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Single-Target Performance of VS2Net

After obtaining the VS2Net model, we tested its classification ability across 
different targets. As depicted in the Figure S1, the constructed model exhibited 
remarkable predictive power for the 82 distinct protein targets and their corresponding 
datasets of active molecules and decoys from the DUD-E database. For the vast 
majority of targets, the model demonstrated exceptional performance. This result 
underscores the model's precision and robustness in predicting protein-ligand 
interactions.



Figure S1. AUC values of the VS2Net model for 82 protein targets in DUD-E dataset.

Target Clustering and Ligands Similarity Evaluation

To explore the potential structural associations among targets represented by the 



FISD sequence and validate its effectiveness in ligand recognition, we first conducted 
a K-means clustering analysis on the 82 known targets from the DUD-E dataset, along 
with two additional protein targets (SARS-CoV-2 Spike protein and Alzheimer's 
disease-related Tau protein), with a preset number of clusters set to eight. The targets 
were clustered using their FISD features as input. To visually represent the clustering 
results, we employed Principal Component Analysis (PCA) to reduce the 
dimensionality of the high-dimensional FISD feature space. The result is shown in 
Figure S2.

Figure S2. The clustering results for 82 DUD-E targets and 2 additional targets, red 
star demonstrates the center position of each cluster, Tau protein and Spike protein are 
pointed out . 

Furthermore, we evaluated the similarity of ligand molecules within each cluster 
and across different clusters. Specifically, molecular similarity was calculated based 
on their Morgan fingerprints, and the Dice similarity coefficient was used to measure 
the similarity between two molecules. The ligand similarity between targets was 
determined by averaging the Dice similarity scores across all possible ligand. As 
depicted in the Figure S3, we observed that the intra-cluster ligand similarity was 
generally higher than the inter-cluster similarity. This finding preliminarily validates 
our hypothesis that targets with similar FISD representations may share similar 
ligand-binding properties, thereby supporting the effectiveness of clustering analysis 
in reflecting protein-ligand interactions.



Figure S3. The display plot of inner and outer similarity of each cluster’s 
corresponding ligand library.

Compound Atom Features
atom type C, N, O, S, F, P, Cl, Br, Unknown
number of heavy neighboring atoms 0, 1, 2, 3, 4, more
formal charge -3, -2, -1, 0, 1, 2, 3, extreme
hybridization type s, sp, sp2, sp3, sp3d, sp3d2, other
ring calculated by RDkit
aromatic calculated by RDkit
atomic mass calculated by RDkit
vdw radius calculated by RDkit
covalent radius calculated by RDkit
Table S1. detailed description of molecular graph features

Examples of MLMS in predicting DUD-E molecules



Figure S4. Several examples of MLMS predicted FISD (green line) and their 
corresponding DFT calculated FISD (blue line).

Related DUD-E Subsets

Prior to training VS2Net with over one million molecules from the DUD-E 
dataset, we conducted a detailed subdivision of the dataset and preliminary 
experiments using a model architecture similar to VS2Net. The specific steps we 
followed are outlined below:

Firstly, we selected 17 protein targets from DUD-E, each with at least 20 active 
molecules, where the active molecules possessed less than 20 heavy atoms. During 
preprocessing, we selected 17 eligible target proteins based on specific criteria (e.g., 
≥20 active ligands, ≤20 non-hydrogen atoms, and containing only C, O, N, F 
elements), and the selected target proteins can be seen in Table S2. 

Target PDB Description
ACES 1e66 Acetylcholinesterase
ADA 2e1w Adenosine deaminase

ANDR 2am9 Androgen Receptor
AOFB 1s3b Monoamine oxidase B
CDK2 1h00 Cyclin-dependent kinase 2
DPP4 2i78 Dipeptidyl peptidase IV



DRD3 3pbl Dopamine D3 receptor
ESR1 1sj0 Estrogen receptor alpha
SAHH 1li4 Adenosylhomocysteinase
ESR2 2fsz Estrogen receptor beta

GRIA2 3kgc Glutamate receptor ionotropic, AMPA 2
NOS1 1qw6 Nitric-oxide synthase, brain
PNPH 3bgs Purine nucleoside phosphorylase
GRIK1 1vso Glutamate receptor ionotropic kainate 1
PARP1 3l3m Poly [ADP-ribose] polymerase-1
PGH1 2oyu Cyclooxygenase-1
PGH2 3ln1 Cyclooxygenase-2

