Supporting Information

Palladium/Norbornenes-Catalyzed C–H Bond Activation and Annulation to Construct Polycyclic Aromatic Hydrocarbons-based Fluorescent Materials

Chunlin Zhou, Xianhui Yang, Lian Gou, Bijin Li*

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.

E-mail: bijinli@cqu.edu.cn

Table of contents

1. General Information	S3
2. DFT Calculation	S3
3. Experimental Section	S14
3.1 Optimization of the reaction conditions	S14
3.2 General procedures for synthesis of products	S16
3.3 Characterization of products	S17
3.4 Mechanistic Studies	S41
3.5 General procedures for the synthesis of substrates	S43
4. Photophysical properties and applications of products	S45
4.1. The absorption and fluorescence properties of products	S45
4.2. Preparation and characterization of 6w NPs	S54
4.3. Cell imaging experiments	S55
5. References	S57
6. NMR spectrum of compounds	S59

1. General Information

Unless otherwise noted, commercial available reagents were purchased from commercial suppliers (such as Energy Chemical, Bide Pharmatech Ltd. and Adamas) and used as received. Solvents were generally dried over 4Å molecular sieves. Purification of products was performed by flash column chromatography using silica gel. ¹H and ¹³C NMR spectra were recorded on a Agilent 400MR DD2 spectrometer (400 MHz and 101 MHz, respectively). Chemical shifts are reported parts per million (ppm) referenced to CDCl₃ (δ 7.26 ppm), tetramethylsilane (TMS, δ 0.00 ppm) for ¹H NMR; CDCl₃ (δ 77.16 ppm) for ¹³C NMR. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = doublettriplet, q = quartet, dd = doublet of doublet, td = triplet of doublet and m = multiplet. To distinguish, some ¹³C NMR chemical shifts retain two decimal places. High-resolution mass spectra (HRMS) were obtained on an Agilent 6546 Q-TOF LC/MS system with an ESI source at the School of Pharmaceutical Sciences of Chongqing University. UV-vis spectra were recorded on Agilent Cary60 spectrometer. Fluorescence spectra were collected on HITACHI F-700003040428 Fluorescence Spectrometer or Agilent Technologies Cary Eclipse Fluorescence Spectrometer. The absolute quantum yields were taken using Edinburgh Instruments FLS1000 fluorescence spectrometer with a calibrated integrating sphere system. The excited-state lifetimes were performed using Edinburgh Instruments FLS1000.

2. DFT Calculation

All calculations were performed using the Gaussian 16, Revision A.03.^[S1] Geometries were optimized in toluene with the SMD solvation model by the B3-LYP-D3 functional and a basis set of 6-31G(d). Vibrational frequencies were calculated at the same level and check the optimized structure. Solvation energies were computed through a self-consistent reaction field using the SMD model. Calculations were performed at the M06/SDD-6-31+G(d,p)-SMD(toluene) level of

theory.

Fig. S1. DFT calculates the free-energy barrier of the reaction of the rate-determining step using norbornene (NBE) as a mediator.

Fig. S2. DFT calculates the free-energy barrier of the reaction of the rate-determining step using methyl bicyclo[2.2.1]hept-2-ene-2-carboxylate (NBE-CO₂Me) as a mediator.

Cartesian coordinates of the structures

D1S1			
С	-2.00716	-1.35636	-0.32571
С	-2.62379	3.31508	1.17352
С	-1.44274	3.57769	0.45362
С	-0.78516	2.55658	-0.25536
С	-1.3515	1.27305	-0.23643
С	-2.52727	0.97071	0.46851
С	-3.16388	2.01622	1.18084
С	-4.26955	-0.09583	-1.79398
С	-4.36042	-0.71481	-0.37102
C	-3.0324	-0.44225	0.42772
C	-3.22945	-1.01968	-2.52092
C	-2.83758	-2.05852	-1.42299
C	-4.20128	-2.2309	-0.67786
Pd	-0.46398	-0.24275	-1.22047
C	5.80371	0.58778	0.25377
C	6.3287	1.33408	-0.81154
C	5.49278	1.7191	-1.87301
C	4.1441	1.35166	-1.85307
C	3.58989	0.59818	-0.78825
C	4.44786	0.22077	0.26925
Br	3.88601	-0.8049	1.81801
C	2.13653	0.27648	-0.89713
0	1.5118	-0.42133	0.00047
0	1.46732	0.71723	-1.92283
0	-4.32008	1.658	1.86568
C	-5.02381	2.64445	2.66166
C	-1.14855	-2.26/22	0.4/886
0	-0.59014	-3.28981	0.03156
0 C	-0.98005	-1.85/39	1.77622
	-0.00882	-2.58572	2.59904
	-5.10802	4.12314	1./2141
	-1.03041	4.39133	0.44800
	0.15457	2.70111	-0.80917
	-3.93312	0.90144	-1.7099
п u	-3.23473	-0.13323 0.41761	-2.29290
11 Ц	-3.23731	-0.41701	1 / 5888
н Н	-3.18023	-0.80990	-3 30151
н Н	-2 35/69	-0.45733	-2 90028
н Н	-2.35407	-0.43733	-2.90028
H	-2.30+32	-2.57504	-1.30547
Н	-4 12848	-2 86048	0 22702
H	6.44959	0.28661	1.08199
Н	7.38694	1.61061	-0.80635
H	5.88987	2.30095	-2.70906
H	3.47111	1.63703	-2.66385

