Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Diazomethyl-λ³-iodane Meets Aryne: Dipolar Cycloadditon and C-to-N Iodane Shift Leading to Indazolyl-λ³-iodanes

Shinya Otsuki,^[a] Kazuya Kanemoto,^[a]* Daniel Carter Martos,^[b] Eunsang Kwon,^[c,d] Joanna Wencel-Delord,^[b,e] and Naohiko Yoshikai^[a]*

- [a] Graduate School of Pharmaceutical Sciences Tohoku University Sendai 980-8578, Japan
- [b] Laboratoire d'Innovation Moléculaire et Applications (LIMA, UMR CNRS 7042)
 Université de Strasbourg/Université de Haute Alsace
 ECPM, 67087 Strasbourg, France
- [c] Research and Analytical Center for Giant Molecules, Graduate School of Science Tohoku University Sendai 980-8578, Japan
- [d] Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science Tohoku University Sendai 980-8578, Japan
- [e] Institute of Organic ChemistryJMU WürzburgAm Hubland, Würzburg, Germany

Table of Contents

1. Material and Methods	S3
2. Preparation of Starting Materials	S4
3. Reaction of Diazomethyl- λ^3 -iodanes with Arynes	S13
4. C(sp ³)–H Indazolylation of <i>N</i> , <i>N</i> -Dimethylanilines with Indazolyl- λ^3 -iodanes	S35
5. Competition Experiments to Evaluate Arynophilicity of Diazomethyl- λ^3 -iodane	S38
6. X-Ray Crystallographic Analysis	S40
7. DFT Calculations	S42
8. References	S58
9. ¹ H and ¹³ C NMR Spectra	S60

1. Material and Methods

General. All reactions dealing with air- or moisture-sensitive compounds were performed by standard Schlenk techniques in oven-dried reaction vessels under argon. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. Column chromatography was performed using flash chromatography with 40-63 µm silica gel (Silica Gel 60N, Kanto Chemical Co., Inc.). Preparative thin layer chromatography was conducted using a 20 ×20 cm glass sheet coated with a 1mm thick layer of silica gel (FUJIFILM Wako Pure Chemical Corporation, Wakogel[®] B-5F, Cat. No. 230-00043). ¹H, ¹³C, ¹⁹F, and ³¹P nuclear magnetic resonance (NMR) spectra were recorded on a Varian Mercury (400 MHz) or a JEOL-ECA600 (600 MHz) spectrometer. ¹H and ¹³C NMR spectra were reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0.00 ppm for ¹H NMR in CDCl₃) and CHCl₃ (77.16 ppm for ¹³C NMR in CDCl₃), respectively. ¹⁹F NMR spectra are referenced to external standard (CF₃CO₂H, -76.6 ppm in CDCl₃). ³¹P NMR spectra are referenced to external standard (PPh₃, -6.0 ppm in CDCl₃). The following abbreviations (or combinations thereof) indicate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Melting points were determined with an MPA100 OptiMelt apparatus. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-DX-303, a JEOL JMS-700, or a JEOL JMS-T100GC spectrometer with a magnetic sector time-of-flight mass analyzer.

Materials. Unless otherwise noted, commercial reagents were purchased from Tokyo Chemical Industry Co., Ltd., Kanto Chemical Co., Inc., Signa-Aldrich Japan, FUJIFILM Wako Pure Chemical Corporation, and other commercial suppliers and were used as received. Anhydrous DMSO, DMF, and THF were purchased from FUJIFILM Wako Pure Chemical Corporation and were used as received.

2. Preparation of Starting Materials

Figure S1 shows the aryne- and iodane-related starting materials used in this study. 3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[*d*][1,2]iodaoxol-1(3H)-yl acetate (acetoxy benziodoxole, **AcOBX**) was prepared according to the literature procedure.¹ Aryne precursors **1a**, **1b**, **1e**, **1f**, **1h**, and **1i** were commercially purchased and used without further purification. Substrates **1c**,² **1d**,² **1g**,³ **1j**,⁴ **1k**,⁵ **1l**,⁴ **1m**,⁶ and **1n**⁶ were synthesized according to the reported procedures. Preparation of substrates **2a–2n** is described below.

Figure S1. Substrates used in this study.

Synthesis of diazomethyl- λ^3 -iodanes (2)

F ₃ C- F ₃ (+ _H ^{N₂}	CO_2Et $Me_3SiOT base ($	$\begin{array}{c} \text{ff (1.0 equiv)} \\ 1.1 equiv) \\ \hline \\ \hline \\ \text{nditions} \\ \end{array} \qquad \begin{array}{c} \text{F}_{3}\text{C} \\ \hline \\ \text{F}_{3}\text{C} \\ \end{array}$		
(0).50 mmol)	(1.2 €	equiv)		2a	
	entry	Х	Me ₃ SiOTf	base	conditions	yield
	1	OAc	1.0 equiv	pyridine (1.1 equiv)	CH ₂ Cl ₂ , rt, 4 h	82%
	2	OTf	-	pyridine (1.1 equiv)	CH ₂ Cl ₂ , rt, 4 h	trace
	3	OTf	1.0 equiv	pyridine (1.1 equiv)	CH_2Cl_2 , rt, 4 h	70%
	4^a	OTf	-	pyridine (2.0 equiv)	CH ₂ Cl ₂ , 0 °C, 21 h	13%
	5 ^{<i>a</i>}	OTf	-	DIPEA (2.0 equiv)	CH ₂ Cl ₂ , 0 °C, 21 h	complex
	6	Cl	-	pyridine (1.1 equiv)	CH ₂ Cl ₂ , rt, 24 h	N.R.
	7	OAc	1.0 equiv	pyridine (1.1 equiv)	DCE, 50 °C, 4 h	80%

Table S1. Optimization of diazomethylbenziodoxol (2a) synthesis

^{*a*}BXT (1.2 equiv) and diazo compound (1.0 equiv) were used.

General Procedure A: Under an argon atmosphere, to a mixture of AcOBX (0.21 g, 0.49 mmol, 1.0 equiv) suspended in dichloromethane (1.0 mL, 0.5 M) was added trimethylsilyl trifluoromethanesulfonate (90 μ L, 0.50 mmol, 1.0 equiv) at room temperature. The resulting mixture was stirred for 10 minutes at this temperature, followed by slow addition of pyridine (45 μ L, 0.58 mmol, 1.1 equiv). The resulting mixture was stirred for 1 h, followed by slow addition of a solution of 2-diazo compounds (0.60 mmol, 1.2 equiv) in dichloromethane (0.20 mL). The reaction mixture was stirred for 4 h at room temperature and then was washed with water (10 mL x 2), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 27 g, hexane/ethyl acetate = 10/1 to 3/1) to afford the desired compound **2**.

General Procedure B: Under an argon atmosphere, to a mixture of AcOBX (0.21 g, 0.49 mmol, 1.0 equiv) suspended in 1,2-dichloroethane (1.0 mL, 0.5 M) was added trimethylsilyl trifluoromethanesulfonate (90 μ L, 0.50 mmol, 1.0 equiv) at room temperature. The resulting mixture was stirred for 10 minutes at this temperature, followed by slow addition of pyridine (45 μ L, 0.58 mmol, 1.1 equiv). The resulting mixture was stirred for 1 h, followed by slow addition of

a solution of 2-diazo compounds (0.60 mmol, 1.2 equiv) in 1,2-dichloroethane (0.20 mL). The reaction mixture was stirred for 4 h at 50 °C and then was washed with water (10 mL x 2), dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, 27 g, hexane/ethyl acetate = 10/1 to 3/1) to afford the desired compound **2**.

Ethyl 2-(3,3-bis(trifluoromethyl)-1 λ^3 -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazoacetate (2a) EtO₂C

General Procedure A: Yellow solid (200 mg, 85%); m.p. 120-123 °C; R_f 0.26 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.83 (m, 1H), 7.72-7.68 (m, 2H), 7.57-7.53 (m, 1H), 4.28 (q, J=7.2 Hz, 2H), 1.28 (t, J=7.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.5, 132.9, 131.13, 131.08, 130.6, 126.4, 123.5 (q, J_{C-F} = 289.5 Hz), 111.8, 82.1-81.5 (m), 62.8, 36.9, 14.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for C₁₃H₁₀F₆IN₂O₃⁺ [M+H]⁺ 482.9635, found 482.9638.

Benzyl 2-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazoacetate (2b) BnO₂C

General Procedure A: Yellow solid (342 mg, 63%); m.p. 125-127 °C; $R_f 0.20$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 7.4 Hz, 1H), 7.69 (app. t, J = 7.3 Hz, 1H), 7.62 (app. t, J = 7.7 Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 7.37-7.26 (m, 5H), 5.25 (s, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 164.4, 135.1, 133.0, 131.1, 131.0, 130.6, 128.64, 128.60, 128.2, 126.4, 123.5 (q, J_{C-F} = 289.4 Hz), 111.8, 82.0-81.7 (m), 68.1, 36.8; ¹⁹FNMR (376 MHz, CDCl₃) δ -76.1; HRMS (FAB⁺) Calcd for C₁₈H₁₂F₆IN₂O₃⁺ [M+H]⁺ 544.9791, found 544.9790.

4-Methylphenyl 2- $(3,3-bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazoacetate (2c)$

General Procedure B: Yellow solid (441 mg, 54%); m.p. 140-143 °C; $R_f 0.46$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 6.8 Hz, 1H), 7.79-7.66 (m, 3H), 7.17 (d, J = 8.2

Hz, 2H), 6.99 (d, J = 8.6 Hz, 2H), 2.34 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 163.3, 148.3, 136.0, 133.1, 131.3, 131.1, 130.8, 130.0, 126.4, 123.5 (q, $J_{C-F} = 288.7$ Hz), 120.9, 111.9, 36.9, 20.8 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ – 76.0; HRMS (FAB⁺) Calcd for C₁₈H₁₂F₆IN₂O₃⁺ [M+H]⁺ 544.9791, found 544.9806.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-phenylethan-1-one (2d)

General Procedure A: Yellow solid (112 mg, 43%); m.p. 94-97 °C; R_f 0.41 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 6.0 Hz, 1H), 7.73-7.68 (m, 4H), 7.61-7.43 (m, 4H); ¹³C{¹H} NMR (150MHz, CDCl₃) δ 186.8, 135.2, 133.1, 132.8, 131.3, 131.2, 130.7, 129.0, 127.5, 126.6, 123.5 (q, $J_{C-F} = 288.8$ Hz), 111.4, 82.0-81.6 (m), 49.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for C₁₇H₁₀F₆IN₂O₂⁺ [M+H]⁺ 514.9686, found 514.9686.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(4-methoxyphenyl)ethan-1-one (2e)

General Procedure A: Yellow solid (247 mg, 46%); m.p. 97-100 °C; R_f 0.48 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 6.0 Hz, 1H), 7.71-7.66 (m, 4H), 7.55 (d, J = 7.6 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 185.2, 163.3, 133.1, 131.3, 131.2, 130.7, 130.0, 127.7, 126.6, 123.5 (q, $J_{C-F} = 289.1$ Hz), 114.2, 111.5, 55.6, 48.9 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ – 75.9; HRMS (FAB⁺) Calcd for C₁₈H₁₂F₆IN₂O₃⁺ [M+H]⁺ 544.9791, found 544.9810.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(4-methylphenyl)ethan-1-one (2f)

General Procedure B: Yellow solid (184 mg, 35%); m.p. 110-113 °C; R_f 0.44 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.3 Hz, 1H), 7.73-7.66 (m, 2H), 7.60 (d, J = 8.2 Hz, 2H), 7.57-7.53 (m, 1H), 7.30 (d, J = 8.2 Hz, 2H), 2.44 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.4, 143.8, 133.1, 132.5, 131.3, 131.2, 130.7, 129.6, 127.7, 126.6, 123.5 (q, J_{C-F} = 289.4 Hz), 111.5, 49.3, 21.6 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ –75.9; HRMS (FAB⁺) Calcd for C₁₈H₁₂F₆IN₂O₂⁺ [M+H]⁺ 528.9842, found 528.9835.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(4-chlorophenyl)ethan-1-one (2g)

General Procedure B: Yellow solid (202 mg, 37%); m.p. 107-110 °C; R_f 0.44 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 6.7 Hz, 1H), 7.75-7.69 (m, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.55-7.51 (m, 1H), 7.48 (d, J = 8.4 Hz, 2H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 185.6, 139.2, 133.5, 133.2, 131.32, 131.30, 130.8, 129.3, 129.0, 126.6, 123.5 (q, $J_{C-F} = 289.4$ Hz), 111.5, 82.1-81.5 (m), 49.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for C₁₇H₉³⁵ClF₆IN₂O₂⁺ [M+H]⁺ 548.9296, found 548.9310.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(m-tolyl)ethan-1-one (2h)

General Procedure B: Yellow solid (145 mg, 27%); m.p. 101-104 °C; R_f 0.49 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.85 (m, 1H), 7.73-7.67 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.46 (m, 2H), 7.42-7.35 (m, 2H), 2.39 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 187.0, 139.1, 135.2, 133.6, 133.1, 131.3, 131.2, 130.7, 128.8, 128.1, 126.6, 124.6, 123.5 (q, $J_{C-F} = 287.6$ Hz), 111.5, 82.0-81.6 (m), 49.4, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd

for C₁₈H₁₂F₆IN₂O₂⁺ [M+H]⁺ 528.9842, found 528.9859.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(3-methoxyphenyl)ethan-1-one (2i)

General Procedure B: Yellow solid (248 mg, 46%); m.p. 90-93 °C; R_f 0.29 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.84 (m, 1H), 7.73-7.67 (m, 2H), 7.58-7.55 (m, 1H), 7.39 (app. t, J = 8.0 Hz, 1H), 7.26-7.23 (m, 1H), 7.19-7.18 (m, 1H), 7.11 (dd, J = 8.2, 2.6 Hz, 1H), 3.81 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.6, 160.0, 136.4, 133.1, 131.29, 131.25, 130.8, 130.0, 126.5, 123.5 (q, $J_{C-F} = 288.3$ Hz), 119.6, 119.0, 112.5, 111.5, 55.4, 49.5 (signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for C₁₈H₁₂F₆IN₂O₃⁺ [M+H]⁺ 544.9791, found 544.9889.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(2-methoxyphenyl)ethan-1-one (2j)

General Procedure A: Yellow solid (223 mg, 51%); m.p. 93-96 °C; R_f 0.24 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.85 (m, 1H), 7.80-7.76 (m, 1H), 7.72-7.65 (m, 2H), 7.49 (app. dt, J = 7.7, 1.6 Hz, 1H), 7.44 (dd, J = 7.6, 1.6 Hz, 1H), 7.08 (app. t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.6, 155.9, 133.0, 132.7, 131.0, 130.8, 130.4, 129.5, 126.8, 125.4, 123.3 (q, $J_{C-F} = 289.4$ Hz), 121.4, 111.5, 111.0, 81.9-81.4 (m), 55.9 (signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for C₁₈H₁₂F₆IN₂O₃⁺ [M+H]⁺ 544.9791, found 544.9788.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(3,4-methoxyphenyl)ethan-1-one (2k)

