96220400 |
| H        | 2.01486800  | 1.02186700        | -2.68224600 |
| C        | 0.71171400  | 2.63541100        | -2.85393500 |
| Н        | 0.09107000  | 2.19437000        | -3.47113800 |
| Н        | 0.78275700  | 3.58498200        | -3.08532900 |
| н        | 0 37862500  | 2 54650800        | -1 93678500 |
|          | 2 54052500  | 2.02002700        | 1 12166500  |
|          | 2.34033300  | 2.02093700        | -4.43400300 |
| H        | 1.91582500  | 1.51091000        | -4.98406200 |
| H        | 3.43974600  | 1.64760800        | -4.51507700 |
| Н        | 2.55138100  | 2.95935900        | -4.74141200 |
| С        | 4.28749600  | -0.20758300       | -0.50170400 |
| С        | 5.36218100  | -0.06485100       | -1.53601700 |
| C        | 5 00077500  | 0 00000000        | -2 97021000 |
|          | 4.0001/500  | 0.0000000000      | 2.07921000  |
| н        | 4.09314500  | 0.07077400        | -3.12453900 |
| C        | 5.98649400  | -0.00983600       | -3.86132700 |
| H        | 5.73861900  | 0.03874100        | -4.77705300 |
| С        | 7.32341500  | -0.09963900       | -3.51246600 |
| Н        | 7.99383700  | -0.10695700       | -4.18554800 |
| C        | 7 67578200  | -0 17825200       | -2 17690900 |
| с<br>и   | 0 50207100  | 0 22010000        | 1 02277100  |
| п<br>~   | 6.39207100  | -0.23019000       | -1.95577100 |
| C        | 6.70503400  | -0.18356/00       | -1.19357000 |
| Н        | 6.95548300  | -0.26773300       | -0.28097200 |
| С        | 3.31063700  | -3.70408900       | 0.64952000  |
| С        | 2.87526800  | -3.51385100       | -0.80692300 |
| Н        | 2.66215500  | -4.38607400       | -1.20023900 |
| н        | 3 60301500  | -3 09642000       | -1 31320500 |
| <br>TT   | 3.00301300  | 2 02072000        | 1.01020000  |
| п<br>С   | 2.0020000   | -2.930/2900       | -0.0304//00 |
| C        | 4.6428/800  | -4.45839200       | 0.64///500  |
| H        | 4.54217900  | -5.29791300       | 0.15237500  |
| Н        | 4.90889200  | -4.65340900       | 1.57052200  |
| Н        | 5.33002600  | -3.90653200       | 0.21925100  |
| С        | 2.23299300  | -4.52754100       | 1.36635300  |
| с<br>ц   | 2 25500100  | _5 /5000000       | 1 03003400  |
| 11<br>TT | 1 2E1200100 | 1 1 2 0 0 0 1 0 0 | 1 10500400  |
| п        | 1.35132000  | -4.13898100       | 1.18580400  |
| Н        | 2.40271800  | -4.51834900       | 2.33114000  |
| С        | 4.52348700  | -1.97334900       | 2.89438400  |

| C                                                    |  |
|------------------------------------------------------|--|
| Н 4.99174100 -0.53295100 4.31238600                  |  |
| Н 3.50992700 -0.36795400 3.73092900                  |  |
| H 4.76891400 0.08634000 2.85360000                   |  |
| C 4.01646800 -2.98464800 3.92709500                  |  |
| Н 4.52341500 -2.88349800 4.75963300                  |  |
| Н 4.13574400 -3.89335400 3.58028400                  |  |
| H 3.06568600 -2.82386700 4.10214800                  |  |
| C 6.00552100 -2.24355000 2.58423300                  |  |
| H 6.54466500 -2.06280000 3.38285100                  |  |
| H 6.29832400 -1.66034500 1.85366200                  |  |
| Н 6.11841000 -3.18062800 2.31987000                  |  |
| C 0.95815500 -1.24894300 2.97467000                  |  |
| C 0.95840800 -0.27020200 3.98322800                  |  |
| H 1.39816800 0.55498800 3.81764400                   |  |
| C 0.34045200 -0.46257300 5.21747000                  |  |
| H 0.37629100 0.22258400 5.87478600                   |  |
| C -0.32330400 -1.63978800 5.49069800                 |  |
| H -0.72627600 -1.78239600 6.33916000                 |  |
| C -0.39137600 -2.60980800 4.50651900                 |  |
| H -0.86/1/500 -3.41540/00 4.6/13/900                 |  |
|                                                      |  |
| H U.16324300 -3.09565400 2.61565400                  |  |
|                                                      |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |
|                                                      |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |
| H = -1.03082800 + 6.00092500 + 0.82367700            |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |  |
| C 1.45668300 4.67345700 0.62483300                   |  |
| Н 1.44655300 5.54336300 1.07608300                   |  |
| Н 1.60976700 4.80439000 -0.33407400                  |  |
| н 2.17484000 4.12050200 0.99783300                   |  |
| в -1.58026800 -1.51530700 -1.29908600                |  |
| в 1.79609800 -1.03576200 1.62613700                  |  |
| Cu -0.18367600 1.71751500 0.11209400                 |  |
| Cu 0.08813600 -0.99172600 0.14067400                 |  |
| N -3.54179800 0.43236300 0.02466400                  |  |
| N -4.47149800 -1.65530500 -0.66851100                |  |
| N 3.29526300 0.74556800 -0.45405600                  |  |
| N 4.40373300 -1.27873500 0.21337700                  |  |
| P -3.13762000 -2.58532700 -1.01600500                |  |
| P 3.43558100 -1.97356700 1.36137700                  |  |
| P -0.13879800 3.84295000 0.87544800                  |  |
| Si -1.83565200 0.26468000 -0.62208900                |  |
| Si 1.80872000 0.60747200 0.61833800                  |  |

Excitation energies and oscillator strengths:

| Excited        | state symmet  | ry could not be det | cermined.    |              |            |                     |
|----------------|---------------|---------------------|--------------|--------------|------------|---------------------|
| Excited        | State 1:      | Triplet-?Sym        | 1.6816 eV    | 737.30 nm    | f=0.0000   | <s**2>=2.000</s**2> |
| 338            | -> 342        | -0.10870            |              |              |            |                     |
| 338            | -> 343        | 0.13056             |              |              |            |                     |
| 340            | -> 342        | 0.38968             |              |              |            |                     |
| 340            | -> 343        | -0 28373            |              |              |            |                     |
| 340            | -> 344        | 0.13606             |              |              |            |                     |
| 241            | > 242         | 0.13000             |              |              |            |                     |
| 341            | -> 342        | 0.2048/             |              |              |            |                     |
| 341            | -> 343        | -0.332/4            |              |              |            |                     |
| 341            | -> 344        | 0.11281             |              |              |            |                     |
| This sta       | ate for optim | ization and/or seco | ond-order co | prrection.   |            |                     |
| Total En       | nergy, E(TD-H | IF/TD-DFT) = -7840. | .49279251    |              |            |                     |
| Copying        | the excited   | state density for t | this state a | is the 1-par | ticle RhoC | I density.          |
|                |               |                     |              |              |            |                     |
| Excited        | state symmet  | ry could not be det | cermined.    |              |            |                     |
| Excited        | State 2:      | Triplet-?Svm        | 1.7845 eV    | 694.79 nm    | f=0.0000   | <s**2>=2.000</s**2> |
| 339            | -> 342        | -0 16126            |              |              |            |                     |
| 340            | -> 3/2        | -0 18436            |              |              |            |                     |
| 240            | > 242         | 0.14575             |              |              |            |                     |
| 340            | -> 343        | -0.14575            |              |              |            |                     |
| 341            | -> 342        | 0.54959             |              |              |            |                     |
| 341            | -> 343        | 0.24668             |              |              |            |                     |
| 341            | -> 345        | -0.11246            |              |              |            |                     |
|                |               |                     |              |              |            |                     |
| Excited        | state symmet  | ry could not be det | cermined.    |              |            |                     |
| Excited        | State 3:      | Triplet-?Sym        | 2.0738 eV    | 597.85 nm    | f=0.0000   | <s**2>=2.000</s**2> |
| 339            | -> 342        | -0.17219            |              |              |            |                     |
| 339            | -> 343        | 0.28204             |              |              |            |                     |
| 339            | -> 344        | -0.10702            |              |              |            |                     |
| 340            | -> 342        | 0 23584             |              |              |            |                     |
| 340            | -> 343        | -0 19475            |              |              |            |                     |
| 340            | -> 343        | -0.19475            |              |              |            |                     |
| 340            | -> 344        | 0.11266             |              |              |            |                     |
| 341            | -> 342        | -0.18483            |              |              |            |                     |
| 341            | -> 343        | 0.39061             |              |              |            |                     |
| 341            | -> 344        | -0.14965            |              |              |            |                     |
|                |               |                     |              |              |            |                     |
| Excited        | state symmet  | ry could not be det | cermined.    |              |            |                     |
| Excited        | State 4:      | Triplet-?Sym        | 2.3087 eV    | 537.02 nm    | f=0.0000   | <s**2>=2.000</s**2> |
| 338            | -> 342        | 0.19625             |              |              |            |                     |
| 338            | -> 343        | 0.10663             |              |              |            |                     |
| 339            | -> 342        | 0.33588             |              |              |            |                     |
| 340            | -> 342        | 0.32468             |              |              |            |                     |
| 340            | -> 343        | 0 30711             |              |              |            |                     |
| 310            | -> 345        | -0 10005            |              |              |            |                     |
| 54U<br>571     | -> 340        | 0.15001             |              |              |            |                     |
| 341            | -> 342        | 0.13891             |              |              |            |                     |
| 341            | -> 343        | 0.19//9             |              |              |            |                     |
|                |               |                     |              |              |            |                     |
| Excited        | state symmet  | ry could not be det | cermined.    |              |            |                     |
| Excited        | State 5:      | Singlet-?Sym        | 2.4642 eV    | 503.15 nm    | f=0.0141   | <s**2>=0.000</s**2> |
| 339            | -> 342        | 0.15788             |              |              |            |                     |
| 339            | -> 343        | -0.12439            |              |              |            |                     |
| 341            | -> 342        | 0.61397             |              |              |            |                     |
| 341            | -> 343        | -0.18832            |              |              |            |                     |
| 341            | -> 344        | 0.10884             |              |              |            |                     |
|                |               |                     |              |              |            |                     |
| Excited        | state symmet  | rv could not be det | ermined.     |              |            |                     |
| Excited        | State 6.      | Singlat-295mm       | 2 6337 017   | 470 76 nm    | f=0 0208   | <\$**2>=0 000       |
| DACILEU<br>330 | 3/2           | 0 1/205             | 2.000/ 80    | -1/0./0 IIII | 1-0.0200   | 10 2/-0.000         |
| 338            | -> 342        | 0.10011             |              |              |            |                     |
| 339            | -> 343        | 0.18011             |              |              |            |                     |
| 340            | -> 342        | 0.11201             |              |              |            |                     |

```
0.23632
0.57950
   341 -> 342
   341 -> 343
   341 -> 344
              -0.10680
_____
Excited state symmetry could not be determined.
Excited State 7: Triplet-?Sym 2.6619 eV 465.77 nm f=0.0000 <S**2>=2.000
   338 -> 342
              0.14393
   339 -> 342
               0.15978
   339 -> 343
               0.48896
   339 -> 344
               -0.13025
   339 -> 345
              -0.13819
   340 -> 350
               0.14801
   341 -> 342
               0.10797
   341 -> 343
              -0.10758
_____
Excited state symmetry could not be determined.
Excited State 8: Triplet-?Sym 2.7409 eV 452.34 nm f=0.0000 <S**2>=2.000
  339 -> 342
              0.44199
   339 -> 344
               0.10588
   339 -> 345
               -0.10204
   340 -> 342
               -0.13236
   340 -> 343
               -0.33563
   340 -> 344
               0.10441
               0.12214
   340 -> 345
_____
Excited state symmetry could not be determined.
Excited State 9: Singlet-?Sym 2.7923 eV 444.02 nm f=0.0336 <S**2>=0.000
              0.10272
   338 -> 342
   339 -> 342
               0.13902
   340 -> 342
               0.20844
   340 -> 343
               0.58060
   340 -> 344
               -0.11605
   340 -> 345
               -0.10099
   341 -> 342
               -0.12495
_____
Excited state symmetry could not be determined.
Excited State 10: Singlet-?Sym 2.8959 eV 428.14 nm f=0.0621 <S**2>=0.000
   338 -> 342
               0.21674
   339 -> 343
               0.34058
   340 -> 342
               0.45662
   340 -> 343
               -0.12523
   341 -> 343
               -0.24393
_____
Excited state symmetry could not be determined.
Excited State 11: Triplet-?Sym 3.1225 eV 397.06 nm f=0.0000 <S**2>=2.000
   338 -> 342
               0.45062
   338 -> 343
               0.13821
   338 -> 345
               -0.10175
   339 -> 343
               -0.12535
   340 -> 343
               -0.22187
   341 -> 342
               -0.10859
   341 -> 345
               0.16194
   341 -> 350
               0.11851
   341 -> 355
               0.10541
_____
Excited state symmetry could not be determined.
Excited State 12: Singlet-?Sym 3.2003 eV 387.41 nm f=0.0144 <S**2>=0.000
   339 -> 342
               0.38975
               0.43988
   339 -> 343
   339 -> 345
               -0.13496
   340 -> 342
               -0.24922
```