Н	-5.87751	2.11178	3.10652
Н	-4.37785	3.04563	3.4655
Н	-5.39403	3.47696	2.03365
Н	-0.07017	-2.11984	3.59367
Н	-0.26983	-3.65424	2.64583
Н	1.00048	-2.46321	2.17172
E1S1			
С	0.60361	1.62205	-0.00889
С	3.48631	-2.36522	0.80719
С	2.38377	-3.16964	0.46346
С	1.17873	-2.59879	0.02566
С	1.0719	-1.19731	-0.07192
С	2.17037	-0.37298	0.25384
С	3.37544	-0.97004	0.70856
С	2.38703	1.13015	-2.39376
С	2.79602	1.81789	-1.06553
С	2.06851	1.12735	0.1535
С	0.88558	1.53913	-2.54396
С	0.60569	2.45328	-1.29897
С	2.00396	3.15085	-1.14219
Pd	-0.59934	-0.13198	-0.63962
С	-1.60308	-1.48091	1.92641
С	-2.57248	-1.60902	2.94384
С	-3.72629	-0.80482	2.94145
С	-3.93008	0.13051	1.9148
С	-2.97841	0.27221	0.89065
С	-1.81784	-0.51882	0.93768
Br	-1.4884	-2.0978	-2.03715
С	-3.17227	1.21657	-0.26042
0	-2.1743	1.18151	-1.14107
0	-4.18487	1.93994	-0.37743
Ο	4.38637	-0.08247	1.04782
С	5.65905	-0.58078	1.53792
С	-0.12069	2.27689	1.15194
0	-0.82756	3.27517	0.95114
0	-0.00058	1.85672	2.44496
С	0.81624	0.78412	3.00694
Н	4.41278	-2.83284	1.14485
Н	2.46791	-4.25817	0.54055
Н	0.33888	-3.24361	-0.23699
Н	2.99597	1.51954	-3.22872
Н	2.53184	0.03692	-2.36651
Н	3.8807	1.89145	-0.90506
Н	2.5145	1.56997	1.06391
Н	0.2063	0.66473	-2.63031
Н	0.69442	2.12375	-3.46051
Н	-0.27463	3.09478	-1.39812
Н	2.25141	3.76804	-2.02447
Н	2.08253	3.77537	-0.23482

Н	-0.71996	-2.12124	1.93069
Н	-2.41787	-2.35063	3.73362
Н	-4.47239	-0.91882	3.73301
Н	-4.82445	0.7597	1.87173
Н	6.26806	0.31355	1.74015
Н	5.53091	-1.15817	2.47345
Н	6.16455	-1.20602	0.77785
Н	0.35185	0.55982	3.97921
Н	0.81245	-0.11562	2.3773
Н	1.8489	1.13891	3.16932
D2S2			
С	2.48081	-1.28104	0.65082
С	2.142	3.34026	-0.2073
С	0.94322	3.27496	0.49893
С	0.38519	2.04918	0.86589
С	1.08443	0.91196	0.50708
С	2.26263	0.94621	-0.22676
С	2.80714	2.17248	-0.58641
С	5.13023	-0.79989	0.10779
С	4.11563	-0.91813	-1.06012
С	2.72982	-0.42708	-0.598
С	4.75448	-1.99407	1.05818
С	3.41186	-2.50478	0.45114
С	3.78835	-2.44234	-1.05736
Pd	0.47828	-0.95681	1.01287
С	-5.36954	0.04562	-1.22582
С	-5.38847	-0.58213	-2.46163
С	-4.25903	-1.25886	-2.90984
С	-3.13227	-1.29576	-2.10991
С	-3.10488	-0.6712	-0.85892
С	-4.23824	0.00658	-0.42251
Br	-4.36262	0.93044	1.24632
С	-1.83234	-0.79909	-0.10721
0	-0.83895	-1.40762	-0.69211
0	-1.66822	-0.35285	1.07866
0	3.98831	2.12572	-1.30167
С	4.59442	3.38028	-1.69928
Н	2.80343	-0.73151	1.54812
Н	2.54416	4.30833	-0.47033
Н	0.43302	4.19363	0.76139
Н	-0.56393	1.97988	1.37985
Н	5.03555	0.17277	0.59551
Н	6.15519	-0.9028	-0.25684
Н	4.45105	-0.48471	-1.99898
Н	2.02567	-0.76711	-1.37403
Н	5.51064	-2.78367	1.00429
Н	4.64559	-1.68334	2.10008
Н	3.07436	-3.46627	0.83579
Н	2.96172	-2.69515	-1.72566