General Procedure A: Yellow solid (186 mg, 32%); m.p. 109-112 °C; $R_f 0.12$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.90-7.85 (m, 1H), 7.73-7.68 (m, 2H), 7.61-7.58 (m, 1H), 7.36 (dd, J = 8.4, 2.1 Hz, 1H), 7.24 (d, J = 2.0 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.85 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 185.0, 152.9, 149.2, 132.9, 131.1, 131.0, 130.5, 127.6, 126.4, 123.3 (q, $J_{C-F} = 289.4$ Hz), 121.4, 111.4, 110.6, 110.1, 55.9, 55.7, 48.6 (signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for C₁₉H₁₄F₆IN₂O₄⁺ [M+H]⁺ 574.9897, found 574.9890.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(naphthalen-2-yl)ethan-1-one (2l)

General Procedure A: Yellow solid (223 mg, 40%); m.p. 73-76 °C; R_f 0.20 (*n*-hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.97-7.87 (m, 4H), 7.76-7.71 (m, 3H), 7.66-7.57 (m, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.6, 135.2, 133.2, 132.4, 132.3, 131.31, 131.27, 130.8, 129.12, 129.11, 128.64, 128.57, 127.9, 127.3, 126.6, 123.7, 123.6 (q, J_{C-F} = 290.5 Hz), 111.6, 81.9-81.6 (m), 49.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for C₂₁H₁₂F₆IN₂O₂⁺ [M+H]⁺ 564.9842, found 564.9845.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-1-(pyridin-2-yl)ethan-1-one (2m)

General Procedure A: Yellow solid (340 mg, 75%); m.p. 107.1-116.2 °C; $R_f 0.37$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.63-8.56 (m, 1H), 8.04 (d, J = 7.9, 1H), 7.91 (app. dt, J = 8.6, 1.6 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.69-7.59 (m, 3H), 7.54-7.51 (m, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 182.9, 151.9, 148.0, 137.5, 132.9, 131.2, 130.9, 130.4, 127.5, 126.8, 123.6

(q, $J_{C-F} = 289.1$ Hz), 122.8, 111.5, 82.1-81.7 (m) (the signal for the carbon which is attached the diazo nitrogen was not observed); ¹⁹F NMR (376 MHz, CDCl₃) δ – 76.0; HRMS (FAB⁺) Calcd for C₁₆H₉F₆IN₃O₂⁺ [M+H]⁺ 515.9638, found 515.9646.

2-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-2-diazo-N,N-dimethylacetamide (2n)

General Procedure B: Yellow solid (45.7 mg, 19%); m.p. 108-111 °C; $R_f 0.13$ (hexane/EtOAc = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.83 (m, 1H), 7.72-7.62 (m, 3H), 3.08 (s, 6H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 163.5, 133.0, 131.3, 131.0, 130.6, 127.0, 123.5 (q, $J_{C-F} = 289.4$ Hz), 111.9, 38.5, 38.2 (the signals for the carbons attached to the diazo nitrogen and CF₃ groups were not observed); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.1; HRMS (FAB⁺) Calcd for C₁₃H₁₁F₆IN₃O₂⁺ [M+H]⁺ 481.9795, found 481.9784.

Ethyl (3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)(diazo)methanesulfonate (20)

General Procedure B: Yellow solid (205 mg, 42%); m.p. 105-108 °C; R_f 0.39 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J =7.5 Hz, 1H), 7.84-7.73 (m, 3H), 4.36 (q, J =7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 133.5, 131.6, 131.1, 130.6, 127.4, 123.3 (q, J_{C-F} = 288.7 Hz), 112.2, 82.4-82.0 (m), 68.3, 40.4, 14.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for C₁₂H₁₀F₆IN₂O₄S⁺ [M+H]⁺ 518.9305, found 518.9307.

Diethyl ((3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)(diazo)methyl)phosphonate (2p)

General Procedure B: Yellow solid (116.1 mg, 40%); m.p. 89-92 °C; $R_f 0.19$ (hexane/EtOAc = 1/1); ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.81 (m, 2H), 7.78-7.68 (m, 2H), 4.23-4.13 (m, 4H), 1.31 (t, J = 7.2 Hz, 6H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 132.7, 131.3, 131.1, 130.4, 127.2, 123.4 (q, $J_{C-F} = 289.0$ Hz), 111.4, 82.0-81.6 (m), 63.69, 63.65, 22.3 (d, $J_{C-P} = 207.9$ Hz), 16.1, 16.0;

¹⁹F NMR (376 MHz, CDCl₃) δ –76.1; ³¹P NMR (243 MHz, CDCl₃) δ 15.0; HRMS (FAB⁺) Calcd for C₁₄H₁₅F₆IN₂O₄P⁺ [M+H]⁺ 546.9713, found 546.9735.

3. Reaction of Diazomethyl- λ^3 -iodanes with Arynes

OMe SiMe ₃ OTf 1a (2.0 equiv)		EtO ₂ C + N ₂ C CF ₃ (0.10 mmol)	F ₃ conditions	activator <i>conditions</i> OMe <i>N CO</i> ₂ Et <i>CF</i> ₃ <i>CF</i> ₃ <i>CF</i> ₃ <i>CF</i> ₃ <i>CF</i> ₃ <i>CO</i> ₂ Et	
	entry	activator	solvent	conditions	yield
·	1	CsF (4.0 equiv)	MeCN	rt, 18 h	85%
	2	CsF (4.0 equiv)	DME	rt, 18 h	70% ^a
	3	CsF (4.0 equiv)	THF	rt, 18 h	65% ^a
	4	CsF (4.0 equiv)	Toluene	rt, 18 h	N.R.
	5	TBAF (4.0 equiv)	THF	rt, 18 h	complex
	6	TBAT (4.0 equiv)	THF	rt, 18 h	complex
	7	KF/18C6 (4.0 equiv)	THF	rt, 18 h	80% ^a
	8	CsF (4.0 equiv)	MeCN	10 °C, 18 h	75% ^a
	9	CsF (4.0 equiv)	MeCN	rt, 6 h	61% ^a
	10^{b}	CsF (2.0 equiv)	MeCN	rt, 18 h	83% ^a
	11 ^c	CsF (2.0 equiv)	MeCN	rt, 18 h	91% ^a

Table S2. Optimization of indazolyl- λ^3 -iodane synthesis from 1a and 2a

^{*a*}Yields were determined by ¹NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*}**1a** (1.0 equiv) and **2a** (2.0 equiv) were used. ^{*c*}**1a** (1.0 equiv) and **2a** (3.0 equiv) were used.

General Procedure C: In a 4 mL vial equipped with a magnetic stir bar, diazomethylbenziodoxole **2** (0.30 mmol, 3.0 equiv) was dissolved in acetonitrile (1.0 mL). To this solution were added *o*-silylaryl triflate **1** (0.10 mmol, 1.0 equiv) and cesium fluoride (30.4 mg, 0.20 mmol, 2.0 equiv) at room temperature. The resulting mixture was stirred at the same temperature for 18 h under an argon atmosphere and then added ethyl acetate and filtered. The filtrate was concentrated under

reduced pressure, and the residue was purified by column chromatography (silica gel, 18 g, hexane/ethyl acetate = 10/1 to 5/1) to afford the desired product **3**.

Ethyl $1-(3,3-bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazole-3-carboxylate (3aa)$

Colorless solid (50.0 mg, 85%); m.p. 188-191 °C; R_f 0.51 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.60 (app. dt, J = 7.7, 0.9 Hz, 1H), 7.44 (ddd, J = 8.5, 7.2, 1.3 Hz, 1H), 7.30-7.24 (m, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.36 (d, J = 8.4 Hz, 1H), 4.54 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.4, 146.3, 141.1, 137.8, 133.4, 131.0, 130.7, 129.8, 127.5, 125.3, 124.6, 123.2 (q, J_{C-F} = 286.2 Hz), 117.7, 113.9, 106.1, 61.3, 55.3, 14.5 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.9; HRMS (FAB⁺) Calcd for C₂₀H₁₅F₆IN₂O₄⁺ [M]⁺ 587.9975, found 587.9981.

Benzyl $1-(3,3-bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazole-3-carboxylate (3ab)$

Colorless solid (63%; The yield was determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard because separation from the starting material was difficult; A small amount of analytically pure sample was obtained by purification on PTLC); m.p. 162-165 °C; R_f 0.41 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.76 (m, 2H), 7.60 (app. t, J = 7.6 Hz, 1H), 7.54-7.52 (m, 2H), 7.45-7.34 (m, 4H), 7.24 (m, 1H), 6.75 (d, J = 7.7 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H), 5.52 (s, 2H), 3.78 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.2, 146.3, 140.8, 137.8, 135.9, 133.4, 131.1, 130.7, 129.8, 128.62, 128.60, 128.4, 127.5, 125.3, 124.7, 123.1 (q, $J_{C-F} = 286.6$ Hz), 117.6, 113.8, 106.1, 66.9, 55.3 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -76.0; HRMS (FAB⁺) Calcd for

 $C_{25}H_{17}F_6IN_2O_4^+$ [M]⁺ 650.0132, found 650.0143.

Colorless solid (28.5 mg, 43%); m.p. 193-196 °C; R_f 0.54 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.62 (app. t, J = 7.8 Hz, 1H), 7.48 (app. t, J = 7.9 Hz, 1H), 7.29 (app. t, J = 7.9 Hz, 1H), 7.24 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.6 Hz, 2H), 6.80 (d, J = 7.6 Hz, 1H), 6.44 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H), 2.38 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 161.0, 148.3, 146.4, 140.2, 137.9, 135.7, 133.5, 131.1, 130.8, 130.0, 129.8, 127.5, 125.7, 125.0, 123.1 (q, J_{C-F} = 288.3 Hz), 121.6, 117.6, 113.8, 106.3, 55.3, 20.9 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.9; HRMS (FAB⁺) Calcd for C₂₅H₁₇F₆IN₂O₄⁺ [M]⁺ 650.0132, found 650.0139.

$(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazol-3-yl)(phenyl)methanone (3ad)$

Yellow solid (36.5 mg, 59%); m.p. 170-173 °C; R_f 0.70 (hexane/EtOAc = 2/1); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 7.4 Hz, 2H), 8.07 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.62-7.58 (m, 2H), 7.51 (app. t, J = 8.0 Hz, 2H), 7.45 (app. t, J = 8.4 Hz, 1H), 7.31 (app. t, J = 8.2 Hz, 1H), 6.79 (d, J = 7.7 Hz, 1H), 6.40 (d, J = 8.4 Hz, 1H), 3.80 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.3, 147.6, 146.2, 137.6, 137.4, 133.5, 132.7, 131.1, 130.8, 130.7, 129.8, 128.2, 127.4, 126.1, 125.1, 123.2 (q, J_{C-F} = 288.0 Hz), 117.7, 114.7, 106.5, 84.6-84.2 (m), 55.3; ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9; **HRMS** (FAB⁺) Calcd for C₂₄H₁₆F₆IN₂O₃⁺ [M+H]⁺ 621.0104, found

621.0110.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazol-3-yl)(4-methoxyphenyl)methanone (3ae)$

Colorless solid (44.7 mg, 69%); m.p. 164-167 °C; $R_f 0.51$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.42 (d, J = 9.0 Hz, 2H), 8.05 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.59 (app. t, J = 7.7 Hz, 1H), 7.44 (app. t, J = 7.8 Hz, 1H), 7.28 (app. t, J = 8.0 Hz, 1H), 6.99 (d, J = 8.9 Hz, 2H), 6.78 (d, J = 7.6 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H), 3.80 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.7, 163.5, 147.9, 146.2, 137.3, 133.4, 133.0, 131.0, 130.8, 130.4, 129.8, 127.4, 126.2, 124.2, 123.2 (q, J_{C-F} = 289.8 Hz), 117.7, 114.8, 113.6, 106.4, 84.6-84.2 (m), 55.4, 55.2; ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9; HRMS (FAB⁺) Calcd for C₂₅H₁₇F₆IN₂O₄⁺ [M]⁺ 650.0132, found 650.0132.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazol-3-yl)(p-tolyl)methanone (3af)$

Colorless solid (26.3 mg, 42%); m.p. 150-153 °C; $R_f 0.43$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 8.2 Hz, 2H), 8.05 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.7 Hz, 1H), 7.60 (app. t, J = 7.6 Hz, 1H), 7.44 (app. dt, J = 7.8, 1.3 Hz, 1H), 7.32-7.28 (m, 3H), 6.79 (d, J = 7.7 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 3.80 (s, 3H), 2.43 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.0, 147.8, 146.2, 143.6, 137.3, 135.0, 133.4, 131.0, 130.8, 129.8, 129.0, 127.4, 126.1, 125.0, 123.2 (q, J_{C-F} = 287.6 Hz), 117.7, 114.8, 106.4, 55.3, 21.7 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9; HRMS (FAB⁺) Calcd for C₂₅H₁₇F₆IN₂O₃⁺ [M]⁺ 634.0183, found 634.0180.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazol-3-yl)(4-chlorophenyl)methanone (3ag)$

Colorless solid (19.0 mg, 30%); m.p. 154-157 °C; R_f 0.54 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, J = 8.6 Hz, 2H), 8.06 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 7.2 Hz, 1H), 7.61 (app. t, J = 7.7 Hz, 1H), 7.49-7.30 (m, 3H), 7.32 (app. t, J = 8.0 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.9, 147.4, 146.2, 139.2, 137.4, 135.9, 133.5, 132.1, 131.1, 130.8, 129.9, 128.6, 127.4, 126.1, 125.3, 123.2 (q, J_{C-F} = 288.3 Hz), 117.6, 114.7, 106.6, 55.3 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ –75.9; HRMS (FAB⁺) Calcd for C₂₄H₁₄³⁵ClF₆IN₂O₃⁺ [M]⁺ 653.9636, found 653.9638.

$(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazol-3-yl)(m-tolyl)methanone (3ah)$

Yellow solid (21.3 mg, 34%); m.p. 125-128 °C; R_f 0.45 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 6.1 Hz, 1H), 8.08 (s, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.60 (app. t, J = 7.6 Hz, 1H), 7.46-7.37 (m, 3H), 7.31 (app. t, J = 8.0 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H), 2.43 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.7, 147.8, 146.2, 138.0, 137.7, 137.4, 133.6, 133.4, 131.1, 130.9, 130.8, 129.8, 128.11, 128.08, 127.5, 126.1, 125.1, 123.2 (q, $J_{C-F} = 287.6$ Hz), 117.7, 114.7, 106.5, 55.3, 21.4 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9; HRMS (FAB⁺) Calcd for C₂₅H₁₇F₆IN₂O₃⁺ [M]⁺ 634.0183, found 634.0187.