Table S2. 17 selected target proteins

We extracted elemental compositions and atom counts from SMILES strings 
using RDKIT, converted selected active and 100 random decoy molecules (matching 
active ligand criteria) to suitable format for DFT calculations with OpenBabel. For 
each target, the randomly sampled 100 inactive molecules in line with the predefined 
criteria are pairing with the active molecules to form the overall dataset. This resulted 
in a total of 2200 molecules. Subsequently, we employed Density Functional Theory 
(DFT) for structural optimization and computed vibrational frequencies to obtain 
DFT-FISD values. Based on these data, we partitioned the set into training, validation, 
and test sets (1760/330/110), successfully training a model with good classification 
performance, as shown in Figure S5. 



Figure S5. (a) ROC curve of the VS2Net for the DUD-E 2200-set with FISD 
generated by DFT (blue line) and generated by MLMS (red line). (b) Visualization of 
the confusion matrix of the VS2Net for the DUD-E 2200-set with FISD generated by 
MLMS. (c) Visualization of the confusion matrix of the VS2Net for the DUD-E 2200-
set with FISD generated by DFT.

Secondly, we recalculated the FISD values for these 2200 molecules using the 
MLMS model and reassigned the subsets accordingly. The results indicated that the 
classification performance of the model trained on MLMS-derived FISD values was 
comparable to that based on DFT-FISD, validating the effectiveness of MLMS-
derived FISD in virtual screening tasks, which can be seen in Figure S5.

To further examine the applicability of the MLMS method under broader 
conditions, we expanded the dataset to include all active and inactive molecules 
(302365 molecules) associated with the aforementioned 17 targets. For each target, 
we randomly selected 80% of the active molecules corresponding to the target and 10 



times as many decoy molecules as the active molecules as the training set (42504 
molecules), 10% of the active molecules and 10 times as many decoy molecules as 
the active molecules as the validation set (5247 molecules), and all the remaining 
molecules as the test set (254614 molecules). We computed their FISD values using 
MLMS and trained a new classification model, which demonstrated excellent 
performance, as shown in Figure S6. This supported our hypothesis that MLMS can 
provide effective FISD values even for molecules with an increased number of heavy 
atoms and the provided FISD can be used to fulfill the protein-ligand interaction 
identification task.

Figure S6. (a) ROC curve of the VS2Net for the DUD-E 17 test set with FISD 
generated by MLMS (roughly 240k molecules). (b) Visualization of the confusion 
matrix of the VS2Net for the DUD-E 17 test set.

Next, we conducted transfer learning experiments based on the aforementioned 
classification model, and the result can be seen in Figure S7. We selected one 
additional target from the DUD-E dataset (HIVPR) and trained the model using its 
corresponding molecular data. During training, we gradually increased the data 
volume while using the remaining data for validation and testing to observe changes 
in model performance. The results showed that a significant improvement in 
classification ability could be achieved with only a small amount of data, and as the 
data volume continued to increase, model performance stabilized. To achieve optimal 
performance, approximately 60 active and 600 inactive data points were required for 
training.



Figure S7. Visualization of the transfer learning results. The training data contains 
corresponding number of active training data and decoy training data which is ten 
times bigger than the active training data. The orange line demonstrates the value 
fluctuation of the model’s recall values, and the blue line shows the AUC values.

Finally, we trained the VS2Net model using all data from the 82 targets in the 
DUD-E dataset，the dataset was partitioned as the way consistent with the previous 
methodology..

Enrichment Factor (EF/RE)

In evaluating the classification results of the VS2Net model, we adhered to the 
established research conventions by adopting the Enrichment Factor (EF) as one of 
the key metrics. While EF is occasionally abbreviated as RE in some literature, both 
abbreviations refer to the same concept, which quantifies the model's ability to enrich 
active molecules in the early stages of the screening process. To maintain consistency, 
this paper uniformly uses EF as the abbreviation.

Specifically, the EF score is defined as the ratio of the True Positive Rate (TPR) 
to the False Positive Rate (FPR) at a particular FPR threshold. This metric directly 
reflects the model's capability to correctly identify target molecules while controlling 
the false recognition rate. In this study, we selected FPR thresholds of 0.5%, 1%, 2%, 
and 5%, based on normally-used criteria of previous work, aiming to 
comprehensively and meticulously assess the enrichment performance of the VS2Net 
model under varying degrees of stringency.