Н	4.65552	-3.06859	-1.28172
Н	-6.2388	0.57867	-0.868
Н	-6.28247	-0.53917	-3.07052
Н	-4.25994	-1.75025	-3.87373
Н	-2.23337	-1.80702	-2.42236
Н	5.49738	3.10349	-2.24138
Н	3.93369	3.95685	-2.35554
Н	4.86043	3.99253	-0.83079
E2S2			
С	0.06398	0.40018	1.20071
С	-3.74184	0.00752	-1.68353
С	-3.14362	-1.12643	-2.21022
С	-1.85103	-1.48933	-1.83168
С	-1.14377	-0.68022	-0.91686
С	-1.76417	0.47488	-0.39466
С	-3.04449	0.82885	-0.77884
С	-1.58029	1.87853	2.76817
С	-1.05833	2.46479	1.43001
С	-0.82109	1.32984	0.39648
С	-0.30759	1.21225	3.40637
С	0.74143	1.29098	2.24932
С	0.44619	2.73358	1.75276
Pd	0.78811	-0.99752	-0.14916
С	1.35702	1.21011	-2.17676
С	2.25308	2.1125	-2.75451
С	3.56002	2.22059	-2.28181
С	3.98704	1.41407	-1.23414
C	3.10443	0.50994	-0.66463
C	1.79958	0.42194	-1.12559
Br	-0.93973	-2.93402	0.62152
С	3.5287	-0.39743	0.44622
0	2.55794	-1.25744	0.80134
0	4.64384	-0.3582	0.9534
0	-3.54174	1.99852	-0.25507
Ċ	-4.87827	2.42454	-0.63205
Н	-0.48836	-0.40932	1.68043
Н	-4.74873	0.26186	-1.98295
Н	-3.69209	-1.74117	-2.91259
Н	-1.39402	-2.3778	-2.24597
H	-2.38159	1.15733	2.59044
H	-1.96779	2.671	3.4125
Н	-1.64015	3.29099	1.03111
Н	-0 18857	1 80855	-0.36042
Н	0.05337	1 79763	4 25649
H	-0 48563	0 18667	3 73691
H	1 75861	1 03355	2 53179
H	1 02514	3 01807	0 87124
H	0 5903	3 46844	2,54774
H	0.34225	1.13239	-2.54714
-	J.J		

Н	1.92453	2.73197	-3.58032
Н	4.24018	2.92947	-2.73657
Н	4.9945	1.45324	-0.83633
Н	-5.03838	3.35965	-0.09848
Н	-4.9554	2.59799	-1.71019
Н	-5.63277	1.69316	-0.32564

The time-dependent density functional theory (TDDFT) calculations of the excitation energies were calculated at the optimized geometries of the ground states. Calculations were performed at the B3LYP-6-31+G(d) (**6u**) and MPWLPW91-6-31+G(d) (**6w**) level of theory.

Fig. S3. Molecular orbitals of the S_0 , S_1 , S_3 , or S_4 states of **6u** and **6w**; Jablonski diagram illustrating the anti-Kasha dual-emission mechanism of **6u** and **6w**.

Cartesian coordinates of the structures

6u

С	-6.74854	-0.45937	0.38766
С	-6.06282	0.74942	-0.00307
С	-6.09785	-1.66765	0.29141
С	-4.72465	-1.78524	-0.0533
С	-3.95104	-0.60275	-0.23434
С	-4.66898	0.67204	-0.35517
С	-2.50155	-0.72984	-0.28322
С	-4.11452	-3.09744	-0.16862
С	-4.87573	-4.29631	-0.13281
С	-4.27338	-5.53575	-0.25993
С	-2.87512	-5.63039	-0.42192
С	-2.10752	-4.4812	-0.4634
С	-2.70239	-3.19379	-0.35011
С	-1.90697	-1.98796	-0.34839
С	-1.59638	0.45695	-0.11741
С	-0.41248	-2.13113	-0.35468
С	-4.07113	1.84667	-0.89147
С	-4.76469	3.03921	-1.00534
С	-6.10599	3.12397	-0.58704
С	-6.74103	1.9932	-0.10847
С	-1.57773	1.16175	1.10019
С	-0.70918	2.2337	1.30415
С	0.18438	2.63185	0.29221
С	0.17122	1.93359	-0.93
С	-0.70677	0.8674	-1.12682
С	0.28551	-2.42114	-1.54085
С	1.67444	-2.55842	-1.54864
С	2.41345	-2.39877	-0.36175
С	1.7207	-2.11991	0.83133
С	0.33091	-1.99833	0.83123
N	1.08884	3.71395	0.50534
С	1.35171	4.64878	-0.54328
С	2.66226	5.10345	-0.78253
С	2.91249	6.02465	-1.80268
С	1.8692	6.49454	-2.60992
C	0.56572	6.0379	-2.37877
C	0.30327	5.12975	-1.35014
C	1.75306	3.84969	1.76527
С	2.27722	2.71959	2.42028
C	2.91889	2.85701	3.65378
C	3.06335	4.11846	4.24444
С	2.55005	5.24497	3.58988
С	1.89219	5.11545	2.36412
Ν	3.83531	-2.51319	-0.37077
С	4.50961	-3.17672	0.70101
С	5.69958	-2.64577	1.2333
С	6.35957	-3.30311	2.27458