$(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazol-3-$

yl)(2-methoxyphenyl)methanone (3aj)

Yellow solid (24.2 mg, 37%); m.p. 117-120 °C; R_f 0.54 (hexane/EtOAc = 3/1); ¹H NMR (600 MHz, CDCl₃) δ 7.98 (dd, J = 8.1, 2.5 Hz, 1H), 7.76 (dd, J = 7.3, 0.3 Hz, 1H), 7.61-7.58 (m, 2H), 7.49-7.43 (m, 2H), 7.30-7.25 (m, 1H), 7.05-7.00 (m, 2H), 6.77 (d, J = 7.6 Hz, 1H), 6.38 (d, J = 8.4 Hz, 1H), 3.78 (s, 3H), 3.75 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 190.3, 158.0, 148.3, 146.1, 137.6, 133.3, 132.3, 131.0, 130.8, 130.5, 129.7, 129.0, 127.4, 125.3, 125.0, 123.2 (q, $J_{C-F} = 287.3$ Hz), 120.2, 117.7, 114.6, 111.8, 106.3, 55.7, 55.2 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9; HRMS (FAB⁺) Calcd for C₂₅H₁₇F₆IN₂O₄⁺ [M]⁺ 650.0132, found 650.0158.

$(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-methoxy-1H-indazol-3-yl)(3,4-dimethoxyphenyl)methanone (3ak)$

Pale yellow solid (21.5 mg, 32%); m.p. 137-140 °C; $R_f 0.34$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (dd, J = 8.5, 2.0 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 2.0 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.60 (app. t, J = 7.2 Hz, 1H), 7.45 (app. dt, J = 7.7, 1.4 Hz, 1H), 7.31 (app. t, J = 8.1 Hz, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.80 (d, J = 7.6 Hz, 1H), 6.37 (d, J = 8.4 Hz, 1H), 3.96 (s, 3H), 3.92 (s, 3H), 3.83 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.5, 153.3, 148.8, 148.0, 146.2, 137.3, 133.5, 131.1, 130.9, 130.3, 129.9, 127.4, 126.2, 126.1, 125.0, 123.2 (q, J_{C-F} = 289.4 Hz), 117.7, 114.8, 112.6, 110.1, 106.4, 56.1, 55.9, 55.3 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9; HRMS (FAB⁺) Calcd for C₂₆H₁₉F₆IN₂O₅⁺ [M]⁺ 680.0237, found 680.0233.

Ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-1H-indazole-3-carboxylate (3ba)

Colorless solid (35.0 mg, 62%); m.p. 169-172 °C; $R_f 0.71$ (hexane/EtOAc = 2/1); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.5 Hz, 1H), 7.63 (app. t, J = 7.3 Hz, 1H), 7.50-7.36 (m, 4H), 6.27 (d, J = 8.5 Hz, 1H), 4.56 (q, J = 7.1 Hz, 2H), 1.50 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 162.3, 147.6, 140.8, 133.8, 131.5, 131.1, 130.3, 127.9, 127.3, 123.9, 123.4, 123.1(q, J_{C-F} = 288.5 Hz), 122.4, 115.8, 111.6, 61.4, 14.5 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8; HRMS (FAB⁺) Calcd for C₁₉H₁₃F₆IN₂O₃⁺ [M]⁺ 557.9870, found 557.9865.

Colorless solid (29.6 mg, 45%); m.p. 152-155 °C; $R_f 0.55$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 1.4 Hz, 1H), 7.78 (d, J = 7.4 Hz, 1H), 7.62 (app. t, J = 7.5 Hz, 1H), 7.46 (app. dt, J = 7.8, 1.4 Hz, 1H), 6.85 (d, J = 1.4 Hz, 1H), 6.30 (d, J = 8.4 Hz, 1H), 4.54 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 161.9, 146.4, 140.3, 136.7, 133.5, 131.2, 131.0, 130.8, 129.9, 127.4, 126.0, 123.1 (q, $J_{C-F} = 289.1$ Hz), 117.3, 116.5, 110.1, 61.5, 55.7, 14.5 (two signals of CF₃ groups, which typically appear as a quartet around 123 ppm was not identified due to the low S/N ratio and the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio δ –75.9; HRMS (FAB⁺) Calcd for C₂₀H₁₄⁷⁹BrF₆IN₂O₄⁺ [M]⁺ 665.9080, found 665.9084.

Ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-5-chloro-7-methoxy-1H-indazole-3-carboxylate (3da)

Colorless solid (28.0 mg, 44%); m.p. 172-175 °C; $R_f 0.55$ (hexane/EtOAc = 3/1); ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, J = 1.6 Hz, 1H), 7.78 (d, J = 7.3 Hz, 1H), 7.61 (app. t, J = 7.5 Hz, 1H), 7.46 (app. dt, J = 7.9, 1.3 Hz, 1H), 6.73 (d, J = 1.4 Hz, 1H), 6.31 (d, J = 8.5 Hz, 1H), 4.53 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.0, 146.3, 140.5, 136.5, 133.5, 131.2, 131.0, 130.8, 129.9 127.4, 125.4, 123.1 (q, $J_{C-F} = 289.1$ Hz), 117.5, 113.3, 107.7, 61.5, 55.7, 14.4 (two signals of CF₃ groups, which typically appear as a quartet around 123 ppm was not identified due to the low S/N ratio and the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio δ -75.9; HRMS (FAB⁺) Calcd for C₂₀H₁₄³⁵ClF₆IN₂O₄⁺ [M]⁺ 621.9586, found 621.9593.

Colorless solid (25.1 mg, 45%); m.p. 175-178 °C; R_f 0.24 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.61 (app. t, J = 7.8 Hz, 1H), 7.43 (app. dt, J = 7.9, 1.3 Hz, 1H), 7.14 (s, 1H), 6.24 (d, J = 8.0 Hz, 1H), 4.54 (q, J = 7.2 Hz, 2H), 2.42 (s, 3H), 2.39 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.5, 146.9, 140.2, 138.3, 133.7, 131.3, 131.0, 130.2, 127.3, 123.1 (q, J_{C-F} = 288.0 Hz), 122.1, 121.5, 116.0, 111.3, 84.4-84.0 (m), 61.3, 20.9, 20.2, 14.5; ¹⁹F NMR (376 MHz, CDCl₃) δ –75.9; HRMS (FAB⁺) Calcd for C₂₁H₁₇F₆IN₂O₃⁺ [M]⁺ 586.0183, found 586.0195.

Ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-1H-benzo[f]indazole-3-carboxylate (3fa)

Yellow solid (14.0 mg, 23%); m.p. 131-134 °C; R_f 0.25 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.08 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.85-7.80 (m, 2H), 7.61 (app. t, J = 7.7 Hz, 1H), 7.53-7.48 (m, 2H), 7.39 (app. dt, J = 7.9, 1.3 Hz, 1H), 6.36 (d, J = 8.4 Hz, 1H), 4.61 (q, J = 7.2 Hz, 2H), 1.54 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.2, 145.8, 141.0, 133.7, 133.0, 131.5, 131.2, 130.6, 130.4, 129.4, 127.8, 127.3, 126.9, 124.9, 123.3, 123.1 (q, J_{C-F} = 288.3 Hz), 121.6, 115.8, 107.1, 61.6, 14.5 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8; HRMS (FAB⁺) Calcd for C₂₃H₁₅F₆IN₂O₃⁺ [M]⁺ 608.0026, found 608.0017.

Ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-1H-benzo[g]indazole-3-carboxylate (3ga)

Colorless solid (27.0 mg, 22%; obtained as a 11:1 mixture of regioisomers; contains trace amounts of deiodinated byproducts (ethyl 1*H*-benzo[*g*]indazole-3-carboxylate and regioisomer), which were difficult to separate); m.p. 138-141 °C; R_f 0.61 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 9.49 (d, *J* = 8.4 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.80 (d, *J* = 7.4 Hz, 1H), 7.75-7.70 (m, 2H), 7.62-7.55 (m, 2H), 7.39 (app. dt, *J* = 7.9 Hz, 1.3 Hz, 1H), 7.33 (d, *J* = 9.0 Hz, 1H), 6.15(d, *J* = 8.5 Hz, 1H), 4.62 (q, *J* = 7.1 Hz, 2H), 1.54 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 163.4, 146.4, 142.1, 133.9, 131.5, 131.1, 130.9, 130.7, 130.3, 128.8, 127.9, 127.3, 127.0, 126.5, 125.9, 123.1 (q, *J*_{C-F} = 287.3 Hz), 118.7, 116.1, 84.6-84.2 (m), 61.9, 14.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8; HRMS (FAB⁺) Calcd for C₂₃H₁₅F₆IN₂O₃⁺ [M]⁺ 608.0026, found 608.0039.

Ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-6-methyl-1Hindazole-3-carboxylate (3ha) and ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ benzo[d][1,2]iodaoxol-1(3H)-yl)-5-methyl-1H-indazole-3-carboxylate (3ha')

Colorless solid (39.1 mg, 46%, obtained as a 1:1 mixture of regioisomers); m.p. 144-147 °C; R_f 0.55 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.3 Hz, 1H), 8.05 (s, 1H), 7.71-7.79 (m, 1H+1H), 7.64-7.59 (m, 1H+1H), 7.46-7.40 (m, 1H+1H), 7.29-7.28 (m, 1H+1H), 7.19 (d, J = 8.4 Hz, 1H), 7.15 (s, 1H), 6.28 (d, J = 8.5 Hz, 1H), 6.24 (d, J = 8.4 Hz, 1H), 4.59-4.50 (m, 2H+2H), 2.53 (s, 3H), 2.50 (s, 3H), 1.51-1.47 (m, 3H+3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.4, 162.3, 148.2, 146.3, 140.7, 140.2, 138.7, 133.8, 133.74, 133.71, 131.4, 131.0, 130.2, 129.9, 127.32, 127.30, 126.2, 123.8, 123.1 (q, J_{C-F} = 287.3 Hz), 121.9, 121.6, 121.4, 115.92, 115.89, 111.2, 111.0, 84.4-84.0 (m), 61.3, 21.9, 21.4, 14.47, 14.45; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.85, -75.86; HRMS (FAB⁺) Calcd for C₂₀H₁₅F₆IN₂O₃⁺ [M]⁺ 572.0026, found 572.0023.

As discussed in the main text, the reaction employing Kobayashi aryne precursors often resulted in modest yields, and in some cases, failed to produce the desired indazolyl-BXs in synthetically meaningful yields (>5%) for unambiguous characterization. The problematic substrates and the corresponding challenges are summarized in Figure S2.

Figure S2. Summary of unsuccessful reactions using Kobayashi-type aryne precursors.

(0.05	BF₄ -X⊕ +	EWG N2 (2.0 equiv	$CF_3 \xrightarrow{base}{CF_3} c$	e (3.0 equiv) conditions		N-N EWG + X	EWG N N-1 3'	-0 ≁-CF₃ CF₃
	entry	EWG	2	Х	base	conditions	yield (3 + 3 ')	
	1	CO ₂ Et	3.0 equiv	Cl	K ₂ CO ₃	CHCl ₃ , rt, 18 h	68%	
	2	COPh	3.0 equiv	Cl	K_2CO_3	CHCl ₃ , rt, 18 h	85%	
	3	COPh	2.0 equiv	Cl	K ₂ CO ₃	CHCl ₃ , rt, 18 h	88% ^a	
	4	COPh	1.5 equiv	Cl	K ₂ CO ₃	CHCl ₃ , rt, 18 h	53% ^a	
	5	CO ₂ Et	3.0 equiv	Br	Cs_2CO_3	CH ₂ Cl ₂ , rt, 18 h	31%	
	6	CO ₂ Et	3.0 equiv	Br	K ₂ CO ₃	CHCl ₃ , rt, 18 h	30% ^a	
	7	COPh	3.0 equiv	Br	Cs ₂ CO ₃	CH ₂ Cl ₂ , rt, 18 h	71%	

Table S3. Optimization of indazolyl- λ^3 -iodane synthesis from cyclic diarylhalonium salts

^{*a*}Yields were determined by ¹NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard.

General Procedure D: In a 4 mL vial equipped with a magnetic stir bar, diazomethylbenziodoxole **2** (0.10 mmol, 2.0 equiv) was dissolved in chloroform (0.50 mL). To this solution were added cyclic diaryl λ^3 -chlorane (0.050 mmol, 1.0 equiv) and potassium carbonate (20.7 mg, 0.15 mmol, 3.0 equiv) at room temperature. The resulting mixture was stirred at the same temperature for 18 h under an argon atmosphere and then added chloroform and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel, 15 g, hexane/ethyl acetate = 10/1 to 5/1) to afford the desired product **3**.

General Procedure E: In a 4 mL vial equipped with a magnetic stir bar, diazomethylbenziodoxole 2 (0.15 mmol, 3.0 equiv) was dissolved in dichloromethane (0.50 mL). To this solution were added cyclic diaryl λ^3 -bromane (0.050 mmol, 1.0 equiv) and cesium carbonate (48.9 mg, 0.15 mmol, 3.0 equiv) at room temperature. The resulting mixture was stirred at the same temperature for 18 h under an argon atmosphere and added dichloromethane and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel, 15 g, hexane/ethyl acetate = 10/1 to 5/1) to afford the desired product **3**.

The reaction was performed using 3 equiv of diazomethyliodane **2a**. Colorless solid (22.8 mg, 68%; 77% yield according to ¹H NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard; regioisomer ratio = 10:1); m.p. 164-166 °C; R_f 0.26 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.41 (dd, J = 8.4, 1.2 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.55 (app. t, J = 7.5 Hz, 1H), 7.47-7.39 (m, 3H), 7.35-7.28 (m, 2H), 7.12-7.07 (m, 2H), 6.03 (d, J = 8.0 Hz, 1H), 4.61-4.52 (m, 2H), 1.50 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.3, 144.3, 141.5, 135.0, 134.7, 133.3, 131.7, 131.1, 130.7, 130.6, 129.8, 129.7, 128.9, 127.5, 126.9, 124.6, 123.6, 123.3, 122.8 (q, J_{C-F} = 286.6 Hz), 122.2, 116.9, 61.4, 14.5 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 8.8 Hz), -76.0 (q, J_{F-F} = 8.8 Hz); **HRMS** (FAB⁺) Calcd for C₂₅H₁₇³⁵ClF₆IN₂O₃⁺ [M+H]⁺ 668.9871, found 668.9866. Note that the regiochemistry of the major products in this and the following examples, featuring sterically more congested iodane moiety, could be readily assigned by the diagnostic quartet pair in ¹⁹F NMR, indicating the restricted rotation around the C–I bond (by contrast, all the products obtained from Kobayashi aryne precursors gave singlet signals in ¹⁹F

NMR).^{7,8} The regiochemistry of **3ha** was also confirmed by HMQC and HMBC spectra.

Ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-bromophenyl)-1H-indazole-3-carboxylate (3ka)

With 3.0 equiv of 2a: Colorless solid (12.7 mg, 36%; 61% yield according to ¹H NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard; regioisomer ratio = 3:1); m.p. 90-92 °C; R_f 0.34 (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 8.41 (d, J = 8.3 Hz, 1H), 7.67-7.61 (m, 2H), 7.55 (app. t, J = 7.5 Hz, 1H), 7.47-7.39 (m, 2H), 7.30-7.23 (m, 2H), 7.15-7.08 (m, 2H), 6.02 (d, J = 8.5 Hz, 1H), 4.62-4.52 (m, 2H), 1.50 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.3, 144.1, 141.5, 137.0, 133.3, 132.9, 131.6, 131.1, 130.8, 130.6, 129.8, 128.8, 127.54, 127.51, 126.4, 125.2, 123.6, 123.3, 122.9 (q, J_{C-F} = 286.9 Hz), 122.2, 117.0, 61.4, 14.5 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 8.3 Hz), -76.1 (q, J_{F-F} = 8.3 Hz); HRMS (FAB⁺) Calcd for C₂₅H₁₇⁷⁹BrF₆IN₂O₃⁺ [M+H]⁺ 712.9366, found 712.9366.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)(phenyl)methanone (3jd)$

Colorless solid (29.7 mg, 85%, regioisomer ratio = 13:1); m.p. 69-72 °C; R_f 0.31 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (dd, J = 8.2, 1.1 Hz, 1H), 8.35 (dd, J = 8.2, 1.0 Hz, 2H), 7.66 (d, J = 7.7 Hz, 1H), 7.60-7.30 (m, 9H), 7.15-7.09 (m, 2H), 6.03 (d, J = 8.4 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 188.4, 147.8, 144.0, 137.4, 135.2, 134.7, 133.4, 132.8, 131.7, 131.1, 130.7, 130.6, 129.9, 129.7, 129.1, 128.2, 127.4, 127.0, 124.3, 124.10, 124.07, 123.0, 122.9 (q, J_{C-F} = 286.9 Hz), 116.7, 84.2-83.8 (m); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 9.2 Hz), -76.0 (q, J_{F-F} = 9.6 Hz); HRMS (FAB⁺) Calcd for C₂₉H₁₆³⁵ClF₆IN₂O₂⁺ [M]⁺ 699.9844, found

699.9854.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-bromophenyl)-1H-indazol-3-yl)(phenyl)methanone (3kd)$

Colorless solid (27.6 mg, 71%, regioisomer ratio = 14:1); m.p. 154-157 °C; R_f 0.31 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.61 (dd, J = 8.2, 1.0 Hz, 1H), 8.35 (d, J = 7.2 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.61-7.47 (m, 5H), 7.41 (app. dt, J = 7.8, 1.4 Hz, 1H), 7.31-7.24 (m, 2H), 7.17-7.11 (m, 2H), 6.01 (d, J = 8.5 Hz, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 188.4, 147.9, 143.8, 137.5, 137.2, 133.4, 132.93, 132.86, 131.7, 131.1, 130.8, 130.74, 130.69, 129.9, 128.9, 128.3, 127.6, 127.5, 126.1, 125.1, 124.11, 124.07, 123.0, 122.9 (q, J_{C-F} = 288.3 Hz), 116.8, 84.2-83.8 (m); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 8.3 Hz), -76.1 (q, J_{F-F} = 8.3 Hz); HRMS (FAB⁺) Calcd for C₂₉H₁₆⁷⁹BrF₆IN₂O₂⁺ [M]⁺ 743.9339, found 743.9349.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chloro-3-methylphenyl)-1H-indazol-3-yl)(phenyl)methanone (3ld)$

Colorless solid (54.8 mg, 75% (major regioisomer); regioisomer ratio = 13:1); m.p. 190-193 °C; $R_{\rm f}$ 0.62 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, J = 8.2, 1.1 Hz, 1H), 8.35-8.33 (m, 2H), 7.66 (d, J = 7.7 Hz, 1H), 7.60-7.40 (m, 6H), 7.32-7.7.30 (m, 1H), 7.27-7.25 (m, 1H), 7.03-6.98 (m, 2H), 6.15 (dd, J = 8.4, 0.8 Hz, 1H), 2.32 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.4, 147.9, 144.1, 137.5, 137.4, 135.3, 134.7, 133.3, 132.8, 131.8, 131.1, 130.7, 130.6, 129.8, 129.3, 128.9, 128.3, 127.6, 126.4, 125.0, 124.12, 124.09, 122.9 (q, J_{C-F} = 290.1 Hz), 122.8, 116.5, 84.3-83.9 (m), 20.5; ¹⁹FNMR (376 MHz, CDCl₃) δ –75.9 (q, J_{F-F} = 7.8 Hz), -76.1 (q, J_{F-F} = 7.9 Hz); HRMS (FAB⁺) Calcd for C₃₀H₁₈³⁵ClF₆IN₂O₂⁺ [M]⁺714.0000, found 714.0010. Methyl 3-benzoyl-1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-bromo-3-methylphenyl)-1H-indazole-4-carboxylate (3md)

The reaction was performed using 2 equiv of diazomethyl-BX and 2 equiv of Cs₂CO₃ in THF (0.05 M). Colorless solid (58%; Yield was determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard; regioisomer ratio > 20:1); m.p. 101-104 °C; R_f 0.34 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.1, 2H), 7.92 (d, J = 7.4 Hz, 1H), 7.66-7.55 (m, 3H), 7.51-7.49 (m, 3H), 7.35 (d, J = 7.4 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.07 (app. t, J = 7.6 Hz, 1H), 6.96 (d, J = 7.4 Hz, 1H), 6.20 (d, J = 8.3 Hz, 1H), 3.70 (s, 3H), 2.39 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 189.7, 166-7, 149.2, 144.3, 139.7, 137.0, 133.45, 133.37, 131.9, 131.2, 131.0, 130.6, 130.3, 129.8, 128.8, 128.5, 128.3, 127.7, 127.2, 126.9, 125.3, 124.8, 122.9 (q, J_{C-F} = 288.0 Hz), 120.0, 116.7, 84.3-83.9 (m), 51.8, 23.6; ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9 (q, J_{F-F} = 8.9 Hz), -76.2 (q, J_{F-F} = 8.8 Hz); **HRMS** (FAB⁺) Calcd for C₃₂H₂₁⁷⁹BrF₆IN₂O₄⁺ [M+H]⁺ 816.9628, found 816.9658.

Methyl 3-benzoyl-1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-bromo-phenyl)-1H-indazole-4-carboxylate (3nd) and Methyl 3-benzoyl-1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-4-(2-bromophenyl)-1H-indazole-7-carboxylate (3nd')

The reaction was performed using 2 equiv of diazomethyl-BX and 2 equiv of Cs₂CO₃ in THF (0.05 M). Colorless solid (67%; The yield was determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard because separation from the starting material was difficult by silica gel chromatography; regioisomer ratio = 1:1. A small amount of analytically pure sample was obtained by further purification on PTLC); m.p. 119-122 °C; R_f 0.50 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 9.32 (d, J = 1.6 Hz, 1H), 8.64 (d, J = 8.6, 1.0 Hz, 1H), 8.39-8.35 (m, 4H), 7.99 (d, J = 1.6 Hz, 1H), 7.88 (d, J = 7.9, 2.1 Hz, 1H), 7.76-7.73 (m, 2H), 7.68-7.41 (m,

14H), 7.30 (d, J = 7.1 Hz, 2H), 7.19-7.11 (m, 2H), 6.12 (d, J = 8.4 Hz, 1H), 6.01 (d, J = 8.5 Hz, 1H), 3.99 (s, 3H), 3.74 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.3, 187.9, 166.8, 165.3, 148.8, 147.9, 145.6, 143.7, 137.6, 137.4, 137.1, 136.5, 133.7, 133.5, 133.1, 133.0, 132.6, 131.7, 131.4, 131.3, 131.1, 130.8, 130.6, 130.4, 130.0, 129.9, 129.6, 129.4, 129.1, 128.4, 128.3, 127.7, 127.4, 126.3, 126.0, 125.9, 125.0, 124.3, 124.1, 123.9, 123.8, 123.5, 122.8 (q, $J_{C-F} = 289.4$ Hz), 116.6, 52.4, 52.2 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹F NMR (376 MHz, CDCl₃) δ –75.8 (q, $J_{F-F} = 8.6$ Hz), –75.9 (q, $J_{F-F} = 8.8$ Hz), –76.1 (q, $J_{F-F} = 8.1$ Hz), –76.2 (q, $J_{F-F} = 8.8$ Hz); HRMS (FAB⁺) Calcd for C₃₁H₁₈⁷⁹BrF₆IN₂O₄ [M] 801.9399, found 801.9409.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)(p-tolyl)methanone (3jf)$

Colorless solid (23.9 mg, 64%; regioisomer ratio = 11:1); m.p. 148-151 °C; R_f 0.68 (hexane/EtOAc = 3/1); ¹**H** NMR (400 MHz, CDCl₃) δ 8.60 (dd, J = 8.2, 1.1 Hz, 1H), 8.26 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 7.5 Hz, 1H), 7.55 (app. dt, J = 7.5, 0.9 Hz, 1H), 7.50-7.29 (m, 7H), 7.14-7.12 (m, 2H), 6.01 (dd, J = 8.4, 0.7 Hz, 1H), 2.42 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.1, 148.0, 144.7, 144.0, 143.8, 135.3, 134.9, 134.7, 133.4, 131.7, 131.4, 131.1, 130.9, 130.6, 129.9, 129.8, 129.0, 127.4, 127.0, 124.3, 124.1, 124.0, 123.1, 122.9 (q, J_{C-F} = 286.9 Hz), 116.8, 21.7 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 8.3 Hz), -76.1 (q, J_{F-F} = 9.4 Hz); HRMS (FAB⁺) Calcd for C₃₀H₁₈³⁵ClF₆IN₂O₂⁺ [M]⁺714.0000, found 714.0023.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)(4-chlorophenyl)methanone (3jg)$

Colorless solid (31.5 mg, 82%, regioisomer ratio = 10:1); m.p. 142-145 °C; $R_f 0.68$ (hexane/EtOAc

= 3/1); ¹**HNMR** (400 MHz, CDCl₃) δ 8.61 (dd, J = 8.2, 1.0 Hz, 1H), 8.34 (d, J = 8.6 Hz, 2H), 7.67 (d, J = 7.6 Hz, 1H), 7.58-7.32 (m, 8H), 7.15-7.12 (m, 2H), 6.00 (d, J = 8.4 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 187.0, 147.6, 144.0, 139.4, 135.7, 135.1, 134.7, 133.4, 132.2, 131.7, 131.2, 130.7, 130.0, 129.8, 129.2, 128.6, 127.3, 127.0, 124.4, 124.2, 124.1, 123.0, 122.9 (q, J_{C-F} = 286.9 Hz), 116.6 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 8.9 Hz), -76.1 (q, J_{F-F} = 8.8 Hz); HRMS (FAB⁺) Calcd for C₂₉H₁₅³⁵Cl₂F₆IN₂O₂⁺ [M]⁺ 733.9454, found 733.9463.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)(2-methoxyphenyl)methanone (3ji)$

The reaction was performed using 2.6 equiv of diazomethyliodane **2h**. Colorless solid (21.0 mg, 58% (major regioisomer); 89% yield according to ¹H NMR analysis of the crude product using 1,1,2,2-tetrachloroethane as an internal standard; regioisomer ratio = 14:1); m.p. 180-183 °C; $R_{\rm f}$ 0.55 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.60 (dd, J = 8.2, 1.0 Hz, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.88 (app. t, J = 1.5 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.56 (app. t, J = 7.0 Hz, 1H), 7.52-7.32 (m, 6H), 7.15-7.13 (m, 3H), 6.00 (d, J = 7.6 Hz, 1H), 3.80 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.0, 159.4, 147.9, 144.0, 138.7, 135.2, 134.7, 133.4, 131.7, 131.1, 130.70, 130.68, 129.9, 129.8, 129.3, 129.1, 127.4, 127.1, 124.3, 124.1, 123.6, 123.0, 122.9 (q, $J_{\rm CF}$ = 287.7 Hz), 119.7, 116.8, 114.8, 55.3 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9 (q, $J_{\rm F-F}$ = 8.8 Hz), -76.1 (q, $J_{\rm F-F}$ = 8.9 Hz); HRMS (FAB⁺) Calcd for C₃₀H₁₉³⁵ClF₆IN₂O₃⁺ [M+H]⁺ 731.0028, found 731.0043.

$(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)(2-methoxyphenyl)methanone (3jj)$

Colorless solid (25.6 mg, 66%, regioisomer ratio = >20:1); m.p. 145-148 °C; R_f 0.46 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.1 Hz, 1H), 7.65-7.60 (m, 2H), 7.55 (app. t, J = 7.2 Hz, 1H), 7.49-7.40 (m, 4H), 7.35-7.28 (m, 2H), 7.13-6.98 (m, 4H), 6.00 (d, J = 8.4 Hz, 1H), 3.70 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 190.3, 158.1, 148.5, 144.3, 135.2, 134.7, 133.2, 132.4, 131.7, 131.0, 130.7, 130.63, 130.59, 129.8, 129.7, 128.9, 127.4, 127.0, 124.3, 124.0, 123.3, 122.86, 122.85 (q, J_{C-F} = 286.9 Hz), 120.2, 116.9, 111.8, 55.7 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9 (q, J_{F-F} = 8.4 Hz), -76.1 (q, J_{F-F} = 8.9 Hz); HRMS (FAB⁺) Calcd for C₃₀H₁₈³⁵ClF₆IN₂O₃⁺ [M]⁺ 729.9949, found 729.9967.

$(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)(3,4-dimethoxyphenyl)methanone (3jk)$

Colorless solid (21.0 mg, 58% (major regioisomer); regioisomer ratio = 14:1); m.p. 154-157 °C; $R_{\rm f}$ 0.55 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 8.2, 1H), 8.20 (dd, J = 8.5, 1.9 Hz, 1H), 7.97 (d, J = 1.9 Hz, 1H), 7.67 (d, J = 7.4 Hz, 1H), 7.56 (app. t, J = 7.5 Hz, 1H), 7.50-7.31 (m, 5H), 7.17-7.14 (m, 2H), 6.95 (d, J = 8.6 Hz, 1H), 6.03 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.86 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 186.4, 153.3, 148.7, 148.2, 143.9, 135.2, 134.7, 133.3, 131.7, 131.1, 130.7, 130.6, 130.2, 129.9, 129.8, 129.0, 127.4, 127.0, 126.0, 124.24, 124.17, 123.9, 123.1, 122.9 (q, J_{C-F} = 285.8 Hz), 120.0, 116.8, 112.7, 110.1, 84.4-83.8 (m), 56.0, 55.7; ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9 (q, J_{F-F} = 8.4 Hz), -76.2 (q, J_{F-F} = 8.4 Hz); HRMS (FAB⁺) Calcd for C₃₁H₂₁³⁵ClF₆IN₂O₄⁺ [M+H]⁺ 761.0133, found 761.0163.

