## - Supporting Information -

| 2  | Establishing Stability Number Descriptor                                                                                                                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | for Fe-N-C Fuel Cell Electrocatalysts                                                                                                                      |
| 4  |                                                                                                                                                            |
| 5  | Yu-Ping Ku <sup>a,b,*</sup> , Kavita Kumar <sup>a</sup> , Antoine Bonnefont <sup>c</sup> , Li Jiao <sup>d</sup> , Marco Mazzucato <sup>e</sup> , Christian |
| 6  | Durante <sup>e</sup> , Frédéric Jaouen <sup>d</sup> , Serhiy Cherevko <sup>a,*</sup>                                                                       |
| 7  |                                                                                                                                                            |
| 8  | <sup>a</sup> Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable                                                            |
| 9  | Energy (IET-2), Cauerstraße 1, 91058 Erlangen, Germany                                                                                                     |
| 10 | <sup>b</sup> Friedrich-Alexander University Erlangen-Nürnberg, Department of Chemical and Biological                                                       |
| 11 | Engineering, Egerlandstraße 3, 91058 Erlangen, Germany                                                                                                     |
| 12 | <sup>c</sup> Univ. Grenoble Alpes, Univ. Savoie-Mont-Blanc, CNRS, Grenoble-INP, LEPMI, 38000                                                               |
| 13 | Grenoble, France                                                                                                                                           |
| 14 | <sup>d</sup> Institut Charles Gerhardt Montpellier, Univ. Montpellier, CNRS, ENSCM, 1919 route de                                                          |
| 15 | Mende, F-34293 Montpellier, France                                                                                                                         |
| 16 | <sup>e</sup> University of Padova, Department of Chemical Sciences, via Marzolo 1, 35131, Padova,                                                          |
| 17 | Italy                                                                                                                                                      |
| 18 |                                                                                                                                                            |
| 19 |                                                                                                                                                            |
| 20 | * corresponding authors: <u>yupingku427@gmail.com, s.cherevko@fz-juelich.de</u>                                                                            |
| 21 |                                                                                                                                                            |

| 1 | Table of contents |                                                 |     |  |
|---|-------------------|-------------------------------------------------|-----|--|
| 2 | 1.                | Supporting results – online Fe dissolution data | . 3 |  |
| 3 | 2.                | Supporting discussion                           | . 5 |  |
| 4 | 3.                | References                                      | . 6 |  |
| 5 |                   |                                                 |     |  |



## 1 1. Supporting results – online Fe dissolution data



Figure S1. Online GDE-ICP-MS results during the post-AST measurements for PAJ\_FeN<sub>x</sub>C<sub>y</sub> (A, B, & C) in 0.1 M HClO<sub>4</sub> at 70 ± 6 °C (Acidic-HT) and (D, E, & F) in 0.1 M NaOH at HT (Alkaline-HT). (A & D) The current density profiles. (B & E) The potential profiles. (C & F) The

5 6 corresponding online Fe dissolution profiles, which were normalized to the catalyst loading.



7 8 **Figure S2.** Online GDE-ICP-MS results during the pre-AST measurements for CNRS\_FeN<sub>x</sub>C<sub>y</sub> 9 (A, B, & C) in 0.1 M HClO<sub>4</sub> at 70 ± 6 °C (Acidic-HT) and (D, E, & F) in 0.1 M NaOH at HT 10 (Alkaline-HT). (A & D) The current density profiles. (B & E) The potential profiles. (C & F) The 11 corresponding online Fe dissolution profiles, which were normalized to the catalyst loading.



4

5

Figure S3. Online GDE-ICP-MS results during the post-AST measurements for CNRS\_FeN<sub>x</sub>C<sub>y</sub> (A, B, & C) in 0.1 M HClO<sub>4</sub> at 70 ± 6 °C (Acidic-HT) and (D, E, & F) in 0.1 M NaOH at HT (Alkaline-HT). (A & D) The current density profiles. (B & E) The potential profiles. (C & F) The corresponding online Fe dissolution profiles, which were normalized to the catalyst loading.