С	5.83932	-4.48645	2.81305
С	4.65128	-5.01223	2.29052
С	3.99338	-4.37113	1.23793
С	4.58914	-1.94198	-1.444
С	5.67474	-2.64136	-2.00323
С	6.41452	-2.07563	-3.04473
С	6.07646	-0.81638	-3.55556
C	4.9916	-0.12227	-3.00571
Ċ	4.25615	-0.67258	-1.95291
Ċ	-8.14139	-0.4775	0.87018
0	-8.77053	-1.52159	1.1327
H	-6.67609	-2.54595	0.54836
Н	-5 95193	-4 25237	-0.02595
Н	-4 87992	-6 43528	-0 23738
H	-2 40339	-6 60323	-0 51489
Н	-1 03428	-4 55382	-0 58313
Н	-3 05527	1 81147	-1 24815
Ч	-3.03327	3 90711	-1.2+013 -1.43147
П Ц	-4.27100	4.06103	0 66600
П Ц	-0.04741	2.05811	-0.00099
П Ц	-7.76057	0.87344	1 80276
П Ц	-2.20100	0.87344	2 24805
	-0.71082	2.70490	2.24693
П	0.63306	2.22035	-1.72029
П	-0.09342	0.33880	-2.07572
П	-0.20047	-2.34020	-2.40773
П	2.19204	-2.78333	-2.4/339
П	2.27300	-1.99/30	1.75478
П	-0.18551	-1.//4/	1./599/
П	3.4/344	4.75291	-0.10885
H	3.92873	0.3058	-1.97428
H	2.06833	7.20523	-3.40513
H	-0.25384	6.40009	-2.99178
H	-0.70983	4.79142	-1.16424
H	2.17981	1./42//	1.95981
H	3.31887	1.97659	4.14/11
H	3.56775	4.22191	5.19943
H	2.64927	6.22783	4.04002
H	1.48406	5.98814	1.86691
H	6.09938	-1.72278	0.82901
H	7.27642	-2.88089	2.6/416
Н	6.35127	-4.99068	3.62591
Н	4.24044	-5.93278	2.69342
Н	3.08194	-4.79034	0.82697
Н	5.93147	-3.62224	-1.61942
Н	7.2491	-2.62736	-3.46613
Н	6.64921	-0.38292	-4.36871
Н	4.72373	0.85824	-3.38701
Н	3.42564	-0.1253	-1.52103
Н	-8.63759	0.49209	1.02219

-11.32954	-1.65787	-0.19484
-9.02175	-0.83752	-0.10565
-10.4112	-0.79448	0.30746
-10.77766	0.22029	1.36132
-9.98681	1.53624	1.21941
-8.47945	1.20879	1.21012
-8.10616	0.06015	0.30123
-6.71677	-0.1045	-0.13436
-5.68308	0.6538	0.23614
2.47195	-2.03257	0.80061
3.82193	-2.33078	0.89196
4.55434	-2.64839	-0.24852
3.9013	-2.66531	-1.47802
2.55545	-2.34851	-1.56235
1.91514	1.0101	-1.27217
2.88645	1.9653	-1.02236
2.91794	2.63966	0.19537
1.95319	2.33577	1.1511
0.99244	1.37117	0.89706
-3.95334	2.80042	-0.72385
-3.17899	3.82985	-1.17855
-1.8347	3.58787	-1.48482
-1.29294	2.34588	-1.29231
1.8195	-2.02013	-0.42763
0.95382	0.69264	-0.31749
0.35899	-1.6842	-0.52342
-0.57947	-2.77976	-0.54842
-0.14575	-4.12753	-0.59583
-1.04018	-5.1599	-0.59176
-2.41655	-4.89011	-0.53968
-2.85902	-3.59855	-0.47976
-1.95522	-2.50773	-0.47262
-0.07115	-0.38527	-0.53301
-2.04822	1.265	-0.7745
-1.49726	-0.0817	-0.58539
-2.40186	-1.13175	-0.42901
-3.77841	-0.84363	-0.16936
-3.4208	1.50601	-0.53004
-4.28083	0.4112	-0.15648
-10.30282	2.44042	2.42148
-10.39023	2.26625	-0.07579
-10.98352	-2.65168	-1.16343
-10.68715	-3.44359	-1.9402
-12.69679	-1.63551	0.22104
-13.79236	-1.60664	0.56404
5.94024	-2.94567	-0.16277
6.84977	-2.361	-1.08698
7.83728	-3.13647	-1.68995