 $(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)(naphthalen-2-yl)methanone (3jl)$

Colorless solid (25.4 mg, 63%, regioisomer ratio = 12:1); m.p. 148-151 °C; R_f 0.67 (hexane/EtOAc = 3/1); ¹**H NMR** (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.64 (dd, J = 8.2, 1.0 Hz, 1H), 8.35 (dd, J = 8.7, 1.7 Hz, 1H), 7.95-7.92 (m, 2H), 7.88 (d, J = 8.1 Hz, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.60-7.33 (m, 8H), 7.18-7.12 (m, 2H), 6.05 (d, J = 8.5 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.3, 148.1, 144.1, 135.5, 135.3, 134.7, 133.4, 133.1, 132.5, 131.7, 131.2, 130.69, 130.68, 129.90, 129.87, 129.8, 129.1, 128.4, 128.1, 127.7, 127.4, 127.1, 126.5, 126.0, 124.4, 124.2, 124.1, 123.1, 122.9 (q, J_{C-F} = 286.9 Hz), 116.8 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 8.3 Hz), -76.1 (q, J_{F-F} = 8.9 Hz); **HRMS** (FAB⁺) Calcd for C₃₃H₁₉³⁵ClF₆IN₂O₂⁺ [M+H]⁺ 751.0078, found 751.0072.

$(1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)(pyridin-2-yl)methanone (3jm)$

Yellow solid (86%; The yield was determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard because separation from the starting material was difficult by silica gel chromatography; regioisomer ratio = 11:1. A small amount of analytically pure sample was obtained by further purification on PTLC); R_f 0.16 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.81 (d, J = 4.7 Hz, 1H), 8.54 (d, J = 8.2 Hz, 1H), 8.26 (d, J = 7.9 Hz, 1H), 7.89 (app. dt, J = 7.8, 1.7 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.56-7.30 (m, 7H), 7.11-7.10 (m, 2H), 6.03 (d, J = 7.7 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 187.8, 154.8, 149.6, 149.5, 147.4, 144.1, 136.7, 135.2, 134.7, 133.4, 131.7, 131.1, 130.6, 129.8, 129.1, 127.6, 126.9, 126.4, 125.4, 124.43, 124.41, 124.2, 124.1, 122.84 (q, J_{C-F} = 286.2 Hz), 122.80, 116.9 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 8.8 Hz), -76.1 (q, J_{F-F} = 8.8 Hz); HRMS (FAB⁺) Calcd for C₂₈H₁₅³⁵ClF₆IN₃O₂⁺ [M+H]⁺ 701.9874, found 701.9882.

 $1-(3,3-Bis(trifluoromethyl)-1\lambda^3-benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-N,N-dimethyl-1H-indazole-3-carboxamideethyl (3jn)$

Colorless solid (22.0 mg, 72% (major regioisomer); regioisomer ratio = 4.5:1); m.p. 180-183 °C; $R_{\rm f}$ 0.45 (hexane/EtOAc = 1/1); ¹**HNMR** (400 MHz, CDCl₃) δ 8.28 (dd, J = 8.2, 1.1 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.55 (app. t, J = 8.0 Hz, 1H), 7.44-7.26 (m, 5H), 7.12-7.11 (m, 2H), 6.01 (d, J= 8.4 Hz, 1H), 3.40 (s, 3H), 3.21 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 163.6, 145.2, 143.7, 135.3, 134.7, 133.3, 131.7, 131.0, 130.6, 130.5, 129.82, 129.75, 128.9, 127.4, 127.0, 124.0, 123.9, 122.94 (q, $J_{\rm C-F}$ = 300.2 Hz), 122.89, 122.5, 116.9, 39.1, 36.0 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.9 (q, $J_{\rm F-F}$ = 8.3 Hz), -76.2 (q, $J_{\rm F-F}$ = 8.3 Hz); **HRMS** (FAB⁺) Calcd for C₂₅H₁₇³⁵ClF₆IN₃O₂⁺ [M+H]⁺ 668.0031, found 668.0042.

Ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazole-3-sulfonate (3jo)

Colorless solid (21.5 mg, 61% (major regioisomer); regioisomer ratio = 16:1); m.p. 161-164 °C; $R_{\rm f}$ 0.53 (hexane/EtOAc = 3/1); ¹**H** NMR (400 MHz, CDCl₃) δ 8.23 (d, J = 8.3 Hz, 1H), 7.67 (d, J= 7.9 Hz, 1H), 7.59 (app. t, J = 7.5 Hz, 1H), 7.51-7.43 (m, 3H), 7.37-7.33 (m, 2H), 7.14-7.12 (m, 2H), 6.05 (d, J = 8.4 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.0 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 144.9, 144.3, 134.61, 134.56, 133.5, 131.7, 131.4, 130.9, 130.7, 130.0, 129.8, 129.6, 127.4, 127.1, 124.9, 124.2, 122.7 (q, J_{C-F} = 286.2 Hz), 121.1, 120.7, 116.5, 68.4, 14.9 (the signal for the carbon bonded to the CF₃ groups, which typically appear as a weak multiplet around 82-81 ppm, was not identified due to the low S/N ratio); ¹⁹FNMR (376 MHz, CDCl₃) δ -75.8 (q, J_{F-F} = 8.3 Hz), -76.1 (q, J_{F-F} = 8.8 Hz); **HRMS** (FAB⁺) Calcd for C₂₄H₁₆³⁵ClF₆IN₂O₄S⁺ [M+H]⁺ 704.9541, found 704.9520. Diethyl (1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-7-(2-chlorophenyl)-1H-indazol-3-yl)phosphonate (3jp)

The reaction was performed using 3 equiv of diazomethyl-BX **2p**. Colorless solid (89%; The yield was determined by ¹H NMR analysis using 1,1,2,2-tetrachloroethane as an internal standard because separation from the starting material was difficult by silica gel chromatography; regioisomer ratio > 20:1. A small amount of analytically pure sample was obtained by purification on PTLC); m.p. 221-224 °C; R_f 0.53 (hexane/EtOAc = 1/2); ¹HNMR (400 MHz, CDCl₃) δ 8.24 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.56 (dd, J = 7.8 Hz, J = 7.2 Hz, 1H), 7.43-7.26 (m, 5H), 7.11-7.10 (m, 2H), 5.97 (d, J = 8.4 Hz, 1H), 4.35-4.26 (m, 4H), 1.41-1.36 (m, 6H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 143.6 (d, $J_{C-P} = 9.0$ Hz), 135.2, 134.6, 133.1, 131.6, 131.1, 130.7, 130.6, 129.8, 129.7, 128.9, 127.4, 127.0, 126.0, 125.8, 124.4, 123.1, 122.9 (q, $J_{C-F} = 287.7$ Hz), 121.6, 116.9, 84.2-83.8 (m), 62.9 (t, $J_{C-P} = 5.7$ Hz), 16.4, (d, $J_{C-P} = 6.1$ Hz); ¹⁹FNMR (376 MHz, CDCl₃) δ 9.3; HRMS (FAB⁺) Calcd for C₂₆H₂₂³⁵ClF₆IN₂O₄P⁺ [M+H]⁺ 732.9949, found 732.9978.

Procedure for the 1 mmol-scale synthesis of 3ba

In a 50 mL two-necked flask equipped with a magnetic stir bar, ethyl 2-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-2-diazoacetate (**2a**; 1.44 g, 3.0 mmol, 3.0 equiv) was dissolved in acetonitrile (10 mL). To this solution were added *o*-silylaryl triflate (**1b**; 0.30 g, 1.0 mmol, 1.0 equiv) and cesium fluoride (0.30 g, 2.0 mmol, 2.0 equiv) at room temperature. The resulting mixture was stirred at the same temperature for 18 h under an argon atmosphere, added ethyl acetate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel, 25 g, hexane/ethyl acetate = 10/1 to 5/1) to afford the desired product (**3ba**; 288 mg, 0.52 mmol, 51%) as a colorless solid.

Ball mill reaction for the synthesis of 3ha

A 1.5 mL stainless miller jar equipped with a 4 mm stainless ball was charged sequentially with cyclic diaryl λ^3 -chlorane (**1h**; 7.4 mg, 0.027 mmol, 1.0 equiv), ethyl 2-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-2-diazoacetate (**2a**; 25.6 mg, 0.053 mmol, 2.0 equiv), K₂CO₃ (12.9 mg, 0.093 mmol, 3.5 equiv), and CHCl₃ (25 µL). This jar was closed, and the mixture was subjected to 30 Hz milling for 2 h. The mixture was then dissolved in CHCl₃ (4 mL), and the solution was concentrated under reduced pressure. To the residue was added 1,1,2,2-tetrachloroethane (15.6 mg, 92.9 µmol) as an internal standard, and the mixture was dissolved in CDCl₃. The solution was analyzed by ¹H NMR to determine the yields of ethyl 1-(3,3-bis(trifluoromethyl)-1 λ^3 -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-7-(2-chlorophenyl)-1*H*-indazole-3-carboxylate (**3ha**; 60%).

4. C(sp³)–H Indazolylation of N,N-Dimethylanilines with Indazolyl- λ^3 -iodanes

General procedure F: In a 4 mL vial equipped with a magnetic stir bar, indazolyl- λ^3 -iodine **3** (0.10 mmol, 1.0 equiv) and dimethylaniline (0.20 mmol, 2.0 equiv) were dissolved in acetonitrile (1.0 mL). The reaction mixture was stirred at 60 °C for 24 h under an argon atmosphere, added ethyl acetate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography (NH silica gel, 16 g, hexane/ethyl acetate = 10/1 to 5/1) to afford the desired product **4**.

Ethyl 1-(((4-bromophenyl)(methyl)amino)methyl)-1H-indazole-3-carboxylate (4a)

Colorless solid (34.6 mg, 88%); m.p. 129-132 °C; $R_f 0.22$ (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.5 Hz, 1H), 7.40-7.21 (m, 5H), 6.87 (d, J = 8.8 Hz, 2H), 5.96 (s, 2H), 4.53 (q, J = 7.2 Hz, 2H), 3.01 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.6, 147.1, 140.3, 135.5, 132.1, 127.2, 124.0, 123.2, 122.3, 116.3, 111.7, 110.2, 68.3, 61.1, 37.6, 14.4; HRMS (FAB⁺) Calcd for C₁₈H₁₈⁷⁹BrN₃O₂⁺ [M]⁺ 387.0577, found 387.0582.

Ethyl 1-((methyl(phenyl)amino)methyl)-1*H*-indazole-3-carboxylate (4b)

Colorless solid (34.2 mg, quant); m.p. 91-94 °C; R_f 0.44 (hexane/EtOAc = 3/1); ¹**H** NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 7.0 Hz, 1H), 7.35-7.18 (m, 5H), 7.00 (d, J = 8.1 Hz, 2H), 6.89 (app. t, J = 7.3 Hz, 1H), 6.00 (s, 2H), 4.54 (q, J = 7.2 Hz, 2H), 3.00 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 162.7, 148.2, 140.4, 135.3, 129.4, 126.9, 124.1, 123.1, 122.1, 119.6, 115.0, 110.5, 68.8, 61.0, 37.2, 14.4; **HRMS** (FAB⁺) Calcd for C₁₈H₁₉N₃O₂⁺ [M]⁺ 309.1472, found 309.1468.

(7-(2-Chlorophenyl)-1-((methyl(*p*-tolyl)amino)methyl)-1*H*-indazol-3-yl)(phenyl)methanone (4c)

Yellow oil (32.0 mg, 82%); R_f 0.71 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.58 (dd, J = 8.2, 1.0 Hz, 1H), 8.11 (d, J = 7.2 Hz, 2H), 7.55-7.50 (m, 3H), 7.44-7.40 (m, 3H), 7.36-7.28 (m, 3H), 7.00 (d, J = 8.2 Hz, 2H), 6.65 (d, J = 8.6 Hz, 2H), 5.60 (d, J = 13.9 Hz, 1H), 5.35 (d, J = 13.9 Hz, 1H), 2.77 (s, 3H), 2.26 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 188.2, 145.7, 141.9, 138.6, 137.6, 137.5, 134.3, 132.2, 132.0, 130.8, 130.0, 129.8, 129.5, 129.4, 128.2, 127.8, 127.2, 125.3, 123.4, 123.3, 122.7, 114.8, 67.5, 38.5, 20.3; HRMS (FAB⁺) Calcd for C₂₉H₂₄³⁵ClN₃O⁺ [M]⁺ 465.1602, found 465.1592.

N-((1H-Indazol-1-yl)methyl)-N,4-dimethylaniline (4d)

Brown oil (79%, Yield was determined by ¹H NMR analysis based on 1,1,2,2-tetrachloroethane); $R_{\rm f}$ 0.79 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.28-7.26 (m, 2H), 7.13-7.07 (m, 3H), 6.92 (d, J = 8.7 Hz, 2H), 5.84 (s, 2H), 2.97 (s, 3H), 2.27 (s, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 146.4, 139.5, 133.4, 129.8, 128.6, 126.4, 124.4, 121.0, 120.7, 115.3, 109.7, 67.7, 37.6, 20.4; HRMS (FAB⁺) Calcd for C₁₆H₁₇N₃⁺ [M]⁺ 251.1417, found 251.1416.

Independent synthesis of indazolyl-BX from parent indazole: 1-(3,3-Bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl)-1H-indazole (3x)

In a 4 mL vial equipped with a magnetic stir bar, 3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[d][1,2]iodaoxol-1(3H)-yl chloride (80.8 mg, 0.20 mmol, 1.0 equiv) was dissolved in Et₂O (1.0 mL). To this solution were added indazole (70.8 mg, 0.60 mmol, 3.0 equiv) and Et₃N (60.7 mg, 0.60 mmol, 3.0 equiv) at room temperature. The resulting mixture was stirred at the same
temperature for 2 h under an argon atmosphere. The mixture was concentrated under reduced pressure, and the residue was purified by column chromatography (silica gel, 18 g, hexane/ethyl acetate = 9/1 to 5/1) to afford the desired product 3x.

Colorless solid (40.0 mg, 41%); m.p. 138-141 °C; R_f 0.71 (hexane/EtOAc = 3/1); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 1.0 Hz, 1H), 7.82-7.78 (m, 2H), 7.58 (app. dt, J = 7.6, 0.9 Hz, 1H), 7.43-7.37 (m, 3H), 7.23 (app. dt, J = 7.2, 1.2 Hz, 1H), 6.21 (dd, J = 8.4, 0.7 Hz, 1H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 146.4, 139.5, 133.4, 131.21, 131.15, 130.1, 127.6, 127.1, 124.1, 123.2 (q, J_{C-F} = 289.8 Hz), 122.0, 121.2, 116.3, 111.2, 84.3-83.5 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ – 75.9; HRMS (FAB⁺) Calcd for C₁₆H₁₀F₆IN₂O⁺ [M+H]⁺ 486.9737, found 486.9744.

