Electronic Supplementary Information (ESI) :

## A new post-synthetic route to graft amino groups in porous organic polymers for

## CO<sub>2</sub> capture

Qihaoyue Wang <sup>a+</sup>, Lin Lin <sup>a+</sup>, Li Jiang <sup>a</sup>, Zihao Wang <sup>a</sup>, Yina Zhang <sup>a</sup>, Qiance Han <sup>a</sup>, Xin Huang <sup>a</sup>, Changyan Zhu <sup>a</sup> , Jiangtao Jia <sup>a\*</sup>, Zheng Bian <sup>a\*</sup>, Guangshan Zhu <sup>a\*</sup>

a. Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China. jiangtaojia@nenu.edu.cn; bianz070@nenu.edu.cn; zhugs@nenu.edu.cn

b. † Q. Wang and L. Lin contribute equally to this paper.



Figure S1 Schematic illustration of the product corresponding to the 40 ppm signal in <sup>13</sup>C CP/MAS NMR spectrum



Figure S2 XPS C 1s spectrum of PAF-5 and PAF-5-CHO.



Figure S3 (a) Thermogravimetric traces of PAF-5, PAF-5, PAF-5-CHO, PAF-5-C=N-EDA, PAF-5-C=N-DETA and PAF-5-C=N-TETA under air flow; (b) Thermogravimetric data of PAF-5-C=N-EDA with proposed weight loss.



Figure S4 Morphology of (a) PAF-5, (b and c) PAF-5-CHO, (d) PAF-5-C=N-EDA, (e) PAF-5-C=N-DETA and (f) PAF-5-C=N-TETA by SEM.



Figure S5 PXRD patterns of PAF-5 and a range of its post-modified materials.



Figure S6 XPS C 1s spectrum of PAF-5 and PAF-5-CHO.



Figure S7 The pore size distributions of PAF-5 (a), PAF-5-CHO (b), PAF-5-C=N-EDA (c), PAF-5-C=N-DETA(d) and PAF-5-C=N-TETA were determined. Fitting the isotherm based on NLDFT revealed a consistent pore size distribution characterized by a narrow peak at 1.42 nm for PAF-5, 1.03 nm for PAF-5-CHO, 1.00 for PAF-5-C=N-EDA, 1.05 for PAF-5-C=N-DETA and 1.23 nm for PAF-C=N-TETA.



Figure S8 CO<sub>2</sub> uptake of PAF-5-CHO and its derivations at 273 K.



Figure S9 CO<sub>2</sub> cycles adsorption of PAF-5-C=N-EDA.



Figure S10 Magnified view of the  $CO_2$  sorption isotherm taken from a highlighting the uptake at the  $CO_2$  pressure (0-20 kPa).





Figure S12 Dynamic breakthrough cycle curves for CO<sub>2</sub>/N<sub>2</sub> (15/85) mixtures at 25 °C (6th-11th).

## **Computation Method**

Density functional theory (DFT)<sup>[1]</sup> simulations were performed with the Vienna ab initio simulation package (VASP)<sup>[2]</sup>. The Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) and the projector augmented-wave (PAW) potential were employed<sup>[3]</sup>. The PAF-5-C=N-EDA model was constructed with three monolayers, including 171 C atoms, 18 N atoms and 144 H atoms. The plane-wave cutoff energy of 500 eV and the Monkhorst-Pack k-points mesh of  $1 \times 1 \times 1$  were adopted for all computations. The convergence criteria were set at  $10^{-5}$  eV for total energy change and 0.05 eV Å-1 for the maximum forces on each atom, respectively. The Grimme's semiempirical DFT-D3 method of dispersion correction was included to properly describe the van der Waals (vdW) interactions <sup>[4]</sup>. The adsorption energy of CO<sub>2</sub> were calculated by  $\Delta$ Ead = E\*CO2 – E\* - ECO2, where E\*CO2 and E\* is the energy of PAF-5-C=N-EDA model with and without CO<sub>2</sub>; ECO2 is the energy of CO<sub>2</sub> molecule. To investigate the CO<sub>2</sub> diffusion energy barrier, the climbing-image nudged elastic band (CI-NEB) method is used to search the minimum energy pathway between the given initial and final configurations <sup>[5]</sup>.



Figure S13. Five potential configurations of CO<sub>2</sub> adsorbed on the PAF-5-C=N-EDA model and the corresponding adsorption energies.



Figure S14. The diffusion barrier and diffusion pathway of CO<sub>2</sub> molecules on the PAF-5-C=N-EDA model.



Figure S15 IR absorbance spectra of  $CO_2$  adsorption on PAF-5-C=N-EDA at different times.

| Table S1     | . Elemental Oxygen Analys | sis data |
|--------------|---------------------------|----------|
| Name         | Weight (mg)               | 0%       |
| Benzoic acid | 4.6630                    | 26.200   |
| PAF-5-CHO    | 1.9400                    | 7.475    |

| Table S2. Elemental Analysis data |           |            |            |            |  |  |
|-----------------------------------|-----------|------------|------------|------------|--|--|
|                                   | PAF-5-CHO | PAF-5-C=N- | PAF-5-C=N- | PAF-5-C=N- |  |  |
|                                   |           | TETA       | DETA       | EDA        |  |  |
| N%                                | 0.1       | 10.044     | 9.438      | 9.278      |  |  |
| C%                                | 67.144    | 69.387     | 70.786     | 71.596     |  |  |
| Н%                                | 2.796     | 5.403      | 5.184      | 5.403      |  |  |

| Table 55. Folosity of animo-functionalized PAF-5-Cho series materials | Table S3. Porosity | of amino-functionalized PAF-5-CHO series materials |
|-----------------------------------------------------------------------|--------------------|----------------------------------------------------|
|-----------------------------------------------------------------------|--------------------|----------------------------------------------------|

|                | BET surface area | Pore volume      | Pore width |
|----------------|------------------|------------------|------------|
|                | $(m^2 g^{-1})$   | $(cm^{3}g^{-1})$ | (nm)       |
| PAF-5          | 1660             | 1.391            | 1.75       |
| PAF-5-CHO      | 1510             | 0.085            | 1.03       |
| PAF-5-C=N-EDA  | 1423             | 0.084            | 1.00       |
| PAF-5-C=N-DETA | 1224             | 0.072            | 1.05       |
| PAF-5-C=N-TETA | 1101             | 0.070            | 1.23       |

[1] D. Singh, J. Ashkenazi, Phys. Rev. B 1992, 46, 11570.

[2] B. Barbiellini, M. Puska, T. Korhonen, A. Harju, T. Torsti, R. Nieminen, Phys. Rev. B 1996, 53, 16201.

[3] a) P. Blöchl, Phys. Rev. B 1994, 50, 17953; b) G. Kresse, G. Joubert, Phys. Rev. B 1999, 59, 1758.

[4] S. Grimme, J. Comput. Chem. 2006, 27, 1787.

[5] G. Mills and H. Jónsson, Phys. Rev. Lett., 1994, 72, 1124.