С	8.72919	-2.56295	-2.58291
С	8.63908	-1.21503	-2.89979
С	7.65063	-0.4424	-2.30701
С	6.76601	-1.00623	-1.40061
С	6.4233	-3.80248	0.86431
С	7.54138	-3.446	1.61465
С	8.01375	-4.28811	2.60954
С	7.36979	-5.48671	2.88158
С	6.25095	-5.84033	2.14086
С	5.78411	-5.01047	1.13333
Ν	3.91824	3.61284	0.46028
С	4.62244	3.58859	1.69538
С	4.85204	4.76859	2.39928
С	5.54737	4.74407	3.59825
С	6.00809	3.54392	4.12053
С	5.77255	2.36621	3.42573
С	5.09224	2.38553	2.21793
С	4.23342	4.59189	-0.52135
С	3.21822	5.29055	-1.17056
С	3.52612	6.23734	-2.13522
С	4.84827	6.51299	-2.45365
С	5.86175	5.82504	-1.80171
С	5.55967	4.865	-0.84825
Н	-8.72435	-1.6296	-0.76429
Н	-10.55589	-0.22291	2.3307
Н	-11.83962	0.42402	1.3474
Н	-8.15465	0.96466	2.21997
Н	-7.93191	2.09791	0.91975
Н	-6.54418	-0.92156	-0.81135
Н	-5.8449	1.49559	0.88307
Н	1.92737	-1.78654	1.69155
Н	4.30895	-2.31742	1.84678
Н	4.44892	-2.91912	-2.36387
Н	2.07164	-2.36357	-2.52092
Н	1.91329	0.50178	-2.21613
Н	3.62268	2.18729	-1.7693
Н	1.96097	2.84989	2.09165
Н	0.25817	1.15198	1.64851
Н	-4.99658	2.96868	-0.54857
Н	-3.60285	4.80375	-1.32954
Н	-1.22643	4.37346	-1.88963
Н	-0.27755	2.19759	-1.56976
Н	0.90195	-4.33724	-0.63635
Н	-0.69337	-6.17417	-0.63327
Н	-3.12235	-5.69797	-0.55292
Н	-3.91392	-3.42544	-0.46382
Н	-4.4242	-1.64714	0.10978
Н	-10.05759	1.95208	3.35858
Н	-9.73605	3.36371	2.36613
Н	-11.35572	2.69883	2.44328

Н	-9.86896	3.21419	-0.15323
Н	-10.15971	1.68761	-0.96151
Н	-11.45483	2.47257	-0.07943
Н	7.90331	-4.18069	-1.45671
Н	9.48584	-3.17286	-3.03806
Н	9.32633	-0.77492	-3.59596
Н	7.57284	0.6024	-2.53962
Н	6.01007	-0.40231	-0.93873
Н	8.03596	-2.51613	1.41485
Н	8.87786	-4.00114	3.17758
Н	7.73346	-6.13364	3.65609
Н	5.74691	-6.76712	2.33758
Н	4.92715	-5.29339	0.55471
Н	4.48784	5.69685	2.00587
Н	5.71805	5.66171	4.1279
Н	6.54043	3.52675	5.05164
Н	6.12729	1.43157	3.81601
Н	4.92127	1.47301	1.6817
Н	2.19606	5.08995	-0.91665
Н	2.73328	6.7669	-2.62794
Н	5.08445	7.25083	-3.19555
Н	6.88831	6.02636	-2.0412
Н	6.3456	4.32889	-0.35412

3. Experimental Section

3.1 Optimization of the reaction conditions

The oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with substrates **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), **3a** (0.15 mmol, 1.5 equiv), Pd(OAc)₂ (10 mol%), ligand (25 mol%) and base (2.5-4.5 equiv) in the air. Followed by the mediator smNBE (1.5 equiv) and the anhydrous solvent (0.1 M) was added via syringe under nitrogen flow. Then the tube was evacuated and back-filled with N₂ for three times. Finally, the reaction mixture was stirred at 130 °C for 24-72 h and then cooled to room temperature. Upon completion of the reaction, the mixture was diluted with 5 mL EtOAc and filtered through a short pad of Celite and the Celite pad were washed with an additional EtOAc (10 mL × 5). The filtrate was concentrated *in vacuo* to give the crude product. The crude ¹H NMR spectrum was taken using CH₂Br₂ (0.1 mmol) as internal standard.