Scheme S1. Putative mechanism for the $C(sp^3)$ -H indazolylation reaction

5. Competition Experiments to Evaluate Arynophilicity of Diazomethyl- λ^3 -iodane Reaction of *o*-silylaryl triflate 1b with a mixture of diazomethyl- λ^3 -iodane 2a and furan

In a 4 mL vial equipped with a magnetic stir bar, ethyl 2-(3,3-bis(trifluoromethyl)- $1\lambda^3$ benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-2-diazoacetate (**2a**; 48.1 mg, 0.10 mmol, 5.1 equiv) and furan (6.8 mg, 5.0 mmol, 5.0 equiv) were dissolved in MeCN (1.0 mL). To this solution were added 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (**1b**; 6.0 mg, 20.1 µmol, 1.0 equiv) and cesium fluoride (6.1 mg, 40 µmol, 2.0 equiv). The resulting mixture was stirred at room temperature for 18 h and then added ethyl acetate and filtered. The filtrate was concentrated under reduced pressure. To the residue was added 1,1,2,2-tetrachloroethane (15.6 mg, 92.9 µmol) as an internal standard, and the mixture was dissolved in CDCl₃. The solution was analyzed by ¹H NMR to determine the yields of ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-1*H*-indazole-3carboxylate (**3ba**; 75.0%) and 1,4-dihydro-1,4-epoxynaphthalene (**6**; 12.5%).

 $\log (k_{2a}/k_{\rm furan}) = \log (75.0/12.5) = 0.778$

Reaction of *o*-silylaryl triflate 1b with a mixture of diazomethyl- λ^3 -iodane 2a and benzyl azide

In a 4 mL vial equipped with a magnetic stir bar, ethyl 2-(3,3-bis(trifluoromethyl)- $1\lambda^3$ benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-2-diazoacetate (**2a**; 48.1 mg, 0.10 mmol, 5.1 equiv) and benzyl azide (13.3 mg, 0.10 mmol, 5.0 equiv) were dissolved in MeCN (0.80 mL). To this solution were added 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (**1b**; 6.0 mg, 20.1 µmol, 1.0 equiv) and cesium fluoride (6.1 mg, 40 µmol, 2.0 equiv). The resulting mixture was stirred at room temperature for 18 h and then added ethyl acetate and filtered. The filtrate was concentrated under reduced pressure. To the residue was added 1,1,2,2-tetrachloroethane (16.5 mg, 98.3 µmol) as an internal standard, and the mixture was dissolved in CDCl₃. The solution was analyzed by ¹H NMR to determine the yields of ethyl 1-(3,3-bis(trifluoromethyl)-1 λ^3 benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-1*H*-indazole-3-carboxylate (**3ba**; 62.5%) and 1-benzyl-1*H*benzo[*d*][1,2,3]triazole (7; 35.0%).

$$\log (k_{2a}/k_{azide}) = \log (62.5/35.0) = 0.252$$

6. X-Ray Crystallographic Analysis

X-ray crystal structure analysis of 3aa

Single crystals suitable for X-ray crystallography were obtained by recrystallization from CH₂Cl₂/hexane. A suitable crystal was selected and mounted on a Bruker D8 goniometer diffractometer. The crystal was kept at 99.8(3) K during data collection. Using Olex2,⁹ the structure was solved with the olex2.solve¹⁰ structure solution program using Charge Flipping and refined with the SHELXL¹¹ refinement package using Least Squares minimization.

Crystallographic data of **3aa** has been deposited on Cambridge Crystallographic Data Center, deposition no. CCDC 2404102.

CCDC number	2404102
Empirical formula	$C_{20}H_{15}F_6IN_2O_4$
Formula weight	588.24
Space system	triclinic
Space group	P-1
a/Å	8.32510(10)
b/Å	8.88170(10)
c/Å	14.9449(2)
α/°	73.4200(10)
β/°	86.6070(10)
$\gamma^{/\circ}$	82.9770(10)
Volume/Å ³	1050.81(2)
Ζ	2
Temperature/K	99.8(3)
2Θ range for data collection/°	2.407 to 31.405
$\rho_{calcd} g/cm^3$	1.859
µ/mm ⁻¹	1.608
F_000	576
Crystal_size/mm ³	0.2 x 0.2 x 0.05
Radiation	Mo K\a
Reflections collected	61227
Independent	6176
Index ranges	$-12 \le h \le 11, -12 \le k \le 12, -19 \le 1 \le 21$
Data/restraints/parameters	6176/0/300
Final R indexes R [I>2 σ (I)]gt	$R_1 = 0.0183, wR_2 = 0.0410$
Final R indexes R [all data]	$R_1 = 0.0204, wR_2 = 0.0417$

Table S4. Crystal data and structure refinements for ethyl 1-(3,3-bis(trifluoromethyl)- $1\lambda^3$ -benzo[*d*][1,2]iodaoxol-1(3*H*)-yl)-7-methoxy-1*H*-indazole-3-carboxylate (**3aa**):

Goodness-of-fit on F ²	1.050
Largest peak/deepest hole eÅ ⁻³	0.569/-0.351

Figure S3. Thermal ellipsoid (50 % probability) plot of **3aa**, CCDC No. 2404102. Color code of atoms: hydrogen, white; carbon, gray; fluorine, yellow; iodine, purple; oxygen, red; nitrogen, blue.

7. DFT Calculations Computational Method

All the density functional theory (DFT) calculations were carried out using the Gaussian 16 program.¹² Geometry optimizations were performed with the M06-2X functional^{13,14,15} and a combined basis set B1 (i.e., the SDD effective core potential¹⁶ for iodine and the 6-31G(d) basis set for all other atoms). Harmonic frequency calculations were performed for each stationary point to ensure that it is either an energy minimum (no imaginary frequency) or a transition state (only one imaginary frequency). For each transition state, intrinsic reaction coordinate (IRC)¹⁷ analysis was performed to ensure that it connects the correct reactant and product. For the stationary points on the reaction pathways, single-point energy calculations were further performed with the M06-2X functional and a combined basis set B2 (i.e., the SDD effective core potential for iodine, the 6-311++G(2df,2p) basis set for all other atoms). The SMD model¹⁸ with acetonitrile as the solvent was used for all the calculations. The single-point energies corrected by the thermal correction to Gibbs free energies (TCG, obtained from frequency calculations) were used as the Gibbs free energies reported in this work, corresponding to the reference state of 1 mol/L, 298.15 K. The natural population analysis (NPA) charges are calculated at the M06-2X/6-31G(d)-SDD(for I)/SMD(MeCN) level. The 3-D structures were drawn using CYLView software.¹⁹

Regioselectivity of [3+2] Cycloaddition with Unsymmetrical Arynes

3-Methoxybenzyne. No transition state could be located for the [3+2] cycloaddition between 3methoxybenzyne and diazomethyl-BX (SM) leading to the experimentally observed regioselectivity. On the other hand, a transition state (TS1-OMe-minor) is located for [3+2] cycloaddition with the opposite regioselectivity (Figure S4a). Figure S4b illustrates the calculated energy profile (M06-2X/B1) for the approach of SM toward 3-methoxybenzyne, obtained by a series of structural optimizations at fixed distances (*d*) between the distal aryne carbon and the diazomethyl carbon, as referenced to the energy of TS1-OMe-minor. This profile demonstrates the monotonously downhill potential energy surface, which is ca. 3 kcal mol⁻¹ below TS-OMe1minor.

Figure S4. [3+2] Cycloaddition between 3-methoxybenzyne and diazomethyl-BX (SM). (a) Optimized structure of the disfavored transition state (**TS1-OMe-minor**). (b) Calculated energy profile for the distal approach of **SM** to 3-methoxybenzyne, where *d* represents the distance between the distal aryne carbon and the diazomethyl carbon, and E_{rel} corresponds to relative energy of the optimized structure at a fixed distance, referenced against the energy of **TS1-OMe-minor**.

3-(2-Chlorophenyl)benzyne. Two regioisomeric transition states were located for the [3+2] cycloaddition between 3-(2-chlorophenyl)benzyne and SM (Figure S5). In accordance with the experimental observations, the transition state (**TS1-ClPh-major**) leading to the observed regioselectivity (i.e., addition of the diazomethyl carbon to the distal aryne carbon) was energetically favored over the other (**TS1-ClPh-minor**).

Figure S5. Transition states for the [3+2] cycloaddition between 3-(2-chlorophenyl)benzyne and diazomethyl-BX (**SM**).

Starra starras	E(MAC 2V/D1)	тсс	E(MAC 2V/ D2)	TCG+	Imaginary
Structure	E(1100-2A/ BI)	ICG	E(1100-2A/ B2)	E(M06-2X/B2)	Frequency
SM	-1406.44390819	0.135966	-1407.00819623	-1406.87223	
benzyne	-230.810363	0.048845	-230.8919608	-230.8431158	
TS1	-1637.26058723	0.205328	-1637.90963989	-1637.704312	63.89i
INT1	-1637.42177752	0.216189	-1638.06100877	-1637.84482	
TS1'	-1637.25956604	0.205911	-1637.90530196	-1637.699391	105.67i
INT1'	-1637.40082721	0.214291	-1638.04655508	-1637.832264	
TS2	-1637.41446713	0.216024	-1638.05033227	-1637.834308	134.23i
INT2	-1637.44654344	0.216854	-1638.08713060	-1637.870277	
TS3	-1637.40567704	0.215837	-1638.04706302	-1637.831226	177.19i
PD	-1637.44938898	0.216078	-1638.09471074	-1637.878633	
TS1-OMe- minor	-1751.74097728	0.236015			123.84i
3-(2- chlorophenyl)	-921.335989726	0.112095	-921.544540359	-921.4324454	
benzyne TS1-ClPh-	-2327 79067265	0 268870	-2328 55074974	-2328 28187974	20 42i
major	-2321.19001203	0.200070	-2320.33077774	-2320.2010/9/4	20.721
TS1-ClPh- minor	-2327.79607120	0.275274	-2328.55518939	-2328.27991539	199.56i

Table S5. Energy data for the optimized structures (Figures 1, S4, and S5; hartrees).

Cartesian Coordinates SM

01	•		
С	2.941121	-0.662568	-0.219923
С	3.766935	0.349211	0.438619
0	4.920734	0.589413	0.164566
0	3.059679	0.996710	1.378427
С	3.784459	2.013818	2.071432
Η	4.126929	2.778543	1.371290
Η	3.083779	2.434421	2.790185
Η	4.649639	1.583258	2.579371
Ν	3.525072	-1.307397	-1.195650
Ν	4.003149	-1.885353	-2.035942
Ι	0.881767 ·	-1.147521	0.267128
С	0.163576	0.588195	-0.797416
С	1.015586	1.417533	-1.499283
С	-1.195460	0.793755	-0.679364
С	0.459828	2.527218	-2.132670
Η	2.078533	1.212874	-1.563663
С	-1.730310	1.921173	-1.310192
С	-0.906200	2.775578	-2.034440
Η	1.101263	3.194077	-2.699342
Η	-2.791378	2.123477	-1.231878
Η	-1.335676	3.643384	-2.523797
С	-2.012240	-0.207325	0.153322
С	-3.218498	-0.709556	-0.665601
С	-2.483932	0.499023	1.441144
F	-2.799799	-1.178037	-1.844968
F	-3.857486	-1.687171	-0.032956
F	-4.112963	0.266349	-0.909378
F	-3.181162	1.619264	1.195428
F	-3.246140	-0.298995	2.184692
F	-1.409790	0.843537	2.163807
0	-1.278840	-1.301502	0.499229

Benzyne

С	-0.702881	1.052759	-0.000025
С	-1.460779	-0.132405	0.000110
С	-0.622474	-1.232516	-0.000070
С	0.622482	-1.232517	-0.000070
С	1.460779	-0.132398	0.000112
С	0.702876	1.052762	-0.000024
Η	-1.224697	2.005983	-0.000132
Η	-2.544747	-0.133049	0.000040
Η	2.544747	-0.133035	0.000034
Η	1.224687	2.005989	-0.000137

TS1

С	4.351859	-1.138625	-1.109381
С	3.678658	-0.793978	-0.102682
С	5.254884	-2.197254	-1.058919
С	3.650675	-1.295887	1.182937
С	5.325441	-2.804800	0.204483
Η	5.862106	-2.544983	-1.888764
С	4.549465	-2.369736	1.292595
Η	3.041910	-0.939725	2.007820
Η	6.005213	-3.639925	0.350860
Η	4.646885	-2.876787	2.248436
С	2.083963	1.067736	-0.535008
С	2.531692	1.994808	0.509326
Ο	3.309143	2.904892	0.345600
Ο	1.952914	1.688606	1.681666
С	2.341319	2.529185	2.770726
Η	2.093575	3.569628	2.551926
Η	1.779713	2.171179	3.631462
Η	3.415907	2.446619	2.945331
Ν	2.661973	1.204342	-1.701100
Ν	3.228202	1.130555	-2.670842
Ι	0.450009 ·	-0.371260 ·	-0.371189
С	-1.010168	1.210215	-0.478040
С	-0.659978	2.525648	-0.716845
С	-2.305926	0.789000	-0.254091
С	-1.679100	3.475704	-0.734975
Η	0.369498	2.817278	-0.893187
С	-3.311548	1.759394	-0.259546
С	-2.996674	3.091612	-0.504065
Η	-1.434710	4.514803	-0.929357
Η	-4.337764	1.466242	-0.074501
Η	-3.787337	3.834401	-0.512775
С	-2.539444	-0.705109	0.014051
С	-3.675064	-1.235018	-0.884350
С	-2.898880	-0.882422	1.503837
F	-3.434669	-0.912647	-2.158101
F	-3.778542	-2.556185	-0.801032
F	-4.871085	-0.714145	-0.551124
F	-3.946510	-0.133259	1.878806
F	-3.179543	-2.150465	1.793213
F	-1.848891	-0.506982	2.248213
Ο	-1.430879	-1.449236	-0.263607

INT1

 $\begin{array}{ccccc} C & 3.941560 & -0.693045 & -1.239692 \\ C & 3.437746 & -0.381875 & 0.027249 \end{array}$

С	4.866443	-1.709900	-1.442202
С	3.838840	-1.107297	1.146620
С	5.274523	-2.426424	-0.321557
Η	5.243809	-1.925975	-2.435836
С	4.767819	-2.127861	0.951242
Η	3.455821	-0.873425	2.134276
Η	5.995217	-3.230217	-0.430497
Η	5.109604	-2.704612	1.804856
С	2.454928	0.678414	-0.243518
С	2.323434	1.874877	0.645066
0	2.070113	2.995114	0.282571
0	2.491987	1.522109	1.929971
С	2.343840	2.592434	2.867522
Η	1.339345	3.015041	2.800246
Η	2.511281	2.149718	3.847476
Η	3.076830	3.375342	2.664970
Ν	2.573471	0.965488	-1.656569
Ν	3.377830	0.168959	-2.211517
Ι	0.466387	-0.564951 -	-0.021843
С	-0.829137	0.989897	-0.777279
С	-0.353620	2.129691	-1.397097
С	-2.167571	0.712857	-0.566216
С	-1.302314	3.067433	-1.806053
Η	0.702875	2.293922	-1.572544
С	-3.093462	1.675566	-0.972929
С	-2.657818	2.844439	-1.588637
Η	-0.965723	3.973407	-2.298745
Η	-4.150881	1.501597	-0.813974
Η	-3.386894	3.582488	-1.906240
С	-2.534383	-0.616777	0.099148
С	-3.647057	-1.328530	-0.697675
С	-2.996715	-0.341320	1.544371
F	-3.315884	-1.391272	-1.988315
F	-3.838310	-2.566011	-0.254851
F	-4.822421	-0.680073	-0.605859
F	-3.993756	0.551131	1.604855
F	-3.403791	-1.453736	2.150957
F	-1.964535	0.158058	2.240552
Ο	-1.469967	-1.481520	0.130465