6 7 8 **Figure S4.** The S-number at the repeated CP steps at  $|j| = 5 \text{ mA} \cdot \text{cm}^{-2}$  in Acidic-HT for (A) PAJ\_FeN<sub>x</sub>C<sub>y</sub> and (B) CNRS\_FeN<sub>x</sub>C<sub>y</sub>. The results from the pre-AST and post-AST measurements 9 are presented with solid and open symbols, respectively.

10



Figure S5. The S-number at various current densities in Acidic-HT for (A) PAJ\_FeN<sub>x</sub>C<sub>y</sub> and (B)
 CNRS\_FeN<sub>x</sub>C<sub>y</sub>. The results from the pre-AST and post-AST measurements are presented with solid and open symbols, respectively.

5 **2.** Supporting discussion

6 In Figure S5, the trends of the post-AST S-number (open symbols) in Acidic-HT are 7 presented and compared with the pre-AST results (solid symbols). For PAJ\_FeN<sub>x</sub>C<sub>y</sub> (see 8 Figure S5A), the S-number barely shifted after the AST, except for the data at -0.18 9  $mA \cdot cm^{-2}$ , of which the error bar increased potentially due to the dropped detection 10 sensitivity after the AST. As for CNRS  $FeN_xC_y$  (see Figure S5B), the S-number generally 11 dropped after the AST. The change in S-number over an AST or a long-term operation 12 may be attributed to the change in the composition of the Fe species in CNRS  $FeN_xC_y$ . In a previous work,<sup>1</sup> a similarly synthesized Fe-N-C catalyst (noted as Fe<sub>0.5</sub>-950(10) in 13 Ref.<sup>1</sup>) was applied in the cathode of a PEMFC that underwent a potential hold at 0.5 V 14 for 50 hours. The slight difference between the synthesis protocols of CNRS\_FeNxCy and 15 16 Fe0.5-950(10) was the duration of the second pyrolysis at 950°C in NH<sub>3</sub>, which was 5 and 17 10 minutes, respectively. Also, another previous work has shown that CNRS  $FeN_xC_y$ (noted as Fe<sub>0.5</sub>-950(5) in Ref.<sup>2</sup>) and Fe<sub>0.5</sub>-950(10) perform comparably in PEMFCs, and 18 19 have very similar fingerprints in their Mössbauer spectra and X-ray absorption spectra.<sup>2</sup> 20 In the Extended Data Fig. 7 in Ref.<sup>1</sup>, the Mössbauer spectra of Fe<sub>0.5</sub>-950(10) cathode 21 before and after the 50-hour potential hold show the decrease of sites S1 (FeN<sub>4</sub>C<sub>12</sub>) and 22 the increase of ferric oxides during the operation. Such a change in the Fe species can

also be expected in CNRS\_FeN<sub>x</sub>C<sub>y</sub> during the AST because the synthesis protocols, the
Fe species, and the PEMFC performance of the two catalysts (CNRS\_FeN<sub>x</sub>C<sub>y</sub> and Fe<sub>0.5</sub>950(10)) are all nearly the same. Hence, the dropped S-numbers after the AST suggest
that the S-number of ferric oxides may be lower than that of sites S1, which may be
verified by testing Fe-N-C catalysts mainly with ferric oxides, rather than highly mixed
Fe species, in a following work.

## 7 3. References

8 1. Li, J.; Sougrati, M. T.; Zitolo, A.; Ablett, J. M.; Oğuz, I. C.; Mineva, T.; 9 Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I.; Di Cicco, A.; Kumar, K.; Dubau, L.; Maillard, F.; Dražić, G.; Jaouen, F. Identification of durable and non-durable FeNx 10 11 sites in Fe-N-C materials for proton exchange membrane fuel cells. Nature Catalysis 12 **2021,** *4* (1), 10-19. 13 Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.-T.; Mineva, T.; Stievano, L.; 2. 14 Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and 15 nitrogen-doped graphene materials. Nature Materials 2015, 14 (9), 937-942.

16