	MeO	Br Br + Ja 2a	Ph Pd(OAc)2 (1) CO2H Ligand (25 + smNBE(1.5 - base (3.0 Ph solvent (0 3a N2, Temp.	0 mol%) mol%) Ma equiv) equiv) 0.1 M) , time	Ph Ph 4a		
NO.	Ligand	smNBE	Base	Solvent	Temp.	time	Yield ^{a}
1	(25 mor%) I 1	(1.5 eq.) N5	(3.0 eq.)		130 °C	24 h	(%) nd
2	L1	N1	K ₂ CO ₃	toluene	130 °C	24 h	33
-3	L2	N1	K_2CO_3	toluene	130 °C	24 h	7
4	L3	N1	K ₂ CO ₃	toluene	130 °C	24 h	trace
5	L4	N1	K_2CO_3	toluene	130 °C	24 h	4
<i>°</i> 6	L5	N1	K_2CO_3	toluene	130 °C	24 h	11
^c 7	L6	N1	K_2CO_3	toluene	130 °C	24 h	4
^c 8	L7	N1	K ₂ CO ₃	toluene	130 °C	24 h	2
° 9	L8	N1	K_2CO_3	toluene	130 °C	24 h	2
10	L1	N1	Na ₂ CO ₃	toluene	130 °C	24 h	13
11	L1	N1	Cs_2CO_3	toluene	130 °C	24 h	8
12	L1	N1	^t BuONa	toluene	130 °C	24 h	n.d.
13	L1	N1	KOAc	toluene	130 °C	24 h	trace
14	L1	N1	CsOAc	toluene	130 °C	24 h	5
15	L1	N1	K_3PO_4	toluene	130 °C	24 h	36
16	L1	N2	K_3PO_4	toluene	130 °C	24 h	21
17	L1	N3	K_3PO_4	toluene	130 °C	24 h	35
18	L1	N4	K_3PO_4	toluene	130 °C	24 h	trace
19	L1	N5	K_3PO_4	toluene	130 °C	24 h	n.d.
20	L1	-	K_3PO_4	toluene	130 °C	24 h	n.d.
21	L1	N1	K_3PO_4	toluene	130 °C	24 h	30
	(20 mol%)		II DO		100.00		•
22	LI	NI	K_3PO_4	toluene	130 °C	24 h	29
23	(13 III01%) I 1	N1	K_PO	vylene	130 °C	24 h	34
23 24	L1	N1	K ₃ PO ₄	DMF	130 °C	24 H 24 h	n d
2 4 25	L1	N1	$K_{2}PO_{4}(2.5 \text{ eq.})$	toluene	130 °C	24 h	16
-e 26	L1	N1	$K_{3}PO_{4}(3.5 eq.)$	toluene	130 °C	24 h	50
27	L1	N1	K_3PO_4 (4.0 eq.)	toluene	130 °C	24 h	40
28	 L1	N1	K_2CO_3 (3.5 eq.)	toluene	130 °C	24 h	38
29	L1	N1	$K_2CO_3(4.0 \text{ eq.})$	toluene	130 °C	24 h	42
30	L1	N1	K_2CO_3 (4.5 eq.)	toluene	130 °C	24 h	51
31	L1	N1	$K_2CO_3(5.0 \text{ eq.})$	toluene	130 °C	24 h	29
32	L1	N1	K ₂ CO ₃ (4.5 eq.)	toluene	90 °C	24 h	5

 Table S1. Screening of the reaction conditions.

33	L1	N1	K ₂ CO ₃ (4.5 eq.)	toluene	110 °C	24 h	13
34	L1	N1	K ₂ CO ₃ (4.5 eq.)	toluene	120 °C	24 h	26
35	L1	N1	K ₂ CO ₃ (4.5 eq.)	toluene	140 °C	24 h	40
36	L1	N1	K ₂ CO ₃ (4.5 eq.)	dioxane	130 °C	24 h	7
37	L1	N1	K ₂ CO ₃ (4.5 eq.)	<i>t</i> -Amyl	130 °C	24 h	4
				OH			
38	L1	N1	K ₂ CO ₃ (4.5 eq.)	toluene	130 °C	48 h	63
39	L1	N1	K ₂ CO ₃ (4.5 eq.)	toluene	130 °C	72 h	71 ^b

^{*a*}Yield was determined by ¹H NMR with CH_2Br_2 (0.1mmol) as internal standard. ^{*b*}Isolated yield. ^{*c*}12 mol% ligand was used. n.d. = not detected.

NBE mediators and ligands:

3.2 General procedures for synthesis of products

General procedure A:

The oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with substrates **1** (0.1 mmol, 1.0 equiv), **2** (0.2 mmol, 2.0 equiv), **3** (0.15 mmol, 1.5 equiv), Pd(OAc)₂ (10 mol%), P(2-MeC₆H₄)₃ (25 mol%) and K₂CO₃ (4.5 equiv) in the air. Followed by the mediator NBE-CO₂Me (1.5 equiv) and the anhydrous toluene (1.0 mL) were added via syringe under nitrogen flow. Then the tube was evacuated and back-filled with N₂ for three times. Finally, the reaction mixture was stirred at 130 \degree C for 72 h and then cooled to room temperature. Upon completion of the

reaction, the mixture was diluted with 5 mL EtOAc and filtered through a short pad of Celite and the Celite pad were washed with an additional EtOAc (10 mL \times 5). The filtrate was concentrated *in vacuo* to give the crude product. The crude ¹H NMR spectrum was taken using CH₂Br₂ (0.1 mmol) as internal standard. Finally, the crude product was purified via silica gel column chromatography using PE/EtOAc as the eluent.

General procedure B:

The oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with substrates **1** (0.1 mmol, 1.0 equiv), **2** (0.2 mmol, 2.0 equiv), **3** (0.15 mmol, 1.5 equiv), Pd(OAc)₂ (10 mol%), PhDavePhos (25 mol%) and K₂CO₃ (4.5 equiv) in the air. Followed by the mediator NBE-CO₂Me (1.5 equiv) and the anhydrous toluene (1.0 mL) were added via syringe under nitrogen flow. Then the tube was evacuated and back-filled with N₂ for three times. Finally, the reaction mixture was stirred at 130 °C for 72 h and then cooled to room temperature. Upon completion of the reaction, the mixture was diluted with 5 mL EtOAc and filtered through a short pad of Celite and the Celite pad were washed with an additional EtOAc (10 mL × 5). The filtrate was concentrated *in vacuo* to give the crude product. The crude ¹H NMR spectrum was taken using CH₂Br₂ (0.1 mmol) as internal standard. Finally, the crude product was purified via silica gel column chromatography using PE/EtOAc as the eluent.