TS1'

Ι	-0.413858	-0.473770	-0.320355
С	0.940651	1.195190	-0.420473
С	0.531118	2.500352	-0.638955
С	2.263483	0.849201	-0.210457
С	1.498703	3.502110	-0.655290

Η	-0.510344	2.752169	-0.799058
С	3.219134	1.868612	-0.215889
С	2.836497	3.185551	-0.442691
Η	1.197537	4.529315	-0.832695
Η	4.260256	1.626351	-0.042382
Η	3.588187	3.967759	-0.450366
С	2.587699	-0.628406	0.045516
С	3.704208	-1.099818	-0.907928
С	3.020648	-0.791633	1.516683
F	3.371224	-0.811614	-2.169269
F	3.895520	-2.410876	-0.817048
F	4.881357	-0.500831	-0.649474
F	3.364868	-2.047507	1.788981
F	4.056123	-0.002900	1.843022
F	1.993488	-0.457794	2.308809
0	1.509184	-1.435758	-0.180902
С	-3.114236	-2.070136	-0.099689
С	-4.005756	-3.133349	0.101126
С	-3.605870	-0.902614	-0.163081
С	-5.356417	-2.776293	0.200400
Η	-3.699014	-4.172808	0.174790
С	-4.878648	-0.387349	-0.088149
С	-5.784442	-1.441317	0.109245
Η	-6.101065	-3.553134	0.351557
Η	-5.168779	0.655886	-0.156047
Η	-6.842578	-1.211323	0.194639
С	-2.140323	0.883673	-0.525888
Ν	-2.545027	1.195095	-1.737608
Ν	-2.888601	1.404852	-2.787436
С	-2.641640	1.783988	0.519651
0	-3.484981	2.636889	0.344643
Ο	-2.052322	1.524629	1.689958
С	-2.524043	2.312132	2.785969
Η	-3.592348	2.144227	2.935556
Η	-1.954896	1.977832	3.650875
Η	-2.349948	3.372194	2.591894

INT1'

Ι	-0.459192	-0.192350	1.401093
С	0.242254	-1.168436	-0.393789
С	-0.600398	-1.931766	-1.182034
С	1.568759	-0.932393	-0.687879
С	-0.079864	-2.468623	-2.357550
Η	-1.631456	-2.113947	-0.897019
С	2.065606	-1.465602	-1.881347
С	1.246074	-2.227352	-2.706516

Η	-0.715764	-3.074227	-2.995256
Η	3.096911	-1.282820	-2.157877
Η	1.647356	-2.637315	-3.627341
С	2.393023	-0.087035	0.306124
С	3.754654	-0.764436	0.567419
С	2.603378	1.309459	-0.318871
F	3.572530	-2.043780	0.907695
F	4.408463	-0.161183	1.554300
F	4.559394	-0.745350	-0.514571
F	3.376530	2.079421	0.445003
F	3.152315	1.260459	-1.541266
F	1.409267	1.915764	-0.441934
0	1.765639	0.037436	1.499295
С	-2.534849	-0.648323	0.922421
С	-3.218779	-1.500128	1.783295
С	-3.193896	-0.076420	-0.176931
С	-4.560647	-1.806837	1.557487
Η	-2.701547	-1.945679	2.629166
С	-4.536712	-0.399109	-0.396343
С	-5.215850	-1.261291	0.459803
Η	-5.083608	-2.477566	2.231680
Η	-5.052076	0.043682	-1.244131
Η	-6.258211	-1.497250	0.271377
С	-2.487894	0.805926	-1.138142
Ν	-2.415445	0.410614	-2.390092
Ν	-2.342893	0.064488	-3.459145
С	-1.850436	2.104262	-0.894292
0	-1.240349	2.732382	-1.727407
0	-2.042772	2.502298	0.373452
С	-1.322778	3.686524	0.729141
Η	-1.631009	4.521766	0.097996
Η	-1.571448	3.877911	1.771721
Η	-0.250142	3.518843	0.608686

TS2

С	3.377368	-1.639039	-0.459627
С	3.998013	-0.503721	0.117895
С	3.913786	-2.936786	-0.302229
С	5.200772	-0.650367	0.842221
С	5.068876	-3.056951	0.430063
Η	3.426567	-3.794028	-0.755491
С	5.709069	-1.919614	0.994872
Η	5.694903	0.213690	1.270393
Η	5.513430	-4.036123	0.578160
Η	6.624822	-2.063854	1.559789
С	3.154081	0.568179	-0.278521

С	3.314321	2.009992	-0.038453
0	2.655999	2.897829	-0.535375
0	4.322693	2.246693	0.819241
С	4.568341	3.625479	1.088652
Η	3.686758	4.088147	1.537431
Η	5.407495	3.645922	1.781985
Η	4.816385	4.155350	0.166500
Ν	2.156761	0.093849	-1.034766
Ν	2.284005	-1.253777	-1.164624
Ι	-0.136880	-1.044510	-0.673245
С	-0.899338	0.975016	-0.595633
С	-0.166214	2.077814	-0.960634
С	-2.209676	1.009625	-0.143006
С	-0.788655	3.320725	-0.829657
Η	0.854986	1.996036	-1.311276
С	-2.805755	2.264329	-0.013964
С	-2.093781	3.410785	-0.357806
Η	-0.230239	4.211423	-1.097606
Η	-3.823335	2.337550	0.351451
Η	-2.568918	4.380620	-0.254739
С	-2.873698	-0.313369	0.197795
С	-4.266974	-0.420907	-0.454338
С	-2.970359	-0.465097	1.728462
F	-4.183530	-0.131728	-1.752208
F	-4.764436	-1.645200	-0.328177
F	-5.135146	0.434851	0.108418
F	-3.614129	0.561959	2.292808
F	-3.595693	-1.587642	2.071656
F	-1.731981	-0.504309	2.236656
0	-2.152490	-1.387539	-0.309839

INT2

С	3.962861	-1.486350	-0.030700
С	4.139054	-0.074413	0.023748
С	5.055855	-2.350544	-0.291394
С	5.419727	0.495021	-0.187085
С	6.282030	-1.775214	-0.490257
Η	4.905087	-3.424069	-0.327948
С	6.461706	-0.359407	-0.438104
Η	5.557919	1.569296	-0.145030
Η	7.144676	-2.402388	-0.692210
Η	7.456291	0.043904	-0.601707
С	2.848941	0.408622	0.293906
С	2.310149	1.760427	0.430167
0	1.132840	2.026078	0.551300
0	3.281155	2.685207	0.392638

С	2.823466	4.033257	0.506917
Η	2.306848	4.178909	1.457680
Η	3.717117	4.652541	0.455289
Η	2.138700	4.272388	-0.309308
Ν	2.037797	-0.681118	0.375888
Ν	2.673338	-1.827106	0.188497
Ι	-0.070232	-0.866736	0.945778
С	-0.624487	-0.119230	-0.975447
С	0.284016	0.116170	-1.988216
С	-1.983490	0.100534	-1.081112
С	-0.217340	0.617893	-3.187531
Η	1.341244	-0.087523	-1.862817
С	-2.461086	0.623095	-2.285100
С	-1.578565	0.874164	-3.330010
Η	0.464847	0.807212	-4.009648
Η	-3.518864	0.826746	-2.400002
Η	-1.959127	1.271992	-4.264745
С	-2.848431	-0.216563	0.140864
С	-4.079662	-1.049651	-0.264734
С	-3.275452	1.107380	0.806249
F	-3.697565	-2.102705	-0.988974
F	-4.734787	-1.491508	0.802078
F	-4.942799	-0.331830	-1.004515
F	-3.898873	1.926087	-0.051480
F	-4.089439	0.894956	1.838073
F	-2.184132	1.736269	1.254662
0	-2.163719	-0.977159	1.063807

TS3

С	3.801087	-1.225417	-0.994369
С	3.811657	-0.286894	0.069428
С	4.730199	-2.282341	-1.042531
С	4.757395	-0.396187	1.113003
С	5.639565	-2.375435	-0.013901
Η	4.711729	-2.989043	-1.865166
С	5.653432	-1.438444	1.054696
Η	4.774064	0.326298	1.921217
Η	6.367078	-3.181182	-0.010891
Η	6.395208	-1.551771	1.839104
С	2.745598	0.577184	-0.268456
С	2.414797	1.926586	0.221230
0	1.560531	2.647259	-0.243368
0	3.166319	2.254373	1.284552
С	2.891522	3.544398	1.833636
Η	1.851251	3.603939	2.160474
Η	3.568831	3.655109	2.678457

Η	3.074749	4.319759	1.087285
Ν	2.207200	0.145899	-1.495007
Ν	2.813582	-0.930637	-1.902949
Ι	0.338449	-0.508321	0.171511
С	-0.953978	0.592786	-1.149317
С	-0.495392	1.389130	-2.176564
С	-2.285751	0.414337	-0.818449
С	-1.462336	2.052647	-2.931506
Η	0.565841	1.483248	-2.370371
С	-3.230423	1.102058	-1.582751
С	-2.814592	1.910928	-2.635170
Η	-1.144831	2.686114	-3.752907
Η	-4.283878	0.998072	-1.352652
Η	-3.557013	2.436388	-3.226394
С	-2.622202	-0.484836	0.365316
С	-3.691032	-1.526756	-0.023521
С	-3.100125	0.382756	1.546511
F	-3.322883	-2.156935	-1.138394
F	-3.853684	-2.430685	0.935411
F	-4.881750	-0.947280	-0.246054
F	-4.132256	1.165150	1.212492
F	-3.466341	-0.364752	2.584234
F	-2.092495	1.173557	1.935055
Ο	-1.526617	-1.222041	0.788692

PD

С	2.404463	-1.207581	-0.327837
С	3.728451	-0.842826	-0.015118
С	1.922787	-2.515851	-0.166675
С	4.623637	-1.819232	0.460047
С	2.819273	-3.452007	0.304970
Η	0.893388	-2.775548	-0.396218
С	4.157147	-3.108506	0.611891
Η	5.646580	-1.552641	0.698238
Η	2.491670	-4.477030	0.446374
Η	4.825766	-3.880908	0.977711
С	3.764368	0.563221	-0.294385
С	4.883694	1.521989	-0.160802
0	4.839842	2.698648	-0.409624
0	5.988859	0.894708	0.291523
С	7.124706	1.743082	0.450697
Η	6.908084	2.537721	1.167857
Η	7.925423	1.102153	0.816210
Η	7.397827	2.195359	-0.505017
Ν	2.591674	0.995527	-0.725607
Ν	1.774233	-0.065940	-0.763867

Ι	-0.283548	0.180269	-1.284942
С	-0.726288	0.336212	0.807343
С	0.256283	0.443663	1.772134
С	-2.081313	0.310545	1.069642
С	-0.165639	0.518001	3.098861
Η	1.308473	0.483886	1.515150
С	-2.479140	0.366475	2.407077
С	-1.521697	0.473809	3.410753
Η	0.575288	0.612466	3.885587
Η	-3.532846	0.329976	2.656162
Η	-1.839868	0.525782	4.446553
С	-3.030123	0.186470	-0.127098
С	-4.169444	1.219130	-0.027086
С	-3.594298	-1.248408	-0.160048
F	-3.663459	2.435646	0.177979
F	-4.890908	1.246690	-1.141140
F	-5.003261	0.942093	0.991346
F	-4.185429	-1.592790	0.990666
F	-4.475717	-1.408840	-1.142475
F	-2.579895	-2.103372	-0.366598
0	-2.384486	0.435825	-1.313721

TS1-OMe-minor

4.106564	-0.616988	-1.712562	
3.482310	-0.489352	-0.625524	
5.124156	-1.532303	-1.956720	
3.703529	-1.198646	0.543339	
5.409849	-2.304890	-0.824560	
5.663319	-1.654286	-2.888996	
4.727147	-2.151499	0.396364	
6.198041	-3.051926	-0.878810	
5.007849	-2.782590	1.232893	
1.840787	1.257222	-0.578959	
2.304325	2.045627	0.575815	
3.190727	2.864829	0.540914	
1.600582	1.722424	1.666740	
2.082884	2.301725	2.877962	
2.081975	3.391108	2.807649	
1.401578	1.963418	3.656567	
3.099557	1.953946	3.075114	
2.319481	1.608501	-1.745666	
2.843304	1.658760	-2.742929	
0.245034 ·	-0.236537	-0.529862	
-1.265395	1.287933	-0.354664	
-0.965581	2.635538	-0.418066	
-2.538046	0.795627	-0.142059	
	4.106564 3.482310 5.124156 3.703529 5.409849 5.663319 4.727147 6.198041 5.007849 1.840787 2.304325 3.190727 1.600582 2.082884 2.081975 1.401578 3.099557 2.319481 2.843304 0.245034 -1.265395 -0.965581 -2.538046	$\begin{array}{r} 4.106564 & -0.616988\\ 3.482310 & -0.489352\\ 5.124156 & -1.532303\\ 3.703529 & -1.198646\\ 5.409849 & -2.304890\\ 5.663319 & -1.654286\\ 4.727147 & -2.151499\\ 6.198041 & -3.051926\\ 5.007849 & -2.782590\\ 1.840787 & 1.257222\\ 2.304325 & 2.045627\\ 3.190727 & 2.864829\\ 1.600582 & 1.722424\\ 2.082884 & 2.301725\\ 2.081975 & 3.391108\\ 1.401578 & 1.963418\\ 3.099557 & 1.953946\\ 2.319481 & 1.608501\\ 2.843304 & 1.658760\\ 0.245034 & -0.236537\\ -1.265395 & 1.287933\\ -0.965581 & 2.635538\\ -2.538046 & 0.795627\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-2.010433	3.543478	-0.261492
Η	0.046140	2.983828	-0.592795
С	-3.570361	1.722116	0.029849
С	-3.304964	3.085529	-0.034902
Η	-1.804511	4.607390	-0.315844
Η	-4.578598	1.371021	0.211874
Η	-4.116171	3.794360	0.093648
С	-2.719067	-0.728542	-0.083427
С	-3.853951	-1.162851	-1.032606
С	-3.043639	-1.127371	1.370735
F	-3.627964	-0.680715	-2.257740
F	-3.934323	-2.486304	-1.114277
F	-5.056850	-0.709856	-0.631999
F	-4.119559	-0.489404	1.856898
F	-3.261194	-2.435439	1.483925
F	-2.000849	-0.809488	2.150188
0	-1.594427	-1.390227	-0.478565
0	2.980420	-0.956165	1.661113
С	3.248394	-1.767865	2.787956
Η	2.558031	-1.442369	3.565565
Η	3.072736	-2.825631	2.561189
Η	4.280957	-1.635611	3.131364