| Excited state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | symmetry could not be                                                                                                                                                                                                                                                                                                                                                | determined.                                                                            |                                     |                                  |                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------|----------------------------------|---------------------------------------------|
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13: Singlet-?Sy                                                                                                                                                                                                                                                                                                                                                      | m 3.2621 eV                                                                            | 380.08 nm                           | f=0.0932                         | <s**2>=0.000</s**2>                         |
| 339 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.45074                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 330 -> 3/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0 23383                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 240 > 242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.23303                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 340 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.24019                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 340 -> 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.25303                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 341 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.14218                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 341 -> 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10833                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 341 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.11021                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 341 -> 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.10438                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                     |                                  |                                             |
| Excited state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | symmetry could not be                                                                                                                                                                                                                                                                                                                                                | determined.                                                                            |                                     |                                  |                                             |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14. Triplet-2Sv                                                                                                                                                                                                                                                                                                                                                      | m 3,2879 eV                                                                            | 377 09 nm                           | f=0 0000                         | <\$**2>=2 000                               |
| 330 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _0 15621                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | <i>377.03</i> IIII                  | 1 0.0000                         | () 27 2.000                                 |
| 330 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.13021                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 338 -> 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.45356                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 338 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.10092                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 340 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.14949                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 341 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.32886                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |                                     |                                  |                                             |
| Excited state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | symmetry could not be                                                                                                                                                                                                                                                                                                                                                | determined.                                                                            |                                     |                                  |                                             |
| Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15: Triplet-?Sy                                                                                                                                                                                                                                                                                                                                                      | m 3.3530 eV                                                                            | 369.77 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 338 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.12126                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 338 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.15251                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 339 -> 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0 12348                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 340 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0 10693                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 240 > 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.12010                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 340 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.12019                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 340 -> 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.10283                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 341 -> 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15051                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 341 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21848                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 341 -> 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.35553                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 241 > 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0 12064                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 341 -> 348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.12004                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                     |                                  |                                             |
| 341 -> 348<br>341 -> 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.11882                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                     |                                  |                                             |
| 341 -> 348<br>341 -> 355<br>341 -> 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11882<br>0.11335                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                     |                                  |                                             |
| 341 -> 348<br>341 -> 355<br>341 -> 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11882<br>0.11335                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                     |                                  |                                             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.112004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.                                                                            |                                     |                                  |                                             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br><br>Excited state<br>Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.112004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <pre><s**2>=2.000</s**2></pre>              |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br><br>Excited state<br>Excited State<br>338 -> 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.112004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br><br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.112004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br><br>Excited state<br>338 -> 343<br>338 -> 344<br>338 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.112004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sy.<br>0.18983<br>-0.17607<br>-0.10713                                                                                                                                                                                                                                                       | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>240 > 245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>238 -> 343<br>338 -> 344<br>338 -> 344<br>338 -> 345<br>340 -> 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                    | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                    | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                    | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                    | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 344<br>341 -> 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 345<br>341 -> 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                    | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 343<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 345<br>341 -> 350<br>341 -> 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 343<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 350<br>341 -> 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV                                                             | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 343<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 350<br>341 -> 357<br>Excited state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.12004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sym<br>0.18983<br>-0.17607<br>-0.10713<br>0.12032<br>-0.15139<br>0.13308<br>0.35673<br>-0.27846<br>0.15157<br>0.14986<br>                                                                                                                                                                     | determined.<br>n 3.3813 eV<br>determined.                                              | 366.68 nm                           | f=0.0000                         | <s**2>=2.000</s**2>                         |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 343<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 345<br>341 -> 350<br>341 -> 357<br>Excited state<br>Excited State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                    | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm                           | f=0.0000<br>f=0.0155             | <pre><s**2>=2.000 </s**2></pre>             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 343<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 350<br>341 -> 357<br>Excited state<br>Excited State<br>338 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                    | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <pre><s**2>=2.000 </s**2></pre>             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>538 -> 343<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 350<br>341 -> 350<br>341 -> 357<br>Excited state<br>Excited state<br>538 -> 342<br>339 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <s**2>=2.000<br/><s**2>=0.000</s**2></s**2> |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 350<br>341 -> 357<br>Excited state<br>Excited state<br>Excited state<br>338 -> 342<br>339 -> 342<br>340 -> 342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                    | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <s**2>=2.000<br/><s**2>=0.000</s**2></s**2> |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>538 -> 343<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 345<br>341 -> 350<br>341 -> 357<br>Excited state<br>Excited state<br>538 -> 342<br>339 -> 342<br>340 -> 342<br>340 -> 342<br>340 -> 342<br>340 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.12004<br>0.11882<br>0.11335<br>                                                                                                                                                                                                                                                                                                                                   | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <s**2>=2.000<br/><s**2>=0.000</s**2></s**2> |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>538 -> 343<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 350<br>341 -> 357<br>Excited state<br>Excited state<br>538 -> 342<br>339 -> 342<br>340 -> 344<br>341 -> 342<br>340 -> 342<br>340 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.12004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sy.<br>0.18983<br>-0.17607<br>-0.10713<br>0.12032<br>-0.15139<br>0.13308<br>0.35673<br>-0.27846<br>0.15157<br>0.14986<br>symmetry could not be<br>17: Singlet-?Sy.<br>0.47334<br>0.12768<br>-0.21819<br>0.10649<br>0.11505                                                                    | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <pre><s**2>=2.000 </s**2></pre>             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 344<br>341 -> 345<br>341 -> 350<br>341 -> 350<br>341 -> 357<br>Excited state<br>Excited state<br>Excited state<br>338 -> 342<br>339 -> 342<br>340 -> 344<br>341 -> 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.12004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sy.<br>0.18983<br>-0.17607<br>-0.10713<br>0.12032<br>-0.15139<br>0.13308<br>0.35673<br>-0.27846<br>0.15157<br>0.14986<br>symmetry could not be<br>17: Singlet-?Sy.<br>0.47334<br>0.12768<br>-0.21819<br>0.10649<br>0.11595<br>0.20542                                                         | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <pre><s**2>=2.000 </s**2></pre>             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited state<br>338 -> 343<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 345<br>341 -> 357<br>Excited state<br>Excited state<br>338 -> 342<br>339 -> 342<br>340 -> 344<br>341 -> | 0.12004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sy.<br>0.18983<br>-0.17607<br>-0.10713<br>0.12032<br>-0.15139<br>0.13308<br>0.35673<br>-0.27846<br>0.15157<br>0.14986<br>                                                                                                                                                                     | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <pre><s**2>=2.000 </s**2></pre>             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited state<br>338 -> 343<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 345<br>341 -> 357<br>Excited state<br>Excited state<br>338 -> 342<br>339 -> 342<br>340 -> 344<br>341 -> 344<br>341 -> 344<br>341 -> 344<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sy.<br>0.18983<br>-0.17607<br>-0.10713<br>0.12032<br>-0.15139<br>0.13308<br>0.35673<br>-0.27846<br>0.15157<br>0.14986<br>symmetry could not be<br>17: Singlet-?Sy.<br>0.47334<br>0.12768<br>-0.21819<br>0.10649<br>0.11595<br>0.29548<br>0.11411                                              | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <pre><s**2>=2.000 </s**2></pre>             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited state<br>338 -> 343<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 345<br>341 -> 357<br>Excited state<br>Excited state<br>238 -> 342<br>339 -> 342<br>340 -> 344<br>341 -> 344<br>341 -> 344<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sy.<br>0.18983<br>-0.17607<br>-0.10713<br>0.12032<br>-0.15139<br>0.13308<br>0.35673<br>-0.27846<br>0.15157<br>0.14986<br>symmetry could not be<br>17: Singlet-?Sy.<br>0.47334<br>0.12768<br>-0.21819<br>0.10649<br>0.11595<br>0.29548<br>0.11411                                              | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV                               | 366.68 nm<br>351.57 nm              | f=0.0000<br>f=0.0155             | <pre><s**2>=2.000 </s**2></pre>             |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 344<br>341 -> 357<br>Excited state<br>Excited state<br>338 -> 342<br>339 -> 342<br>340 -> 342<br>340 -> 344<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 345<br>341 -> 355<br>Excited state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.12004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sy.<br>0.18983<br>-0.17607<br>-0.10713<br>0.12032<br>-0.15139<br>0.13308<br>0.35673<br>-0.27846<br>0.15157<br>0.14986<br>symmetry could not be<br>17: Singlet-?Sy.<br>0.47334<br>0.12768<br>-0.21819<br>0.10649<br>0.11595<br>0.29548<br>0.11411<br>symmetry could not be                     | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV<br>determined.                | 366.68 nm<br>351.57 nm              | f=0.0000                         | <s**2>=2.000<br/><s**2>=0.000</s**2></s**2> |
| 341 -> 348<br>341 -> 355<br>341 -> 359<br>Excited state<br>Excited State<br>338 -> 343<br>338 -> 343<br>338 -> 344<br>338 -> 345<br>340 -> 345<br>341 -> 342<br>341 -> 343<br>341 -> 343<br>341 -> 357<br>Excited state<br>Excited State<br>338 -> 342<br>340 -> 342<br>340 -> 342<br>340 -> 342<br>340 -> 344<br>341 -> 345<br>341 -> 345<br>341 -> 355<br>Excited state<br>Excited state<br>Excited state<br>Safe State<br>Safe State<br>Safe State<br>Safe State<br>Safe State<br>State State<br>State State<br>State State<br>State State<br>State State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.12004<br>0.11882<br>0.11335<br>symmetry could not be<br>16: Triplet-?Sy.<br>0.18983<br>-0.17607<br>-0.10713<br>0.12032<br>-0.15139<br>0.13308<br>0.35673<br>-0.27846<br>0.15157<br>0.14986<br>symmetry could not be<br>17: Singlet-?Sy.<br>0.47334<br>0.12768<br>-0.21819<br>0.10649<br>0.11595<br>0.29548<br>0.11411<br>symmetry could not be<br>18: Singlet-?Sy. | determined.<br>n 3.3813 eV<br>determined.<br>n 3.5265 eV<br>determined.<br>n 3.5714 eV | 366.68 nm<br>351.57 nm<br>347.16 nm | f=0.0000<br>f=0.0155<br>f=0.1587 | <pre><s**2>=2.000 </s**2></pre>             |