3.3 Characterization of products

1-methoxy-9,10-diphenylphenanthrene (4a)

The general procedure A was followed. Yield: 71%, 25.6 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.76 (d, *J* = 8.4 Hz, 1H), 8.45 (d, *J* = 8.4 Hz, 1H), 7.66 – 7.55 (m, 2H), 7.48 – 7.39 (m, 2H), 7.26 – 7.11 (m, 3H), 7.12 – 6.99 (m, 7H), 6.96 (d, *J* = 8.0 Hz, 1H), 3.33 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.9, 144.2, 139.9,

138.2, 135.2, 132.3, 132.1, 131.3, 129.7, 129.6, 127.9, 127.4, 127.0, 126.8, 126.4, 126.3, 126.2, 124.8, 123.1, 122.6, 115.6, 109.3, 56.0. HRMS (m/z, ESI): calcd for $C_{27}H_{21}O^+$ (M+H)⁺ 361.1587, found 361.1551.

1-methyl-9,10-diphenylphenanthrene (4b)

The general procedure A was followed. Yield: 75%, 26.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.79 (d, *J* = 8.8 Hz, 1H), 8.75 (d, *J* = 8.8 Hz, 1H), 7.61 (t, *J* = 6.8 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.33 (d, *J* = 6.8 Hz, 1H), 7.22 – 7.13 (m, 3H), 7.12 – 6.99 (m, 7H), 1.91 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.2, 140.1, 139.0, 137.0, 136.96, 131.6, 131.59, 131.5, 131.3, 130.6, 130.5, 127.8, 127.5, 127.1, 126.6, 126.5, 126.3, 126.2, 123.0, 121.4, 25.5. HRMS (m/z, ESI): calcd for C₂₇H₂₁⁺ (M+H)⁺ 345.1565, found 345.1574.

1-isopropyl-9,10-diphenylphenanthrene (4c)

The general procedure A was followed. Yield: 79%, 29.4 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.77 (d, J = 8.4 Hz, 1H), 8.71 (d, J = 7.6 Hz, 1H), 7.69 – 7.56 (m, 3H), 7.45 – 7.36 (m, 2H), 7.24 – 7.12 (m, 3H), 7.12 – 6.98 (m, 7H), 2.88 (p, J = 6.8 Hz, 1H), 0.89 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.7, 143.6, 140.3, 138.9, 136.1, 131.7, 131.5, 131.3, 130.7, 130.6, 129.8, 127.8, 127.5, 127.3, 126.6, 126.5, 126.4, 126.3, 126.2, 126.0, 123.0, 120.7, 29.4, 24.8. HRMS (m/z, ESI): calcd for C₂₉H₂₅⁺ (M+H)⁺ 373.1878, found 373.1888.

5,6-diphenylchrysene (4d)

The general procedure A was followed. Yield: 95%, 36.2 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.86 (d, *J* = 8.4 Hz, 1H), 8.82 (d, *J* = 9.2 Hz, 1H), 8.01 (d, *J* = 8.8 Hz,

1H), 7.89 (d, J = 7.6 Hz, 1H), 7.68 (t, J = 6.8 Hz, 1H), 7.61 – 7.52 (m, 2H), 7.48 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.2 Hz, 1H), 7.28 – 7.19 (m, 3H), 7.19 – 7.12 (m, 3H), 7.12 – 7.05 (m, 4H), 7.01 (t, J = 7.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.7, 140.2, 139.5, 136.9, 133.9, 131.9, 131.4, 131.2, 130.2, 129.7, 128.8, 128.4, 128.2, 127.92, 127.9, 127.6, 126.7, 126.6, 126.4, 126.35, 125.7, 124.8, 123.3, 121.2. HRMS (m/z, ESI): calcd for C₃₀H₂₁⁺ (M+H)⁺ 381.1565, found 381.1578.

12-methyl-5,6-diphenylchrysene (4e)

The general procedure A was followed. Yield: 99%, 39.1 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.85 (d, J = 8.4 Hz, 1H), 8.66 (s, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.73 – 7.62 (m, 2H), 7.55 (d, J = 8.0 Hz, 1H), 7.45 (dt, J = 12.5, 7.4 Hz, 2H), 7.22 (m, 3H), 7.16 – 7.11 (m, 3H), 7.10 – 6.97 (m, 5H), 2.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.7, 140.2, 138.6, 136.6, 133.7, 133.3, 131.9, 131.4, 131.37, 131.2, 129.7, 129.4, 129.3, 128.1, 127.8, 127.6, 127.0, 126.5, 126.4, 126.3, 126.2, 125.6, 124.3, 124.1, 123.2, 121.7, 20.8. HRMS (m/z, ESI): calcd for C₃₁H₂₃⁺ (M+H)⁺ 395.1722, found 395.1717.