3-(2-chlorophenyl)benzyne

С	-1.812267 -	1.279028	0.421027	
С	-0.919119 -	0.285481	-0.051242	
С	-1.663524	0.792557	-0.499240	
С	-2.898148	0.940825	-0.533997	
С	-3.840041	0.018880	-0.110138	
С	-3.206941 -	1.134415	0.389825	
Η	-1.397753 -	2.186635	0.851756	
Η	-4.918450	0.127695	-0.132592	
Η	-3.819821 -	1.943695	0.777594	
С	0.546594 -	0.451438	-0.055485	
С	1.439962	0.624106	0.052883	
С	1.102155 -	1.733048	-0.180859	
С	2.817795	0.429698	0.054370	
С	2.474287 -	1.939802	-0.179324	
Η	0.433047 -	2.577718	-0.309978	
С	3.337121 -	0.853956	-0.058536	
Η	3.470648	1.290570	0.146466	
Η	2.868579 -	2.945134	-0.283602	
Η	4.412225 -	1.000448	-0.059092	
Cl	0.863782	2.262469	0.206691	

TS1-ClPh-major

С	3.222898	0.391828	-0.025481
С	2.301824	0.871093	0.679405
С	4.314068	-0.298422	0.508845
С	2.096074	0.830631	2.043586
С	4.210531	-0.424527	1.911247
С	3.148812	0.122118	2.648750
Η	1.272458	1.269151	2.596853
Η	4.973906	-0.978993	2.446754
Н	3.140907	-0.008722	3.727259
С	0.324188	1.723562	-0.712358
С	0.277892	3.091555	-0.187578
0	0.802107	4.051309	-0.700944
0	-0.434061	3.129629	0.950360
С	-0.528834	4.426039	1.545255
Η	-0.997984	5.126684	0.851809
Η	-1.141083	4.295535	2.435515
Η	0.465131	4.794046	1.807000
Ν	1.093796	1.537843	-1.752051
N	1.846754	1.263634	-2.542747
Ι	-0.815375	0.011651	0.016163
С	-2.600643	0.730857	-0.953187
С	-2.601355	1.853784	-1.758732
С	-3.729698	-0.010222	-0.666455
С	-3.815014	2.253123	-2.314538
Η	-1.691336	2.407424	-1.961981
С	-4.939843	0.415389	-1.221564
С	-4.976859	1.536723	-2.043160
Н	-3.844279	3.126503	-2.957655
Н	-5.848088	-0.135027	-1.008686
Н	-5.921548	1.853129	-2.472591
С	-3.578558	-1.225647	0.260675
С	-4.219736	-2.467996	-0.389548
С	-4.260939	-0.902006	1.605760
F	-3.732787	-2.635411	-1.622461
F	-3.963457	-3.566010	0.311980
F	-5.557321	-2.356261	-0.491546
F	-5.546356	-0.544570	1.463657
F	-4.215905	-1.937771	2.439787
F	-3.618556	0.124748	2.179923
0	-2.269803	-1.528031	0.494888
С	5.380972	-0.901288	-0.325529
С	6.738095	-0.974849	0.014185
С	5.006447	-1.429269	-1.569985
С	7.668502	-1.574543	-0.831058
С	5.921895	-2.030581	-2.420353

Η	3.960515	-1.354883	-1.853675
С	7.260618	-2.111053	-2.045267
Η	8.709919	-1.603209	-0.530253
Η	5.592431	-2.434620	-3.371827
Н	7.990409	-2.578920	-2.697948
Cl	7.362653	-0.257031	1.481904

TS1-ClPh-minor

С	3.760581	0.409161	-2.240551
С	3.222465	-0.022295	-1.180495
С	4.481631	-0.374748	-3.130615
С	3.217744	-1.328051	-0.702058
С	4.529872	-1.723121	-2.746628
Η	4.961743	-0.022642	-4.037737
С	3.915644	-2.185856	-1.572576
Η	5.059180	-2.435094	-3.374021
Η	3.990928	-3.238206	-1.309708
С	1.576012	1.658666	-0.443266
С	1.823909	2.197330	0.909239
Ο	2.501931	3.165214	1.154992
Ο	1.145259	1.485372	1.817388
С	1.298884	1.927896	3.165556
Η	0.948703	2.957909	3.264262
Η	0.687484	1.253597	3.763174
Η	2.348361	1.870788	3.461634
Ν	2.043644	2.377650	-1.435238
Ν	2.608434	2.681374	-2.366860
N I	2.608434 0.000018	2.681374 0.199533 ·	-2.366860 -0.875355
N I C	2.608434 0.000018 -1.534149	2.681374 0.199533 1.537316	-2.366860 -0.875355 -0.179764
N I C C	2.608434 0.000018 -1.534149 -1.286587	2.681374 0.199533 1.537316 2.864647	-2.366860 -0.875355 -0.179764 0.117548
N I C C C	2.608434 0.000018 -1.534149 -1.286587 -2.766250	2.681374 0.199533 1.537316 2.864647 0.933198	-2.366860 -0.875355 -0.179764 0.117548 -0.018051
N I C C C C	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500
N I C C C C H	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229
N I C C C C C H C	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342
N I C C C C C H C C	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462
N I C C C C C H C C H C H C H	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270
N I C C C C H C C H H	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270 0.655266
N I C C C C C C C H C C H H H H	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854 -4.410147	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316 3.644408	$\begin{array}{r} -2.366860\\ -0.875355\\ -0.179764\\ 0.117548\\ -0.018051\\ 0.611500\\ -0.035229\\ 0.499342\\ 0.806462\\ 0.842270\\ 0.655266\\ 1.199109 \end{array}$
N I C C C C H C C H H H C	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854 -4.410147 -2.886897	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316 3.644408 -0.551523	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270 0.655266 1.199109 -0.394824
N I C C C C H C C H H H C C	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854 -4.410147 -2.886897 -4.140463	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316 3.644408 -0.551523 -0.784377	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270 0.655266 1.199109 -0.394824 -1.261939
N I C C C C H C C H H H C C C	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854 -4.410147 -2.886897 -4.140463 -2.968447	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316 3.644408 -0.551523 -0.784377 -1.379626	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270 0.655266 1.199109 -0.394824 -1.261939 0.904935
N I C C C C H C C H H H C C C F	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854 -4.410147 -2.886897 -4.140463 -2.968447 -4.148221	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316 3.644408 -0.551523 -0.784377 -1.379626 0.066607	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270 0.655266 1.199109 -0.394824 -1.261939 0.904935 -2.290619
N I C C C C H C C H H H C C C F F	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854 -4.410147 -2.886897 -4.140463 -2.968447 -4.148221 -4.167298	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316 3.644408 -0.551523 -0.784377 -1.379626 0.066607 -2.022158	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270 0.655266 1.199109 -0.394824 -1.261939 0.904935 -2.290619 -1.743639
N I C C C C H C C H H H C C C F F F	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854 -4.410147 -2.886897 -4.140463 -2.968447 -4.148221 -4.167298 -5.280552	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316 3.644408 -0.551523 -0.784377 -1.379626 0.066607 -2.022158 -0.597409	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270 0.655266 1.199109 -0.394824 -1.261939 0.904935 -2.290619 -1.743639 -0.570004
N I C C C C H C C H H H C C C F F F F	2.608434 0.000018 -1.534149 -1.286587 -2.766250 -2.341991 -0.310121 -3.806166 -3.592446 -2.178592 -4.780854 -4.410147 -2.886897 -4.140463 -2.968447 -4.148221 -4.167298 -5.280552 -3.973703	2.681374 0.199533 1.537316 2.864647 0.933198 3.628545 3.311679 1.709752 3.049218 4.676071 1.263316 3.644408 -0.551523 -0.784377 -1.379626 0.066607 -2.022158 -0.597409 -0.993273	-2.366860 -0.875355 -0.179764 0.117548 -0.018051 0.611500 -0.035229 0.499342 0.806462 0.842270 0.655266 1.199109 -0.394824 -1.261939 0.904935 -2.290619 -1.743639 -0.570004 1.704262

F	-1.826903	-1.226762	1.592295
0	-1.815933	-0.972190	-1.127034
С	2.515501	-1.803608	0.512385
С	2.717229	-1.229441	1.770973
С	1.544570	-2.807765	0.401712
С	1.957947	-1.611150	2.872629
С	0.771605	-3.190739	1.490189
Η	1.372308	-3.253170	-0.574827
С	0.974080	-2.582687	2.726967
Η	2.147950	-1.146787	3.834795
Η	-0.001887	-3.941572	1.368433
Η	0.368210	-2.864958	3.581762
Cl	3.962057	-0.027732	1.999745

8. References

- 1. P. Caramenti, R. K. Nandi, J. Waser, Metal-Free Oxidative Cross Coupling of Indoles with Electron-Rich (Hetero)arenes. *Chem. Eur. J.* **2018**, *24*, 10049-10053.
- 2. S. Yoshida, K. Shinmori, T. Nonaka, T. Hosoya, Facile Synthesis of Diverse Multisubstituted *ortho*-Silylaryl Triflates via C–H Borylation. *Chem. Lett.* **2015**, *44*, 1324-1326.
- 3. B. Michel, M. F. Greaney, Continuous-Flow Synthesis of Trimethylsilylphenyl Perfluorosulfonate Benzyne Precursors. *Org. Lett.* **2014**, *16*, 2684-2687.
- M. Lanzi, T. Rogge, T. S. Truong, K. N. Houk, J. Wencel-Delord, Cyclic Diaryl λ³-Chloranes: Reagents and Their C–C and C–O Couplings with Phenols via Aryne Intermediates. *J. Am. Chem. Soc.* 2023, 145, 345-358.
- M. Lanzi, Q. Dherbassy, J. Wencel-Delord, Cyclic Diaryl λ³-Bromanes as Original Aryne Precursors. Angew. Chem. Int. Ed. 2021, 60, 14852-14857.
- D. C. Martos, M. De Abreu, P. Hauk, P. Fackler and J. Wencel-Delord, Easy Access to Polyhalogenated Biaryls: Regioselective (Di)halogenation of Hypervalent Bromines and Chlorines. *Chem. Sci.* 2024, 15, 6770–6776
- W. Ding, C. Wang, J. R. Tan, C. C. Ho, F. León, F. García, N. Yoshikai, Site-Selective Aromatic C-H λ³-Iodanation with a Cyclic Iodine(III) Electrophile in Solution and Solid Phases. *Chem. Sci.* 2020, *11*, 7356–7361.
- 8. S. Abe, J. Kikuchi, A. Matsumoto, N. Yoshikai, Stable and Responsive Atropisomerism around a Carbon–Iodine Bond. *ChemRxiv* **2024**, DOI: 10.26434/chemrxiv-2024-t16qt.
- 9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Cryst.* **2009**, *42*, 339-341.
- 10. L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard, H. Puschmann, The Anatomy of a Comprehensive Constrained, Restrained Refinement. *Acta Cryst.* **2015**, *A71*, 59-75.
- 11. G. M. Sheldrick, Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT (2016).

- Y. Zhao, D. G. Truhlar, Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States. J. Phys. Chem. A 2006, 110, 13126– 13130.
- 14. Y. Zhao, D. G. Truhlar, Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167.
- 15. Y. Zhao, D. G. Truhlar, Applications and Validations of the Minnesota Density Functionals. *Chem. Phys. Lett.* **2011**, *502*, 1–13.
- 16. M. Dolg, U. Wedig, H. Stoll, H. Preuss, Energy-Adjusted ab Initio Pseudopotentials for the First Row Transition Elements. J. Chem. Phys. **1987**, *86*, 866–872.
- 17. K. Fukui, The Path of Chemical Reactions The IRC Approach. Acc. Chem. Res. 1981, 14, 363–368.
- A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396.
- 19. C. Y. Legault, CYLview20; Université de Sherbrooke, 2020 (http://www.cylview.org).

9. ¹H and ¹³C NMR Spectra

¹H NMR spectrum of **2a** (400 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **2b** (150 MHz, CDCl₃)

S64

 $^{13}C\{^{1}H\}$ NMR spectrum of **2c** (150 MHz, CDCl₃)

¹H NMR spectrum of **2d** (400 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **2d** (150 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **2e** (150 MHz, CDCl₃)

S70

 $^{13}C{^{1}H}$ NMR spectrum of **2f** (150 MHz, CDCl₃)

¹H NMR spectrum of 2g (400 MHz, CDCl₃)
$^{13}C\{^{1}H\}$ NMR spectrum of **2g** (150 MHz, CDCl₃)

S74

 $^{13}C\{^{1}H\}$ NMR spectrum of **2h** (150 MHz, CDCl₃)

S76

¹³C{¹H} NMR spectrum of **2i** (150 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **2j** (150 MHz, CDCl₃)

¹H NMR spectrum of **2k** (400 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of 2k (150 MHz, CDCl₃)

¹H NMR spectrum of **2l** (400 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **2l** (150 MHz, CDCl₃)

¹H NMR spectrum of **2m** (400 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **2m** (150 MHz, CDCl₃)

S86

$^{13}C{^{1}H}$ NMR spectrum of **2n** (150 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **20** (150 MHz, CDCl₃)

¹H NMR spectrum of **2p** (400 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **2p** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3aa** (150 MHz, CDCl₃)

¹H NMR spectrum of **3ab** (400 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ab** (150 MHz, CDCl₃)

¹H NMR spectrum of **3ac** (400 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ac** (150 MHz, CDCl₃)

¹H NMR spectrum of **3ad** (400 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ad** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ae** (150 MHz, CDCl₃)

¹H NMR spectrum of **3af** (400 MHz, CDCl₃)

888877777777777777669999

¹³C{¹H} NMR spectrum of **3af** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ag** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ah** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3aj** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ak** (150 MHz, CDCl₃)

¹H NMR spectrum of **3ba** (400 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **3ba** (150 MHz, CDCl₃)

¹H NMR spectrum of **3ca** (400 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ca** (150 MHz, CDCl₃)

¹H NMR spectrum of **3da** (600 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3da** (150 MHz, CDCl₃)

¹H NMR spectrum of **3ea** (400 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ea** (150 MHz, CDCl₃)

¹H NMR spectrum of **3ga** (400 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ga** (150 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **3ha** and **3ha'** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ja** (150 MHz, CDCl₃)

¹H NMR spectrum of **3jd** (400 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **3jd** (150 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **3kd** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ld** (150 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **3md** (150 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **3jf** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3jg** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3ji** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3jj** (150 MHz, CDCl₃)

¹H NMR spectrum of **3jk** (400 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3jk** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3jm** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3jn** (150 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **3jo** (150 MHz, CDCl₃)

¹³C{¹H} NMR spectrum of **3jp** (150 MHz, CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of **4b** (150 MHz, CDCl₃)

 $^{13}C{^{1}H}$ NMR spectrum of **3x** (150 MHz, CDCl₃)