| 340     | -> 344        | 0.16890             |           |           |          |                     |
|---------|---------------|---------------------|-----------|-----------|----------|---------------------|
| 341     | -> 344        | 0.51269             |           |           |          |                     |
| 341     | -> 357        | 0.10433             |           |           |          |                     |
|         |               |                     |           |           |          |                     |
| Exclued | state symmet. | ry could not be det | erminea.  |           |          |                     |
| Excited | State 19:     | Singlet-?Sym        | 3.7678 eV | 329.06 nm | f=0.0897 | <s**2>=0.000</s**2> |
| 338     | -> 342        | -0.15314            |           |           |          |                     |
| 338     | -> 343        | -0.32321            |           |           |          |                     |
| 338     | -> 345        | 0.15067             |           |           |          |                     |
| 339     | -> 342        | 0.15410             |           |           |          |                     |
| 340     | -> 342        | 0.11043             |           |           |          |                     |
| 340     | -> 345        | -0.11473            |           |           |          |                     |
| 341     | -> 344        | -0.15978            |           |           |          |                     |
| 341     | -> 345        | 0.43614             |           |           |          |                     |
| 341     | -> 350        | -0.11228            |           |           |          |                     |
|         |               |                     |           |           |          |                     |
| Excited | state symmet: | ry could not be det | erminea.  |           |          |                     |
| Excited | State 20:     | Singlet-?Sym        | 3.8043 eV | 325.90 nm | f=0.0245 | <s**2>=0.000</s**2> |
| 338     | -> 342        | -0.27301            |           |           |          |                     |
| 338     | -> 343        | 0.33401             |           |           |          |                     |
| 338     | -> 344        | -0.19364            |           |           |          |                     |
| 339     | -> 344        | 0.12976             |           |           |          |                     |
| 340     | -> 342        | 0.10558             |           |           |          |                     |
| 341     | -> 343        | 0.13853             |           |           |          |                     |
| 341     | -> 344        | 0.27483             |           |           |          |                     |
| 341     | -> 345        | 0.28422             |           |           |          |                     |
|         |               |                     |           |           |          |                     |

Table S5. Cartesian coordinates and theoretical UV-Vis spectrum for 5.

#### M06-2X/def2-TZVP

| Atomic | Coo:<br>v   | rdinates (Angst     | troms)      | 7        |
|--------|-------------|---------------------|-------------|----------|
|        | Χ           | <u>⊻</u>            |             | <u>ل</u> |
|        | -0 22754904 | -0 75063164         | 2 81814832  |          |
| с<br>Н | 0.07079416  | -1.68335597         | 2.95616730  |          |
| H      | 0.32670949  | -0.16369575         | 3.39174765  |          |
| C      | -1 71123970 | -0 61976409         | 3 23780491  |          |
| H      | -1.97278804 | 0.33395277          | 3.09368865  |          |
| C      | -2.57121260 | -1.46317465         | 2.30993539  |          |
| c      | -3.35250346 | -2.50702906         | 2.76461967  |          |
| H      | -3.41971192 | -2.67275230         | 3.69667847  |          |
| С      | -4.04595318 | -3.32221329         | 1.86296259  |          |
| Н      | -4.60283610 | -4.02086445         | 2.18601628  |          |
| С      | -3.92220659 | -3.11149019         | 0.50420863  |          |
| Н      | -4.37135179 | -3.69327639         | -0.09788373 |          |
| С      | -3.15150751 | -2.06243005         | -0.00733468 |          |
| С      | -2.50229352 | -1.21198563         | 0.92147571  |          |
| С      | -2.99248012 | -1.90636369         | -1.50076711 |          |
| Н      | -2.57204684 | -1.01722763         | -1.67961690 |          |
| С      | -2.05647746 | -3.00730706         | -2.06121414 |          |
| Н      | -1.93873068 | -2.87670739         | -3.02573288 |          |
| H      | -2.45257027 | -3.88853891         | -1.89737931 |          |
| H      | -1.18498415 | -2.95302236         | -1.61610812 |          |
| С      | -4.35220398 | -1.95274740         | -2.23350646 |          |
| Н      | -4.22158054 | -1.73043368         | -3.17870334 |          |
| H      | -4.96452990 | -1.30494251         | -1.82668390 |          |
| Н      | -4.73255746 | -2.85309137         | -2.15908489 |          |
| С      | -2.19670070 | 0.95454832          | -0.18225383 |          |
| C      | -3.70130769 | 1.14320462          | -0.21698221 |          |
| C      | -4.30848613 | 1.46461276          | -1.41299874 |          |
| Н      | -3./90455/9 | 1.50/4169/          | -2.2090/082 |          |
| C II   | -5.6/96486/ | 1 01072001          | -1.46239631 |          |
| H<br>C | -6.09527189 | 1 70515324          | -2.29463500 |          |
| u<br>u | -7 3/951103 | 1 923/9561          | -0.31300478 |          |
| C      | -5 82179949 | 1 36243200          | 0.88156625  |          |
| н      | -6 34475383 | 1 33049649          | 1 67329495  |          |
| C      | -4 47513071 | 1 06812111          | 0 94897629  |          |
| н      | -4.07944572 | 0.81798102          | 1.77559616  |          |
| C      | 0.54657038  | -0.46551569         | -2.10770663 |          |
| H      | 0.86204878  | -0.97767295         | -2.89378039 |          |
| H      | -0.38893513 | -0.74442328         | -1.94177018 |          |
| С      | 0.50728020  | 1.01823247          | -2.52206331 |          |
| C      | -0.58726302 | 1.18110454          | -3.59873528 |          |
| Н      | -0.41693257 | 0.55862425          | -4.33565612 |          |
| Н      | -0.57687947 | 2.10062161          | -3.93852514 |          |
| Н      | -1.46420131 | 0.98915202          | -3.20479686 |          |
| С      | 1.86206656  | 1.43474016          | -3.11295458 |          |
| Н      | 2.15076297  | 0.76702658          | -3.77117365 |          |
| Н      | 2.52765372  | 1.49375539          | -2.39611262 |          |
| Н      | 1.77429939  | 2.30671206          | -3.55050007 |          |
| С      | 0.34574519  | 3.84290180          | -1.18649814 |          |
| С      | -0.36653631 | 4.49710005          | 0.00502407  |          |
| Н      | -0.30399853 | 5.47257188          | -0.07171535 |          |
| Н      | 0.05996873  | 4.20852922          | 0.83975138  |          |
| Н      | -1.30861792 | 4.22956850          | 0.01054809  |          |
| С      | 1.82797525  | 4.23527289          | -1.16894513 |          |
| Н      | 1.91036208  | 5.20775484          | -1.25454889 |          |
| Н      | 2.28998987  | 3.80155033          | -1.91750850 |          |
| H      | 2.23322538  | 3.94589187          | -0.32475488 |          |
| C      | -0.32410213 | 4.33998479          | -2.4/254496 |          |
| Н      | -0.34428744 | 5.31973744          | -2.4/319582 |          |
| н      | -1.24138541 | 3.99519485          | -2.516/1118 |          |
| п      | 0.18123845  | 4.02250397          | -3.24910035 |          |
| C      | 1.94/40000  | Z. UO   D. J   D. J | 1.01908/0/  |          |