By evaluating the model's performance at these specific FPR thresholds, we can 
gain insights into how effectively the VS2Net model prioritizes active molecules over 
decoys, even at very low error rates. This information is crucial for guiding the 
selection of optimal screening strategies and thresholds in practical drug discovery 
applications.



Model Parameters

The MLMS model comprises three primary components, two of which are core 
components constructed upon Graph Convolutional Networks (GCNs), exhibiting a 
high degree of similarity with the primary difference lying in the employed loss 
functions: one utilizes Mean Squared Error (MSE) loss, while the other employs 
Cosine Embedding (CosEmbedding) loss. Both components accept molecular graphs 
as input, proceed through five layers of GCNConv for feature extraction, and then 
employ global mean pooling and global max pooling strategies to aggregate graph-
level features into fixed-dimensional representations. These aggregated features are 
concatenated and passed through two linear layers to the output layer, ultimately 
mapping the molecules into a 50-dimensional output space. During this process, 
ReLU activation functions are applied between the linear layers, and the Adam 
optimizer is configured with a learning rate of 0.0001 and a weight decay rate of 
0.0005 for model optimization. The outputs of the two GCN components are then 
concatenated into a 100-dimensional vector, serving as input for subsequent 
processing stages. This vector undergoes further processing through a deep network 
consisting of four hidden layers, each set to 512 dimensions. Ultimately, the network 
outputs a 50-dimensional result, with this stage also employing MSE loss, ReLU 
activation functions, and the Adam optimizer (with a learning rate of 0.0001 and a 
weight decay of 0.0005) for training.

The VS2Net model receives a 100-dimensional input vector, which is 
concatenated from 50-dimensional FISD feature vectors of both the molecule and the 
protein. The model architecture encompasses five hidden layers, sequentially mapping 
the input from 100 dimensions to 128, 256, 128, 64, and finally 32 dimensions. At the 
output layer, the model generates a one-dimensional prediction. During training, 
Binary Cross-Entropy (BCE) loss function is employed, in conjunction with ReLU 
and Sigmoid activation functions to enhance the model's expressive power. The Adam 
optimizer is chosen, configured with a learning rate of 0.0001 and a weight decay rate 
of 0.0005.

All models were trained on an NVIDIA GeForce RTX 3090 GPU. For the 
MLMS model, the three training processes were carried out over 2000, 2000 and 100 
epochs, whereas the VS2Net model underwent 500 epochs of training. During the 
training phase, the performance on the validation set was monitored, and the best-
performing model was retained as the final model.

Descriptor Descriptor
'MaxAbsEStateIndex' 'NHOHCount'

'MaxEStateIndex' 'NOCount'
'MinAbsEStateIndex' 'NumAliphaticCarbocycles'

'MinEStateIndex' 'NumAliphaticHeterocycles'
'qed' 'NumAliphaticRings'



'SPS' 'NumAromaticCarbocycles'
'MolWt' 'NumAromaticHeterocycles'

'HeavyAtomMolWt' 'NumAromaticRings'
'ExactMolWt' 'NumHAcceptors'

'NumValenceElectrons' 'NumHDonors'
'NumRadicalElectrons' 'NumHeteroatoms'

'MaxPartialCharge' 'NumRotatableBonds'
'MinPartialCharge' 'NumSaturatedCarbocycles'

'MaxAbsPartialCharge' 'NumSaturatedHeterocycles'
'MinAbsPartialCharge' 'NumSaturatedRings'

'BCUT2D_MWHI' 'RingCount'
'BCUT2D_MWLOW' 'MolLogP'
'BCUT2D_CHGHI' 'MolMR'
'BCUT2D_CHGLO' 'fr_Al_COO'
'BCUT2D_LOGPHI' 'fr_Al_OH'

'BCUT2D_LOGPLOW' 'fr_Al_OH_noTert'
'BCUT2D_MRHI' 'fr_ArN'

'BCUT2D_MRLOW' 'fr_Ar_COO'
'AvgIpc' 'fr_Ar_N'

'BalabanJ' 'fr_Ar_NH'
'BertzCT' 'fr_Ar_OH'