| H       0.37823680       2.47204975       2.75453370         C       1.96395372       3.45471594       3.5428618         H       1.48528771       3.83846508       4.26727917         C       3.32426408       3.69951202       3.40058574         H       3.78020385       4.25473184       4.02248574         C       4.00404318       3.12298291       2.3812434         H       4.93850942       3.27067940       2.24045629         C       3.32893377       2.33095621       1.41540271         H       3.81266390       -1.09844214       -2.5999742         C       2.38622707       -2.66627323       -1.66144109         H       1.84800058       -2.77926205       -2.49740216         C       2.66722840       -3.97666259       -0.94201310         H       1.84526473       -4.52804437       -0.94026817         H       3.35511779       -4.4745144       -1.43749336         C       2.66722840       -3.9766259       -0.94201310         H       1.84526473       -0.91657032       4.71763355         H       -1.33868363       -0.3158580       5.24673573         H       -1.65170758       -1.84631461                                                                                                | С  | 1.30233617  | 2.64732298  | 2.62575288  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------|-------------|-------------|--|
| C       1.96395372       3.45471594       3.54288618         H       1.48528771       3.83846508       4.2672917         C       3.32426408       3.69951202       3.40058574         H       3.78020385       4.25473184       4.02248574         C       4.00404318       3.12298291       2.33812434         H       4.93850942       3.27067940       2.24045629         C       3.32893377       2.33095621       1.41540271         H       3.81500738       1.94758558       0.69425812         C       3.32677456       -1.59435965       -1.73170559         H       3.31266390       -1.0984214       -2.59999742         C       2.38622707       -2.66627323       -1.66144109         H       1.84800058       -2.77926205       -2.49740216         C       2.66722840       -3.97666259       -0.94201310         H       1.84526473       -4.52804437       -0.94026817         H       1.84526473       -4.52804437       -0.94026817         H       1.84526473       -4.52804437       -0.34026817         H       1.84526473       -4.52804437       -1.63789355         H       1.85617795       -1.4735144                                                                                             | Н  | 0.37823680  | 2.47204975  | 2.75453370  |  |
| H       1.48528771       3.83846508       4.26727917         C       3.32426408       3.69951202       3.40058574         H       3.78020385       4.25473184       4.02248574         C       4.00404318       3.12298291       2.33812434         H       4.93850942       3.27067940       2.24045629         C       3.32893377       2.33095621       1.41540271         H       3.8126390       -1.09844214       -2.5999742         C       3.32677456       -1.59435965       -1.73170559         H       3.31266390       -1.09844214       -2.59999742         C       2.38622707       -2.66627323       -1.66144109         H       1.84800058       -2.77926205       -2.49740216         C       2.66722840       -3.9766259       -0.94201310         H       1.84526473       -4.52804437       -0.94026817         H       3.36511779       -4.47435144       -1.43749336         C       -1.90350514       -0.91657032       4.71763355         H       -2.84296254       -0.77930294       4.95787413         H       -1.65170758       -1.84631461       4.89919257         C       3.12675709       -3.77064516 <td>С</td> <td>1.96395372</td> <td>3.45471594</td> <td>3.54288618</td> <td></td>        | С  | 1.96395372  | 3.45471594  | 3.54288618  |  |
| C       3.32426408       3.69951202       3.40058574         H       3.78020385       4.25473184       4.02248574         C       4.00404318       3.12298291       2.33812434         H       4.93850942       3.27067940       2.24045629         C       3.32893377       2.33095621       1.41540271         H       3.81500738       1.94758558       0.69425812         C       3.32677456       -1.59435965       -1.73170559         H       3.31266390       -1.09844214       -2.59999742         C       2.38622707       -2.66627323       -1.66144109         H       1.8480058       -2.49740216         C       2.66722840       -3.97666259       -0.94201310         H       1.84526473       -4.52804437       -0.94026817         H       3.36511779       -4.47435144       -1.43749336         C       -1.0330514       -0.9155702       4.71763355         H       -2.84296254       -0.77930294       4.95787413         H       -1.6517079       -3.77064516       0.48502707         H       -1.6517078       -1.84631461       4.89919257         C       3.36410910       -1.28579457       1.05040688                                                                                            | Н  | 1.48528771  | 3.83846508  | 4.26727917  |  |
| H3.780203854.254731844.02248574C4.004043183.122982912.33812434H4.938509423.270679402.24045629C3.328933772.330956211.41540271H3.815007381.947585580.69425812C3.32677456-1.59435965-1.73170559H3.31266390-1.0984214-2.59999742C2.38622707-2.66627323-1.66144109H1.84800058-2.77926205-2.49740216C2.66722840-3.97666259-0.94026817H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.09610058-2.594190691.93303121C3.63610910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07786210H5.34170502<                                                                                                                                                                                                                                                                                                                                          | С  | 3.32426408  | 3.69951202  | 3.40058574  |  |
| C       4.00404318       3.12298291       2.33812434         H       4.93850942       3.27067940       2.24045629         C       3.32893377       2.33095621       1.41540271         H       3.81500738       1.94758558       0.69425812         C       3.32677456       -1.59435965       -1.73170559         H       3.31266390       -1.09844214       -2.59999742         C       2.38622707       -2.66627323       -1.66144109         H       1.84800058       -2.77926205       -2.49740216         C       2.66722840       -3.97666259       -0.94201310         H       1.84526473       -4.52804437       -0.94026817         H       3.36511779       -4.47435144       -1.43749336         C       -1.90350514       -0.91657032       4.71763355         H       -2.84296254       -0.77930294       4.95787413         H       -1.65170758       -1.84631461       4.8919257         C       3.12675709       -3.77064516       0.48502707         H       4.1672143       -3.78058385       0.50669353         H       2.80600334       -4.52703602       1.03672531         C       2.63730145       -2.47614777 </td <td>Н</td> <td>3.78020385</td> <td>4.25473184</td> <td>4.02248574</td> <td></td> | Н  | 3.78020385  | 4.25473184  | 4.02248574  |  |
| H4.938509423.270679402.24045629C3.328933772.330956211.41540271H3.815007381.947585580.69425812C3.32677456-1.59435965-1.73170559H3.31266390-1.09844214-2.59999742C2.38622707-2.66627323-1.66144109H1.84800058-2.77926205-2.49740216C2.66722840-3.9766259-0.94201310H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35261594C4.69295947-1.141350380.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.6174552H5.01675954-2.60064950-1.07786210H5.34170502-1.12680207-1.6174552H5.01675954-2.60064950-1.07786237B1.187569                                                                                                                                                                                                                                                                                                                                          | С  | 4.00404318  | 3.12298291  | 2.33812434  |  |
| C       3.32893377       2.33095621       1.41540271         H       3.81500738       1.94758558       0.69425812         C       3.32677456       -1.59435965       -1.73170559         H       3.31266390       -1.09844214       -2.59999742         C       2.38622707       -2.66627323       -1.66144109         H       1.84800058       -2.77926205       -2.49740216         C       2.66722840       -3.97666259       -0.94201310         H       1.84526473       -4.52804437       -0.94026817         H       3.36511779       -4.47435144       -1.43749336         C       -1.90350514       -0.91657032       4.71763355         H       -2.84296254       -0.77930294       4.95787413         H       -1.65170758       -1.84631461       4.89919257         C       3.12675709       -3.77064516       0.48502707         H       4.11672143       -3.78058385       0.50669353         H       2.80600344       -4.52703602       1.03672531         C       2.63730145       -2.47614777       1.09860746         H       2.09610058       -2.59419069       1.93030121         C       3.36410910       -1.285794                                                                                     | Н  | 4.93850942  | 3.27067940  | 2.24045629  |  |
| H3.815007381.947585580.69425812C3.32677456-1.59435965-1.73170559H3.31266390-1.09844214-2.59999742C2.38622707-2.66627323-1.66144109C2.8422007-2.66627323-2.49740216C2.66722840-3.97666259-0.94201310H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.4374936C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07986237B1.187569041.215921290.40969281Jr1.70046460-1.11273560-0.43250744N-1.6808584-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.0243                                                                                                                                                                                                                                                                                                                                          | С  | 3.32893377  | 2.33095621  | 1.41540271  |  |
| C3.32677456-1.59435965-1.73170559H3.31266390-1.09844214-2.59999742C2.38622707-2.66627323-1.66144109H1.84800058-2.77926205-2.49740216C2.66722840-3.97666259-0.94201310H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H3.25691367-0.706146391.8846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.02682650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.077862210H5.34170502-1.12682650-1.077862210H5.34170502-1.12680207-0.43250744N-1.68085804-0.120051320.49969281Jr1.70046460-1.11273560-0.43250744N <t< td=""><td>Н</td><td>3.81500738</td><td>1.94758558</td><td>0.69425812</td><td></td></t<>                                                                                                                                                                                                                                            | Н  | 3.81500738  | 1.94758558  | 0.69425812  |  |
| H3.31266390-1.09844214-2.59999742C2.38622707-2.66627323-1.66144109H1.84800058-2.77926205-2.49740216C2.66722840-3.97666259-0.94201310H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07786237B1.187569041.215921290.40969281Irr1.7004660-1.11273560-0.43250744N-1.68085804-0.120051320.43250744N-1                                                                                                                                                                                                                                                                                                                                          | С  | 3.32677456  | -1.59435965 | -1.73170559 |  |
| C2.38622707-2.66627323-1.66144109H1.84800058-2.77926205-2.49740216C2.66722840-3.97666259-0.94026817H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.66282650-1.07786210H5.34170502-1.2680207-1.61174552H5.01675954-2.60064950-1.07786210H5.01675954-2.60064950-1.07786237B1.187569041.215921290.40969281Irr1.7004660-1.11273560-0.43250744N-1.68085804-0.20051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.0                                                                                                                                                                                                                                                                                                                                          | Н  | 3.31266390  | -1.09844214 | -2.59999742 |  |
| H1.84800058-2.77926205-2.49740216C2.66722840-3.97666259-0.94201310H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.9477655-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68088804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                | С  | 2.38622707  | -2.66627323 | -1.66144109 |  |
| C2.66722840-3.97666259-0.94201310H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.9477655-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68085804-0.20051320.49732220N-1.630324282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                | Н  | 1.84800058  | -2.77926205 | -2.49740216 |  |
| H1.84526473-4.52804437-0.94026817H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.6808504-0.120051320.49732220N-1.633271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                | С  | 2.66722840  | -3.97666259 | -0.94201310 |  |
| H3.36511779-4.47435144-1.43749336C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                 | Н  | 1.84526473  | -4.52804437 | -0.94026817 |  |
| C-1.90350514-0.916570324.71763355H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н  | 3.36511779  | -4.47435144 | -1.43749336 |  |
| H-2.84296254-0.779302944.95787413H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | С  | -1.90350514 | -0.91657032 | 4.71763355  |  |
| H-1.33868363-0.315858085.24673573H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н  | -2.84296254 | -0.77930294 | 4.95787413  |  |
| H-1.65170758-1.846314614.89919257C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.31170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н  | -1.33868363 | -0.31585808 | 5.24673573  |  |
| C3.12675709-3.770645160.48502707H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.31170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н  | -1.65170758 | -1.84631461 | 4.89919257  |  |
| H4.11672143-3.780583850.50669353H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.31170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С  | 3.12675709  | -3.77064516 | 0.48502707  |  |
| H2.80600334-4.527036021.03672531C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н  | 4.11672143  | -3.78058385 | 0.50669353  |  |
| C2.63730145-2.476147771.09860746H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н  | 2.80600334  | -4.52703602 | 1.03672531  |  |
| H2.09610058-2.594190691.93030121C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С  | 2.63730145  | -2.47614777 | 1.09860746  |  |
| C3.36410910-1.285794571.05040688H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н  | 2.09610058  | -2.59419069 | 1.93030121  |  |
| H3.25691367-0.706146391.85846078C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Irr1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С  | 3.36410910  | -1.28579457 | 1.05040688  |  |
| C4.69295947-1.141350380.35895080H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н  | 3.25691367  | -0.70614639 | 1.85846078  |  |
| H5.37890369-1.631010810.87923758H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С  | 4.69295947  | -1.14135038 | 0.35895080  |  |
| H4.94776565-0.184713090.35261594C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н  | 5.37890369  | -1.63101081 | 0.87923758  |  |
| C4.70322876-1.66282650-1.07786210H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н  | 4.94776565  | -0.18471309 | 0.35261594  |  |
| H5.34170502-1.12680207-1.61174552H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С  | 4.70322876  | -1.66282650 | -1.07786210 |  |
| H5.01675954-2.60064950-1.07986237B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Н  | 5.34170502  | -1.12680207 | -1.61174552 |  |
| B1.187569041.215921290.40969281Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н  | 5.01675954  | -2.60064950 | -1.07986237 |  |
| Ir1.70046460-1.11273560-0.43250744N-1.68085804-0.120051320.49732220N-1.533271171.88505371-0.80240432P0.133234282.00090436-0.98872266Si0.02433855-0.277391301.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | В  | 1.18756904  | 1.21592129  | 0.40969281  |  |
| N         -1.68085804         -0.12005132         0.49732220           N         -1.53327117         1.88505371         -0.80240432           P         0.13323428         2.00090436         -0.98872266           Si         0.02433855         -0.27739130         1.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ir | 1.70046460  | -1.11273560 | -0.43250744 |  |
| N         -1.53327117         1.88505371         -0.80240432           P         0.13323428         2.00090436         -0.98872266           Si         0.02433855         -0.27739130         1.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N  | -1.68085804 | -0.12005132 | 0.49732220  |  |
| P 0.13323428 2.00090436 -0.98872266<br>Si 0.02433855 -0.27739130 1.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N  | -1.53327117 | 1.88505371  | -0.80240432 |  |
| Si 0.02433855 -0.27739130 1.02201979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P  | 0.13323428  | 2.00090436  | -0.98872266 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Si | 0.02433855  | -0.27739130 | 1.02201979  |  |

| Excitation energi<br>Excited state sym<br>Excited State<br>183 -> 184<br>183 <- 184<br>This state for o<br>Total Energy, E(<br>Copying the exci | es and oscillator streng<br>metry could not be deter<br>1: Triplet-?Sym<br>0.72208<br>0.18298<br>ptimization and/or secon<br>TD-HF/TD-DFT) = -2464.2<br>ted state density for th | nths:<br>mined.<br>0.5965 eV 2078.48 nm<br>nd-order correction.<br>25900166<br>his state as the 1-par | f=0.0000<br>ticle RhoCI | <\$**2>=2.000       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------|---------------------|
| Excited state sy<br>Excited State<br>177 -> 184<br>178 -> 184<br>179 -> 184<br>182 -> 184<br>182 -> 184<br>182 <- 184                           | mmetry could not be dete<br>2: Triplet-?Sym<br>-0.24998<br>-0.11118<br>0.10838<br>0.67837<br>-0.10434<br>0.23601                                                                 | ermined.<br>0.7983 eV 1553.02 nm                                                                      | f=0.0000                | <s**2>=2.000</s**2> |
| Excited state sy<br>Excited State<br>177 -> 184<br>182 -> 184<br>183 -> 184                                                                     | mmetry could not be dete<br>3: Singlet-?Sym<br>0.10133<br>-0.27622<br>0.63634                                                                                                    | ermined.<br>1.1643 eV 1064.84 nm                                                                      | f=0.0017                | <s**2>=0.000</s**2> |
| Excited state sy<br>Excited State<br>178 -> 184<br>179 -> 184<br>181 -> 184                                                                     | mmetry could not be dete<br>4: Triplet-?Sym<br>0.40020<br>0.53824<br>0.14502                                                                                                     | ermined.<br>2.1190 eV 585.10 nm                                                                       | f=0.0000                | <s**2>=2.000</s**2> |
| Excited state sy<br>Excited State<br>179 -> 184<br>182 -> 184<br>183 -> 184                                                                     | mmetry could not be dete<br>5: Singlet-?Sym<br>0.25077<br>0.56978<br>0.29663                                                                                                     | ermined.<br>2.1455 eV 577.89 nm                                                                       | f=0.0245                | <\$**2>=0.000       |
| Excited state sy<br>Excited State<br>177 -> 184<br>178 -> 184<br>179 -> 184<br>180 -> 184                                                       | mmetry could not be dete<br>6: Triplet-?Sym<br>-0.28157<br>0.46859<br>-0.32725<br>0.24313                                                                                        | ermined.<br>2.3087 eV 537.03 nm                                                                       | f=0.0000                | <s**2>=2.000</s**2> |
| Excited state sy<br>Excited State<br>177 -> 184<br>179 -> 184<br>180 -> 184<br>181 -> 184<br>182 -> 184                                         | mmetry could not be dete<br>7: Singlet-?Sym<br>0.24674<br>0.54563<br>-0.19552<br>0.13467<br>-0.20794                                                                             | ermined.<br>2.4073 eV 515.04 nm                                                                       | f=0.0059                | <s**2>=0.000</s**2> |
| Excited state sy<br>Excited State<br>177 -> 184<br>178 -> 184<br>179 -> 184<br>180 -> 184                                                       | mmetry could not be dete<br>8: Singlet-?Sym<br>-0.15833<br>0.62077<br>0.21086<br>0.12872                                                                                         | ermined.<br>2.6510 eV 467.69 nm                                                                       | f=0.0233                | <5**2>=0.000        |
| Excited state sy<br>Excited State<br>177 -> 184<br>178 -> 184<br>180 -> 184<br>181 -> 184<br>182 -> 184                                         | mmetry could not be dete<br>9: Triplet-?Sym<br>-0.29674<br>-0.20374<br>0.16888<br>0.52029<br>-0.13246                                                                            | ermined.<br>2.9137 eV 425.52 nm                                                                       | f=0.0000                | <s**2>=2.000</s**2> |
| Excited state sy<br>Excited State 1<br>170 -> 184<br>171 -> 184<br>172 -> 184                                                                   | mmetry could not be dete<br>0: Triplet-?Sym<br>-0.20288<br>-0.28639<br>0.35494                                                                                                   | ermined.<br>2.9629 eV 418.46 nm                                                                       | f=0.0000                | <s**2>=2.000</s**2> |

| $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                                        |                    |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| Excited state symmetry could not be determined.<br>Excited State 11: Singlet-?Sym 3.1520 eV<br>177 -> 184 -0.41940<br>178 -> 184 -0.22101<br>180 -> 184 0.12788<br>181 -> 184 0.46920                                                                                                                                       | 393.35 nm f=0.0106 | <s**2>=0.000</s**2> |
| Excited state symmetry could not be determined.<br>Excited State 12: Triplet-?Sym 3.1609 eV<br>170 -> 184 0.15923<br>172 -> 184 0.21850<br>173 -> 184 -0.10585<br>177 -> 184 0.32381<br>178 -> 184 0.15715<br>179 -> 184 -0.17872<br>180 -> 184 -0.11991<br>181 -> 184 0.34542<br>182 -> 184 0.23438<br>183 -> 189 0.12294  | 392.25 nm f=0.0000 | <s**2>=2.000</s**2> |
| Excited state symmetry could not be determined.<br>Excited State 13: Triplet-?Sym 3.2017 eV<br>183 -> 185 0.62467<br>183 -> 191 0.17974<br>183 -> 192 -0.15066                                                                                                                                                              | 387.25 nm f=0.0000 | <s**2>=2.000</s**2> |
| Excited state symmetry could not be determined.<br>Excited State 14: Singlet-?Sym 3.3814 eV<br>183 -> 185 0.65480<br>183 -> 191 0.15596<br>183 -> 192 -0.12938                                                                                                                                                              | 366.66 nm f=0.0132 | <s**2>=0.000</s**2> |
| Excited state symmetry could not be determined.<br>Excited State 15: Singlet-?Sym 3.5406 eV<br>172 -> 184 0.15134<br>177 -> 184 0.29713<br>178 -> 184 0.15015<br>179 -> 184 -0.20129<br>180 -> 184 -0.17717<br>181 -> 184 0.45984<br>182 -> 184 0.18019                                                                     | 350.17 nm f=0.0157 | <s**2>=0.000</s**2> |
| Excited state symmetry could not be determined.<br>Excited State 16: Singlet-?Sym 3.6413 eV<br>170 -> 184 0.15803<br>171 -> 184 0.20636<br>172 -> 184 -0.24110<br>173 -> 184 0.20483<br>174 -> 184 -0.10820<br>177 -> 184 0.22403<br>180 -> 184 0.47403                                                                     | 340.50 nm f=0.1291 | <s**2>=0.000</s**2> |
| Excited state symmetry could not be determined.<br>Excited State 17: Triplet-?Sym 3.8132 eV<br>169 -> 184 -0.13103<br>170 -> 184 -0.12961<br>171 -> 184 -0.13983<br>172 -> 184 0.10362<br>180 -> 184 0.35854<br>181 -> 189 -0.12860<br>183 -> 187 0.14582<br>183 -> 188 0.12897<br>183 -> 189 0.35255<br>183 -> 190 0.13051 | 325.15 nm f=0.0000 | <s**2>=2.000</s**2> |
| Excited state symmetry could not be determined.<br>Excited State 18: Triplet-?Sym 3.8308 eV                                                                                                                                                                                                                                 | 323.65 nm f=0.0000 | <s**2>=2.000</s**2> |

|   | 172<br>174<br>177<br>180<br>183<br>183<br>183                       | -> 184<br>-> 184<br>-> 184<br>-> 184<br>-> 184<br>-> 187<br>-> 188<br>-> 189<br>-> 189                                      | 0.25483<br>-0.10598<br>0.10533<br>0.37128<br>-0.15649<br>-0.16324<br>-0.23886<br>-0.21326                            |                        |           |          |                     |
|---|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------|-----------|----------|---------------------|
| - | Excited<br>Excited<br>183<br>183                                    | <pre>state symmet State 19: -&gt; 187 -&gt; 188</pre>                                                                       | ry could not be det<br>Singlet-?Sym<br>0.22695<br>0.18958                                                            | termined.<br>4.0667 eV | 304.88 nm | f=0.0362 | <s**2>=0.000</s**2> |
| - | 183<br>183                                                          | -> 189<br>-> 190                                                                                                            | 0.58522<br>0.14606                                                                                                   |                        |           |          |                     |
|   | Excited<br>Excited<br>169<br>171<br>172<br>173<br>174<br>177<br>180 | <pre>state symmet State 20: -&gt; 184 -&gt; 184</pre> | ry could not be det<br>Singlet-?Sym<br>-0.12762<br>-0.22254<br>0.42914<br>-0.19147<br>-0.14006<br>0.10660<br>0.35895 | 4.1245 eV              | 300.60 nm | f=0.0292 | <s**2>=0.000</s**2> |
|   | 177<br>180                                                          | -> 184<br>-> 184                                                                                                            | 0.10660<br>0.35895                                                                                                   |                        |           |          |                     |

Table S6. Cartesian coordinates and theoretical UV-Vis spectrum for 6.