'Chi0' 'fr_COO'
'Chi0n' 'fr_COO2'
'Chi0v' 'fr_C_O'
'Chi1' 'fr_C_O_noCOO'
'Chi1n' 'fr_C_S'
'Chi1v' 'fr_HOCCN'
'Chi2n' 'fr_Imine'
'Chi2v' 'fr_NH0'
'Chi3n' 'fr_NH1'
'Chi3v' 'fr_NH2'
'Chi4n' 'fr_N_O'
'Chi4v' 'fr_Ndealkylation1'

'HallKierAlpha' 'fr_Ndealkylation2'
'Kappa1' 'fr_Nhpyrrole'
'Kappa2' 'fr_SH'
'Kappa3' 'fr_aldehyde'

'LabuteASA' 'fr_alkyl_carbamate'
'PEOE_VSA1' 'fr_alkyl_halide'
'PEOE_VSA10' 'fr_allylic_oxid'
'PEOE_VSA11' 'fr_amide'
'PEOE_VSA12' 'fr_amidine'
'PEOE_VSA13' 'fr_aniline'
'PEOE_VSA14' 'fr_aryl_methyl'



'PEOE_VSA2' 'fr_azide'
'PEOE_VSA3' 'fr_azo'
'PEOE_VSA4' 'fr_barbitur'
'PEOE_VSA5' 'fr_benzene'
'PEOE_VSA6' 'fr_benzodiazepine'
'PEOE_VSA7' 'fr_bicyclic'
'PEOE_VSA8' 'fr_diazo'
'PEOE_VSA9' 'fr_dihydropyridine'
'SMR_VSA1' 'fr_epoxide'
'SMR_VSA10' 'fr_ester'
'SMR_VSA2' 'fr_ether'
'SMR_VSA3' 'fr_furan'
'SMR_VSA4' 'fr_guanido'
'SMR_VSA5' 'fr_halogen'
'SMR_VSA6' 'fr_hdrzine'
'SMR_VSA7' 'fr_hdrzone'
'SMR_VSA8' 'fr_imidazole'
'SMR_VSA9' 'fr_imide'
'SlogP_VSA1' 'fr_isocyan'
'SlogP_VSA10' 'fr_isothiocyan'
'SlogP_VSA11' 'fr_ketone'
'SlogP_VSA12' 'fr_ketone_Topliss'
'SlogP_VSA2' 'fr_lactam'
'SlogP_VSA3' 'fr_lactone'
'SlogP_VSA4' 'fr_methoxy'
'SlogP_VSA5' 'fr_morpholine'
'SlogP_VSA6' 'fr_nitrile'
'SlogP_VSA7' 'fr_nitro'
'SlogP_VSA8' 'fr_nitro_arom'
'SlogP_VSA9' 'fr_nitro_arom_nonortho'

'TPSA' 'fr_nitroso'
'EState_VSA1' 'fr_oxazole'
'EState_VSA10' 'fr_oxime'
'EState_VSA11' 'fr_para_hydroxylation'
'EState_VSA2' 'fr_phenol'
'EState_VSA3' 'fr_phenol_noOrthoHbond'
'EState_VSA4' 'fr_phos_acid'
'EState_VSA5' 'fr_phos_ester'
'EState_VSA6' 'fr_piperdine'
'EState_VSA7' 'fr_piperzine'
'EState_VSA8' 'fr_priamide'
'EState_VSA9' 'fr_prisulfonamd'
'VSA_EState1' 'fr_pyridine'
'VSA_EState10' 'fr_quatN'



'VSA_EState2' 'fr_sulfide'
'VSA_EState3' 'fr_sulfonamd'
'VSA_EState4' 'fr_sulfone'
'VSA_EState5' 'fr_term_acetylene'
'VSA_EState6' 'fr_tetrazole'
'VSA_EState7' 'fr_thiazole'
'VSA_EState8' 'fr_thiocyan'
'VSA_EState9' 'fr_thiophene'
'FractionCSP3' 'fr_unbrch_alkane'

'HeavyAtomCount' 'fr_urea'
Table S3. The list of 206 descriptors that make up Cheminfo-D, labeled by their 
names in RDkit.