#### M06-2X/def2-TZVP

| Atomic<br>Number | Coo<br>X                   | Coordinates (Angstroms)<br>X Y |                           |  |  |  |
|------------------|----------------------------|--------------------------------|---------------------------|--|--|--|
| С                | 0.0000000                  | 0.00000000                     | 0.00000000                |  |  |  |
| С                | 0.0000000                  | 0.0000000                      | 1.38989100                |  |  |  |
| C                | 1.20511300                 | 0.00000000                     | 2.08459500                |  |  |  |
| H                | 1.20486000                 | -0.00031200                    | 3.03462400                |  |  |  |
| н                | 2.40783300                 | -0.00022100                    | 1 86390200                |  |  |  |
| C                | 2.40695900                 | 0.00007700                     | -0.00077300               |  |  |  |
| H                | 3.23007700                 | 0.00038600                     | -0.47606400               |  |  |  |
| С                | 1.20336200                 | 0.00059800                     | -0.69559900               |  |  |  |
| С                | 1.27597600                 | -0.05539200                    | -2.22709600               |  |  |  |
| Н                | 0.34029400                 | -0.11194800                    | -2.57435500               |  |  |  |
| С                | 1.91052400                 | 1.21946500                     | -2.79962400               |  |  |  |
| H                | 1.94289200                 | 1.15762600                     | -3.77757200               |  |  |  |
| H                | 2.82070300                 | 1.31781700                     | -2.44910800               |  |  |  |
| H                | 1.3/456/00                 | 1.99/21600                     | -2.53939000               |  |  |  |
| L<br>L           | 1 99808500                 | -1.33929800                    | -3 69935300               |  |  |  |
| H                | 1.62210600                 | -2.10562300                    | -2.34568300               |  |  |  |
| Н                | 2.97087500                 | -1.24863100                    | -2.43187000               |  |  |  |
| C                | -1.85361200                | -1.01382800                    | -1.23239800               |  |  |  |
| С                | -0.97560400                | -2.26263400                    | -1.38671700               |  |  |  |
| С                | -0.34683500                | -2.89895500                    | -0.32454300               |  |  |  |
| С                | 0.32749300                 | -4.09690800                    | -0.52946300               |  |  |  |
| Н                | 0.75680200                 | -4.53142400                    | 0.19692100                |  |  |  |
| С                | 0.37307300                 | -4.65777000                    | -1.79980100               |  |  |  |
| H                | 0.83500700                 | -5.47645500                    | -1.94231800               |  |  |  |
| C II             | -0.23492600                | -4.02200200                    | -2.8648/200               |  |  |  |
| н<br>С           | -0.22200000                | -2 82404900                    | -2 65995200               |  |  |  |
| н                | -1 35859500                | -2 38940700                    | -3 38626800               |  |  |  |
| C                | -4.73528700                | -0.40428500                    | -3.83243600               |  |  |  |
| C                | -3.58078100                | -0.02578400                    | -4.76292100               |  |  |  |
| Н                | -3.79171800                | -0.30863500                    | -5.67734400               |  |  |  |
| Н                | -2.76070900                | -0.47114900                    | -4.46422000               |  |  |  |
| Н                | -3.45068400                | 0.94552300                     | -4.74358900               |  |  |  |
| С                | -5.01483200                | -1.88873800                    | -4.01096200               |  |  |  |
| H                | -5.07077000                | -2.09750600                    | -4.96812400               |  |  |  |
| H                | -5.86358300                | -2.11673400                    | -3.57813000               |  |  |  |
| H                | -4.2904/500                | -2.40927700                    | -3.60614000               |  |  |  |
| L<br>H           | -5.98598600                | 0.41439200                     | -4.20180000               |  |  |  |
| H                | -5 83499800                | 1 35633100                     | -3 97556800               |  |  |  |
| Н                | -6.75591900                | 0.07642600                     | -3.70201700               |  |  |  |
| C                | -5.48687100                | -0.23660500                    | -0.83929500               |  |  |  |
| С                | -6.27055900                | -1.52221800                    | -1.04773000               |  |  |  |
| Н                | -6.75399800                | -1.74815500                    | -0.22615500               |  |  |  |
| Н                | -5.65275300                | -2.24891500                    | -1.27380600               |  |  |  |
| Н                | -6.91118500                | -1.39978500                    | -1.78017000               |  |  |  |
| С                | -6.42350800                | 0.96777300                     | -0.77344500               |  |  |  |
| H                | -7.12316200                | 0.80102700                     | -0.10801200               |  |  |  |
| H                | -6.83421100                | 1.11049100                     | -1.65130100               |  |  |  |
| п<br>С           | -J.91299300<br>-A 75117000 | 1./0402400<br>-0 333/7800      | -0.J1/93000<br>0 52172700 |  |  |  |
| н                | -4.75114000                | -0.35758400                    | 1.24797100                |  |  |  |
| H                | -4.16785900                | 0.44621900                     | 0.63451000                |  |  |  |
| H                | -4.21041100                | -1.15093500                    | 0.54312700                |  |  |  |
| С                | -4.11130200                | 3.13659500                     | -2.68356700               |  |  |  |
| С                | -4.69991900                | 4.07426400                     | -1.84198000               |  |  |  |
| С                | -5.15462400                | 5.28266300                     | -2.35659000               |  |  |  |
| С                | -5.02071200                | 5.55339400                     | -3.71278700               |  |  |  |
| С                | -4.43269100                | 4.61693700                     | -4.55530100               |  |  |  |
| С                | -3.97814000                | 3.40864800                     | -4 04011200               |  |  |  |

| С  | -0.42046400 | 4.68277700  | -1.91977300 |
|----|-------------|-------------|-------------|
| Н  | -0.05717000 | 5.55685600  | -1.66644300 |
| Н  | -1.26623100 | 4.80722200  | -2.39944700 |
| Н  | 0.21921700  | 4.22084500  | -2.50294600 |
| С  | -1.88475700 | 4.64619600  | 0.70785200  |
| Н  | -1.46049700 | 5.49368800  | 0.95672000  |
| Н  | -2.08723400 | 4.13121600  | 1.51522100  |
| Н  | -2.71418500 | 4.82768700  | 0.21794300  |
| С  | 0.89357600  | 3.38883500  | 0.51811300  |
| Н  | 1.24575600  | 4.25065300  | 0.82506600  |
| Н  | 1.54076700  | 2.96756500  | -0.08473600 |
| Н  | 0.73961700  | 2.80578400  | 1.29113600  |
| В  | -3.47807800 | 1.82218800  | -2.04222800 |
| N  | -1.26220500 | 0.08327900  | -0.69773900 |
| N  | -3.00633800 | -1.06513300 | -1.82131900 |
| P  | -4.15969800 | 0.07167400  | -2.12344000 |
| Si | -1.86133000 | 1.74363300  | -1.11523000 |
| Si | -0.71645100 | 3.66088400  | -0.38677400 |
| С  | -1.35143400 | 0.13368700  | 2.09679700  |
| Н  | -2.14871300 | 0.21255600  | 1.34890600  |
| С  | -1.59335000 | -1.09854000 | 2.97261400  |
| Н  | -0.79607100 | -1.17740900 | 3.72050500  |
| Н  | -1.59635700 | -1.99749000 | 2.34564100  |
| Н  | -2.56080300 | -1.00283600 | 3.47866800  |
| С  | -1.34723300 | 1.38942900  | 2.97261300  |
| Н  | -0.54995400 | 1.31056100  | 3.72050500  |
| Н  | -2.31468700 | 1.48513200  | 3.47866700  |
| Н  | -1.17405300 | 2.27154600  | 2.34564000  |
| Н  | -0.38403100 | -2.45669300 | 0.67757300  |
| Н  | -4.80478100 | 3.86037000  | -0.77218200 |
| Н  | -3.51394800 | 2.66963500  | -4.70313700 |
| Н  | -4.32686300 | 4.83036200  | -5.62509800 |
| Н  | -5.61818900 | 6.02177700  | -1.69323900 |
| H  | -5.37874700 | 6.50584300  | -4.12005600 |
|    |             |             |             |

Excitation energies and oscillator strengths: -----\_\_\_\_\_ Excited state symmetry could not be determined. Excited State 1: Triplet-?Sym 1.6702 eV 742.32 nm f=0.0000 <S\*\*2>=2.000 0.52897 166 -> 167 166 -> 168 0.40219 -0.19554 166 -> 170 -0.13690 166 -> 171 166 <- 167 0.11138 166 <- 168 0.10025 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -2458.47637398Copying the excited state density for this state as the 1-particle RhoCI density. \_\_\_\_\_ \_\_\_\_\_ Excited state symmetry could not be determined. Excited State 2: Triplet-?Sym 3.1021 eV 399.68 nm f=0.0000 <S\*\*2>=2.000 166 -> 167 -0.38804 166 -> 168 0.43179 166 -> 170 -0.19227 166 -> 172 0.13532 -0.23907 166 -> 174 166 -> 176 0.10382 \_\_\_\_\_ \_\_\_\_\_ Excited state symmetry could not be determined. Excited State 3: Singlet-?Sym 3.1653 eV 391.70 nm f=0.1374 <S\*\*2>=0.000 166 -> 167 0.67108 0.10818 166 -> 168 \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ Excited state symmetry could not be determined. Excited State 4: Triplet-?Sym 3.2706 eV 379.09 nm f=0.0000 <S\*\*2>=2.000 166 -> 168 -0.24298 166 -> 170 -0.29291 166 -> 171 0.15387 166 -> 172 0.43648 166 -> 173 0.10933 166 -> 174 -0.10082 -0.21211 0.14393 0.11451 166 -> 176 166 -> 177 166 -> 179 \_\_\_\_\_ Excited state symmetry could not be determined. Excited State 5: Singlet-?Sym 3.6970 eV 335.36 nm f=0.1371 <S\*\*2>=0.000 166 -> 168 0.58911 166 -> 170 -0.16101 166 -> 172 0.16769 166 -> 174 -0.20947 166 -> 175 0.15066 \_\_\_\_\_ \_\_\_\_\_ Excited state symmetry could not be determined. Excited State 6: Singlet-?Sym 3.7340 eV 332.04 nm f=0.0123 <S\*\*2>=0.000 166 -> 168 -0.29712 166 -> 170 -0.30612 166 -> 171 0.13927 166 -> 172 0.44825 166 -> 175 0.22510 166 -> 176 -0.10517 \_\_\_\_\_ \_\_\_\_\_ Excited state symmetry could not be determined. Excited State 7: Triplet-?Sym 3.8046 eV 325.88 nm f=0.0000 <S\*\*2>=2.000 166 -> 169 0.10170 0.10170 166 -> 170 0.12230 166 -> 171 -0.14964 0.13580 166 -> 172 166 -> 173 -0.22332

| 166                                                                                                                                                                                            | -> 174<br>-> 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15160<br>55080                                                                                                                                |                                         |                 |                      |                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|----------------------|---------------------------------------------|--|
| 166                                                                                                                                                                                            | -> 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10912                                                                                                                                         |                                         |                 |                      |                                             |  |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                         |                 |                      |                                             |  |
| Excited                                                                                                                                                                                        | state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | symmetry c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | could not be                                                                                                                                  | determined.                             |                 |                      |                                             |  |
| Excited                                                                                                                                                                                        | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Triplet-?Sy                                                                                                                                   | m 3.9664 e                              | eV 312.58 nm    | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 165                                                                                                                                                                                            | -> 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47390                                                                                                                                         |                                         |                 |                      |                                             |  |
| 165                                                                                                                                                                                            | -> 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ο.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35166                                                                                                                                         |                                         |                 |                      |                                             |  |
| 165                                                                                                                                                                                            | -> 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15509                                                                                                                                         |                                         |                 |                      |                                             |  |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                         |                 |                      |                                             |  |
| Excited                                                                                                                                                                                        | state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | symmetry c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | could not be                                                                                                                                  | determined.                             |                 |                      |                                             |  |
| Excited                                                                                                                                                                                        | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Triplet-?Sy                                                                                                                                   | m 4.1055 e                              | eV 301.99 nm    | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 163                                                                                                                                                                                            | -> 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15122                                                                                                                                         |                                         |                 |                      |                                             |  |
| 165                                                                                                                                                                                            | -> 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11234                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ο.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40992                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22836                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166<br>166                                                                                                                                                                                     | -> 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17543                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 0.<br>5 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14685                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16272                                                                                                                                         |                                         |                 |                      |                                             |  |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                         |                 |                      |                                             |  |
| Excited                                                                                                                                                                                        | -<br>state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | symmetry c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | could not be                                                                                                                                  | determined.                             |                 |                      |                                             |  |
| Excited                                                                                                                                                                                        | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Singlet-?Sy                                                                                                                                   | m 4.1260 e                              | eV 300.49 nm    | f=0.0534             | <s**2>=0.000</s**2>                         |  |
| 166                                                                                                                                                                                            | -> 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36787                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20785                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11540                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16738                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28742                                                                                                                                         |                                         |                 |                      |                                             |  |
| 166                                                                                                                                                                                            | -> 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16052                                                                                                                                         |                                         |                 |                      |                                             |  |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |                                         |                 |                      |                                             |  |
| Excited                                                                                                                                                                                        | state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | symmetry c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | could not be                                                                                                                                  | determined.                             |                 |                      |                                             |  |
| Excited                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               | 4 1 2 0 7                               |                 |                      |                                             |  |
|                                                                                                                                                                                                | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Triplet-?Sy                                                                                                                                   | m 4.1307e                               | ev 300.15 nm    | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158                                                                                                                                                                                            | State<br>-> 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11:<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Triplet-?Sy<br>15782                                                                                                                          | m 4.1307 e                              | ev 300.15 nm    | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158                                                                                                                                                                                     | State<br>-> 167<br>-> 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11:<br>7 -0.<br>8 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Triplet-?Sy<br>15782<br>15765                                                                                                                 | m 4.1307 e                              | ev 300.15 nm    | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158                                                                                                                                                                              | State<br>-> 167<br>-> 168<br>-> 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11:<br>-0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Triplet-?Sy<br>15782<br>15765<br>12344                                                                                                        | m 4.1307 é                              | ev 300.15 nm    | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>158<br>158                                                                                                                                                                | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11:<br>-0.<br>-0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262                                                                                      | m 4.1307 é                              | 2V 300.15 nm    | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>158<br>158<br>160<br>160                                                                                                                                                  | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11:<br>-0.<br>-0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401                                                                             | m 4.1307 e                              | 200.15 nm       | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160                                                                                                                                                  | State<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 168<br>-> 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351                                                                    | m 4.1307 e                              | 200.15 nm       | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>160<br>160<br>160<br>160                                                                                                                                                  | State<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 169<br>-> 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11:         2         -0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0. <td>Triplet-?Sy<br/>15782<br/>15765<br/>12344<br/>11542<br/>15262<br/>10401<br/>16351<br/>12891</td> <td>m 4.1307 e</td> <td>200.15 nm</td> <td>f=0.0000</td> <td><s**2>=2.000</s**2></td> <td></td>                                                                                               | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891                                                           | m 4.1307 e                              | 200.15 nm       | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161                                                                                                                                    | State<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 168<br>-> 168<br>-> 169<br>-> 171<br>-> 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11:         7         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Triplet-?Sy<br>15782<br>15765<br>12344<br>15542<br>15262<br>10401<br>16351<br>12891<br>18550                                                  | m 4.1307 e                              | 200.15 nm       | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>160<br>160<br>160<br>161<br>164                                                                                                                                           | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11:         2       -0.         3       0.         4       0.         5       0.         6       0.         7       0.         6       0.         7       0.         7       0.         7       0.         7       0.         7       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Triplet-?Sy<br>15782<br>15765<br>12344<br>15542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519                                         | m 4.1307 e                              | 200.15 nm       | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>160<br>160<br>160<br>161<br>164<br>164                                                                                                                                    | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 169<br>-> 171<br>-> 167<br>-> 167<br>-> 168<br>-> 169<br>-> 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11:         2       -0.         3       0.         4       0.         5       -0.         6       -0.         7       0.         7       0.         7       0.         8       -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Triplet-?Sy<br>15782<br>15765<br>12344<br>15542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221                       | m 4.1307 e                              | 200.15 nm       | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166                                                                                                                      | State -> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 169<br>-> 167<br>-> 166<br>-> 167<br>-> 166<br>-> 167<br>-> 166<br>-> 167<br>-> 166<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 169<br>-> | 11:         2       -0.         3       0.         4       0.         5       0.         6       0.         7       0.         7       0.         7       0.         8       -0.         9       0.         9       0.         9       0.         9       0.         9       0.         9       0.         9       0.         9       0.         9       0.         9       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Triplet-?Sy<br>15782<br>15765<br>12344<br>15542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503              | m 4.1307 e                              | 200.15 nm       | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166                                                                                                        | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 169<br>-> 174<br>-> 169<br>-> 174<br>-> 169<br>-> 174<br>-> 167<br>-> 169<br>-> 169<br>-> 169<br>-> 174<br>-> 169<br>-> 179<br>-> 169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11:         -0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.          0.          0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Triplet-?Sy<br>15782<br>15765<br>12344<br>1542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828      | m 4.1307 e                              | 200.15 nm       | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166                                                                                                        | State -> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 165<br>-> 165<br>-> 165<br>-> 165<br>-> 165<br>-> 165<br>-> 165<br>-> 165<br>-> 167<br>-> 168<br>-> 172<br>-> 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11:       -0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.         0.       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828     | m 4.1307 e                              |                 | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166                                                                                          | State -> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 166<br>-> 167<br>-> 166<br>-> 167<br>-> 166<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828     | m 4.1307 e                              |                 | f=0.0000             | <s**2>=2.000</s**2>                         |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>2000<br>Excited                                                                       | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 169<br>-> 171<br>-> 168<br>-> 168<br>-> 172<br>-> 174<br>-> 174<br>-> 174<br>-> 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br> | m 4.1307 e                              | <br>298.41 nm   | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>200<br>Excited<br>157                                                                 | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 169<br>-> 171<br>-> 167<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 174<br>-> 174<br>-> 174<br>-> 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11:<br>11:<br>-0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br> | m 4.1307 e<br>determined.<br>m 4.1548 e |                 | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>200<br>Excited<br>157<br>163                                                          | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 169<br>-> 170<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 174<br>-> 174<br>-> 174<br>-> 174<br>-> 174<br>-> 174<br>-> 174<br>-> 174<br>-> 175<br>-> 175<br>-> 175<br>-> 175<br>-> 175<br>-> 175<br>-> 175<br>-> 175<br>-> 175<br>-> 177<br>-> 167<br>-> 177<br>-> 167<br>-> 177<br>-> 167<br>-> 177<br>-> 167<br>-> 167<br>-> 177<br>-> 177<br>-> 177<br>-> 167<br>-> 177<br>-> 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11:<br>11:<br>-0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br> | m 4.1307 e<br>determined.<br>m 4.1548 e | <br>            | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>166<br>166<br>166                                                                     | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 174<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 168<br>-> 168<br>-> 174<br>-> 168<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 168<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br> | m 4.1307 e<br>determined.<br>m 4.1548 e | 200.15 nm       | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>Excited<br>157<br>163<br>163<br>163<br>163                                            | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 174<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 168<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 168<br>-> 174<br>-> 174<br>-> 167<br>-> 174<br>-> 167<br>-> 174<br>-> 167<br>-> 174<br>-> 167<br>-> 174<br>-> 177<br>-> 177<br>-> 174<br>-> 177<br>-> 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br> | m 4.1307 e<br>determined.<br>m 4.1548 e |                 | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>Excited<br>157<br>163<br>163<br>163<br>163<br>163                                     | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 166<br>-> 169<br>-> 170<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 174<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br> | m 4.1307 e<br>determined.<br>m 4.1548 e |                 | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>Excited<br>157<br>163<br>163<br>163<br>163<br>163<br>164                              | State<br>-> 167<br>-> 168<br>-> 168<br>-> 174<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 174<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 168<br>-> 174<br>-> 174<br>-> 168<br>-> 174<br>-> 174<br>-> 168<br>-> 174<br>-> 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br> | m 4.1307 e                              | <br>v 298.41 nm | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>Excited<br>157<br>163<br>163<br>163<br>163<br>163<br>164<br>164                       | State<br>-> 167<br>-> 168<br>-> 167<br>-> 168<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 174<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 167<br>-> 168<br>-> 172<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 168<br>-> 174<br>-> 168<br>-> 168<br>-> 174<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 174<br>-> 169<br>-> 174<br>-> 169<br>-> 174<br>-> 169<br>-> 174<br>-> 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11:         -0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0.         0. <td>Triplet-?Sy<br/>15782<br/>15765<br/>12344<br/>11542<br/>15262<br/>10401<br/>16351<br/>12891<br/>18550<br/>27519<br/>16623<br/>11221<br/>10503<br/>18828<br/></td> <td>m 4.1307 e</td> <td></td> <td>f=0.0000<br/>f=0.0000</td> <td><s**2>=2.000<br/><s**2>=2.000</s**2></s**2></td> <td></td> | Triplet-?Sy<br>15782<br>15765<br>12344<br>11542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br> | m 4.1307 e                              |                 | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>163<br>163<br>163<br>163<br>163<br>163<br>164<br>164                                  | State<br>-> 167<br>-> 168<br>-> 169<br>-> 174<br>-> 167<br>-> 168<br>-> 169<br>-> 177<br>-> 167<br>-> 168<br>-> 172<br>-> 174<br>-> 168<br>-> 172<br>-> 174<br>-> 169<br>-> 177<br>-> 169<br>-> 170<br>-> 170<br>-> 169<br>-> 170<br>-> 169<br>-> 170<br>-> 169<br>-> 170<br>-> 170<br>-> 169<br>-> 170<br>-> 170<br>-> 169<br>-> 170<br>-> 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>1542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br>  | m 4.1307 e                              |                 | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>Excited<br>Excited<br>Excited<br>157<br>163<br>163<br>163<br>163<br>164<br>164<br>166<br>166 | State<br>-> 167<br>-> 168<br>-> 169<br>-> 167<br>-> 168<br>-> 166<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 167<br>-> 172<br>-> 172<br>-> 174<br>-> 167<br>-> 177<br>-> 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>1542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br>  | determined.<br>m 4.1548 e               | v 298.41 nm     | f=0.0000<br>f=0.0000 | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>Excited<br>Excited<br>157<br>163<br>163<br>163<br>163<br>163<br>164<br>166                   | State<br>-> 167<br>-> 168<br>-> 169<br>-> 169<br>-> 169<br>-> 169<br>-> 166<br>-> 169<br>-> 166<br>-> 166<br>-> 168<br>-> 168<br>-> 172<br>-> 167<br>-> 168<br>-> 168<br>-> 172<br>-> 167<br>-> 168<br>-> 169<br>-> 169<br>-> 168<br>-> 169<br>-> 169<br>-> 169<br>-> 169<br>-> 168<br>-> 169<br>-> 169<br>-> 168<br>-> 169<br>-> 168<br>-> 172<br>-> 168<br>-> 169<br>-> 168<br>-> 172<br>-> 169<br>-> 167<br>-> 168<br>-> 172<br>-> 175<br>-> 168<br>-> 172<br>-> 175<br>-> 168<br>-> 172<br>-> 175<br>-> 168<br>-> 175<br>-> 168<br>-> 172<br>-> 175<br>-> 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>1542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br>  | determined.<br>m 4.1548 a               | v 298.41 nm     | f=0.0000             | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |
| 158<br>158<br>158<br>158<br>160<br>160<br>160<br>160<br>161<br>164<br>164<br>165<br>166<br>166<br>166<br>163<br>163<br>163<br>163<br>163<br>163<br>164<br>164<br>166                           | State<br>-> 167<br>-> 168<br>-> 169<br>-> 169<br>-> 169<br>-> 166<br>-> 165<br>-> 165<br>-> 166<br>-> 166<br>-> 166<br>-> 168<br>-> 172<br>-> 167<br>-> 168<br>-> 172<br>-> 167<br>-> 168<br>-> 168<br>-> 172<br>-> 167<br>-> 168<br>-> 169<br>-> 168<br>-> 172<br>-> 167<br>-> 168<br>-> 172<br>-> 172<br>-> 177<br>-> 167<br>-> 168<br>-> 172<br>-> 177<br>-> 167<br>-> 168<br>-> 172<br>-> 177<br>-> 167<br>-> 168<br>-> 172<br>-> 177<br>-> 167<br>-> 175<br>-> 168<br>-> 172<br>-> 177<br>-> 168<br>-> 177<br>-> 168<br>-> 177<br>-> 168<br>-> 177<br>-> 168<br>-> 177<br>-> 167<br>-> 177<br>-> 177<br>-> 177<br>-> 177<br>-> 177<br>-> 177<br>-> 177<br>-> 168<br>-> 177<br>-> 178<br>-> 178<br>-> 177<br>-> 178<br>-> 177<br>-> 178<br>-> 177<br>-> 178<br>-> 178<br>-> 177<br>-> 178<br>-> 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11:<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.<br>-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Triplet-?Sy<br>15782<br>15765<br>12344<br>1542<br>15262<br>10401<br>16351<br>12891<br>18550<br>27519<br>16623<br>11221<br>10503<br>18828<br>  | determined.<br>m 4.1307 e               | 298.41 nm       | f=0.0000             | <s**2>=2.000<br/><s**2>=2.000</s**2></s**2> |  |