Molecular Dynamics

Simulation Details

First, we screened the molecules and conformations with the highest docking scores 
and generated the required topology and force field files using the SobTop tool.1 The 
parameters for these files were derived from the standard Amber GAFF force field 4.2 
For the protein portion, we used the pdb2gmx tool built into the GROMACS 2022 
version to generate the topology file, with parameters taken from the Amber99sb-ildn 
force field.3, 4 
Based on the conformations obtained from the docking results, we constructed the 
complex structure files and defined the simulation box. Subsequently, we filled the 
box with water molecules (using the three-point water model spc216) and added ions 
to maintain the charge balance of the system. To prepare for the simulation, we 
performed 5,000 steps of energy minimization (EM) on the complex and conducted a 
500 ps molecular dynamics (MD) run using the NVT ensemble at T=300 K to achieve 
equilibration. Then, using the NPT ensemble, we performed MD simulations at 
T=300 K and P=1 bar for all model systems during the production stage. For the 
Spike protein and its ligand molecules, we generated a 100 ns trajectory, and for the 
Tau protein and its ligand molecules, we generated a 50 ns trajectory for subsequent 
MD analysis.
We simulated six systems, which are as follows: tau-5 with Tau protein, tau-active 
with Tau protein, tau-inactive with Tau protein, spike-4 with Spike protein, spike-
active with Spike protein, and spike-inactive with Spike protein. Among them, tau-5 
and spike-4 are predicted results from VS2Net and are sourced from the DUD-E 
database. tau-active is obtained from BindingDB5, and spike-active is sourced from 
work by Timoteo et. al.6 tau-inactive and spike-inactive are randomly selected 
molecules. The specific Spike protein used is the Spike protein (PDB ID: 7lm9), and 
the Tau protein used is the Tau protein (PDB ID: 8q96).



Figure S8. Molecules used in MD simulations. spike-4 and spike-inactive are from 
DUD-E dataset, and spike-active is from a published journal article. tau-5 and tau-
inactive are from DUD-E dataset, and tau-active is from BindingDB.

Simulation Results

To further validate the binding ability of the ligands obtained through our method 
with the target proteins, after performing molecular docking using AutoDock Vina, 
we selected the molecules with the highest affinity and their corresponding basic 
conformations for more detailed kinetic simulations. For the protein-ligand complexes 
corresponding to these two cases, we separately conducted kinetic simulations and 
achieved conformational equilibration during MD simulations under the NPT 
ensemble. We collected the RMSD of the ligands during the simulations, as shown in 
Figure S9 and Figure S10:



Figure S9. MD results for Spike protein and its corresponding molecules’ RMSD



Figure S10. MD results for Tau protein and its corresponding molecules’ RMSD

The RMSD value represents the deviation of the structure at a certain time point from 
the initial conformation, reflecting the stability of the system during the simulation. 
The above figure shows the RMSD changes of the ligand molecules in each system 
during the simulation. Since the initial conformations for the simulations were 
obtained through AutoDock, significant conformational changes occurred in the 
molecules during the initial stages of MD. However, the stabilization of ligand RMSD 
in the later stages of the simulation indicates that the system has become stable, with 
minimal conformational changes and the system's energy reaching a lower, stable 
state.

To further assess the binding situation between the molecules and proteins, we also 
calculated the binding free energy. In addition to conducting MD simulations and 
related analyses on the results obtained from VS2Net, we also selected one 
experimentally validated ligand and one randomly picked non-ligand for each of the 
two target proteins, performed molecular docking and MD simulations, and compared 
the results with those from VS2Net. We selected a stable trajectory from the later 
stages of the simulation and use the MM/PBSA method to do the calculation and 
analysis of binding free energy. The results showed that both the complexes obtained 
through VS2Net, tau-5 with Tau protein and spike-4 with Spike protein, exhibited 
very strong binding free energy compared to the experimentally validated ligands tau-



active and spike-active. This indicates that they bind stably to the target proteins with 
high affinity and are indeed potential high-quality candidate ligands. In contrast, the 
randomly selected tau-inactive and spike-inactive had lower binding energies, 
suggesting unstable binding and their unsuitability as ligands, which aligns with the 
results from VS2Net.

Target Compound MM/PBSA (kcal/mol)

Tau tau-5 -56.25

Tau tau-active -9.47

Tau tau-inactive -0.77

Spike spike-4 -20.85

Spike spike-active -35.08

Spike spike-inactive -0.36

Table S4. The MM/PBSA results for each MD system
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