| 159     | ->  | 168       | 0.1027           | 6            |           |      |           |          |                     |  |
|---------|-----|-----------|------------------|--------------|-----------|------|-----------|----------|---------------------|--|
| 161     | ->  | 167       | -0.1081          | 2            |           |      |           |          |                     |  |
| 162     | ->  | 172       | 0.1380           | 2            |           |      |           |          |                     |  |
| 162     | ->  | 173       | -0.1759          | 9            |           |      |           |          |                     |  |
| 164     | ->  | 167       | -0.1115          | 6            |           |      |           |          |                     |  |
| 165     | ->  | 167       | 0.1394           | 3            |           |      |           |          |                     |  |
| 165     | ->  | 170       | -0.1587          | 1            |           |      |           |          |                     |  |
| 165     | ->  | 172       | 0.2144           | 5            |           |      |           |          |                     |  |
| 165     | ->  | 173       | 0.1103           | 3            |           |      |           |          |                     |  |
| 165     | ->  | 174       | 0.1166           | 6            |           |      |           |          |                     |  |
| 166     | ->  | 170       | 0.2356           | 1            |           |      |           |          |                     |  |
| 166     | ->  | 171       | 0.1961           | 0            |           |      |           |          |                     |  |
| 166     | ->  | 172       | 0.2226           | 7            |           |      |           |          |                     |  |
| 166     | ->  | 176       | 0.1712           | 9            |           |      |           |          |                     |  |
|         |     |           |                  |              |           |      |           |          |                     |  |
| Eveited | -   | +         | - www. a a u l d | not ho dot   | arminad   |      |           |          |                     |  |
| Excited | SLd | te Synnie | LIY COUID        | l not be det | .ermined. | - 17 | 202 44    | 5-0 0000 | <0++0>-0 000        |  |
| EXCILED | SLa | 1.67      | 0 1050           | ret-:sym     | 4.2232    | ev   | 293.44 nm | 1=0.0009 | <5^^2>=0.000        |  |
| 159     | -~  | 167       | 0.1050           | 6            |           |      |           |          |                     |  |
| 165     | -<  | 160       | 0.4/13           | 2            |           |      |           |          |                     |  |
| 165     | -<  | 170       | 0.2900           | S E          |           |      |           |          |                     |  |
| 105     | -/  | 171       | -0.1326          | 5            |           |      |           |          |                     |  |
| 165     | -/  | 1/1       | -0.1012          | 6            |           |      |           |          |                     |  |
| 166     | ->  | 109       | 0.2568           | 0            |           |      |           |          |                     |  |
| 166     | ->  | 175       | -0.1266          | 1            |           |      |           |          |                     |  |
| 166     | ->  | 1/5       | 0.1333           | 1            |           |      |           |          |                     |  |
|         | _   |           |                  |              |           |      |           |          |                     |  |
| Excited | sta | te symmet | try could        | not be det   | ermined.  |      |           |          |                     |  |
| Excited | Sta | te 15:    | Trip             | let-?Sym     | 4.2448    | eV   | 292.08 nm | f=0.0000 | <s**2>=2.000</s**2> |  |
| 165     | ->  | 173       | -0.1112          | 8            |           |      |           |          |                     |  |
| 166     | ->  | 167       | 0.1191           | 4            |           |      |           |          |                     |  |
| 166     | ->  | 169       | 0.4107           | 1            |           |      |           |          |                     |  |
| 166     | ->  | 170       | 0.1121           | 2            |           |      |           |          |                     |  |
| 166     | ->  | 171       | 0.2399           | 7            |           |      |           |          |                     |  |
| 166     | ->  | 173       | -0.2870          | 0            |           |      |           |          |                     |  |
| 166     | ->  | 174       | -0.1275          | 9            |           |      |           |          |                     |  |
| 166     | ->  | 175       | -0.1918          | 3            |           |      |           |          |                     |  |
|         |     |           |                  |              |           |      |           |          |                     |  |

-----

#### References

- [S1] Synthesis of compound 1: LiN(SiMe<sub>3</sub>)<sub>2</sub>.Et<sub>2</sub>O (0.579 g, 2.4 mmol) was added to N-phosphinoamidinato dichlorosilane (1.05 g, 2 mmol) in a reaction flask and cooled to -78 °C, followed by addition of toluene (50 ml). The reaction mixture was allowed to warm to room temperature and stirred overnight. The resulting suspension was filtered, and volatiles were removed. Crude product was extracted with heptane and decanted to obtain yellow solids. For details, see <u>https://hdl.handle.net/10356/170104</u>
- [S2] C. Gienger, L. Schynowski, J. Schaefer, C. Schrenk and A. Schnepf, *Eur. J. Inorg. Chem.*, 2023, **26**, e202200738.
- [S3] G. M. Sheldrick, SADABS V2014/4 (Bruker AXS Inc.), University of Göttingen, Germany, 2014.
- [S4] G. M. Sheldrick, SHELXL-2014/6 (Sheldrick, 2014); Bruker AXS Inc., Madison, WI, USA, 2014.
- [S5] Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215-241.
- [S6] F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.
- [S7] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [S8] R. E. Stratmann, G. E. Scuseria and M. J. Frisch, J. Chem. Phys., 1998, 109, 8218-8224.
- [S9] E. D. Glendening, C. R. Landis and F. Weinhold, J. Comput. Chem., 2013, 34, 1429-1437.