12-methoxy-5,6-diphenylchrysene (4f)

The general procedure A was followed. Yield: 93%, 38.1 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.75 (d, *J* = 8.4 Hz, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 8.04 (s, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.56 (t, *J* = 9.6 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.28 – 7.17 (m, 3H), 7.17 – 6.96 (m, 8H), 4.24 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.5, 143.7, 140.3, 137.1, 136.7, 132.4, 132.1, 131.6, 131.2, 130.5, 129.6, 128.8, 128.1, 127.9, 127.5, 127.3, 126.6, 126.3, 126.2, 126.1, 125.4, 125.3, 123.2, 123.18, 121.9, 97.9, 55.7. HRMS (m/z, ESI): calcd for C₃₁H₂₃O⁺ (M+H)⁺ 411.1671, found 411.1692.

12-fluoro-5,6-diphenylchrysene (4g)

The general procedure A was followed. Yield: 91%, 36.5 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.68 (d, J = 8.4 Hz, 1H), 8.45 (d, J = 12.8 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.52 – 7.43 (m, 2H), 7.26 – 7.19 (m, 3H), 7.18 – 7.12 (m, 3H), 7.10 – 7.02 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.1 (d, $J_{C-F} = 250.8$ Hz), 143.3, 139.9, 138.8 (d, $J_{C-F} = 2.1$ Hz), 136.6, 132.9 (d, $J_{C-F} = 4.9$ Hz), 131.9, 131.3, 131.1, 130.0 (d, $J_{C-F} = 8.8$ Hz), 129.6 (d, $J_{C-F} = 4.4$ Hz), 128.8 (d, $J_{C-F} = 2.7$ Hz), 128.3, 127.9, 127.6, 127.0, 126.6, 126.5, 126.4, 126.0 (d, $J_{C-F} = 1.6$ Hz), 125.9, 125.1 (d, $J_{C-F} = 2.3$ Hz), 124.9 (d, $J_{C-F} = 16.8$ Hz), 123.3, 120.6 (d, $J_{C-F} = 6.9$ Hz), 103.9 (d, $J_{C-F} = 21.8$ Hz). HRMS (m/z, ESI): calcd for C₃₀H₂₀F⁺ (M+H)⁺ 399.1471, found 399.1473.

methyl 11,12-diphenylchrysene-6-carboxylate (4h)

The general procedure A was followed. Yield: 83%, 36.2 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.48 (s, 1H), 8.86 (t, *J* = 10.0 Hz, 2H), 7.79 – 7.67 (m, 2H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.54 – 7.42 (m, 2H), 7.28 – 7.18 (m, 3H), 7.17 – 7.05 (m, 5H), 7.05 – 6.95 (m, 3H), 4.12 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.5, 143.1, 141.9, 139.7, 136.4, 132.0, 131.8, 131.3, 131.1, 130.8, 130.75, 130.3, 129.3, 128.2, 128.0, 127.9, 127.7, 127.2, 127.1, 126.8, 126.7, 126.6, 126.4, 126.1, 125.8, 124.8, 123.2, 52.6. HRMS (m/z, ESI): calcd for C₃₂H₂₃O₂⁺ (M+H)⁺ 439.1693, found 439.1661.

11,12-diphenylchrysene-6-carbonitrile (4i)

The general procedure A was followed. Yield: 61%, 25.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.30 (s, 1H), 8.79 (d, *J* = 8.4 Hz, 1H), 8.33 (d, *J* = 8.4 Hz, 1H), 7.77

(t, J = 6.8 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.64 – 7.51 (m, 3H), 7.32 – 7.21 (m, 3H), 7.21 – 7.14 (m, 3H), 7.15 – 7.11 (m, 1H), 7.11 – 7.06 (m, 2H), 7.06 – 6.99 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.0, 142.6, 139.3, 136.5, 132.0, 131.1, 131.0, 130.9, 130.7, 129.6, 129.5, 129.3, 128.4, 128.2, 127.9, 127.8, 127.76, 127.6, 127.4, 126.8, 126.79, 126.2, 125.6, 122.9, 118.7, 110.0. HRMS (m/z, ESI): calcd for C₃₁H₂₀N⁺ (M+H)⁺ 406.1517, found 406.1558.

11,12-diphenylchrysene-6-carbaldehyde (4j)

The general procedure A was followed. Yield: 54%, 22.2 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.58 (s, 1H), 9.32 (d, *J* = 8.4 Hz, 1H), 9.25 (s, 1H), 8.89 (d, *J* = 8.4 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.54 (q, *J* = 7.6 Hz, 2H), 7.31 – 7.21 (m, 3H), 7.19 – 7.11 (m, 3H), 7.11 – 7.04 (m, 3H), 7.04 – 6.96 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 193.6, 143.3, 142.8, 139.4, 136.5, 134.3, 132.0, 131.9, 131.8, 131.1, 130.9, 130.3, 130.2, 130.0, 129.2, 128.3, 128.2, 128.0, 127.7, 127.64, 127.6, 127.3, 126.8, 126.6, 125.4, 124.8, 122.9. HRMS (m/z, ESI): calcd for C₃₁H₂₁O⁺ (M+H)⁺ 409.1514, found 409.1559.

11,12-diphenyl-4,5-dihydrocyclopenta[*hi*]chrysene (4k)

The general procedure A was followed. Yield: 86%, 35.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.89 (d, J = 8.4 Hz, 1H), 8.70 (s, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 6.8 Hz, 1H), 7.26 – 7.15 (m, 6H), 7.15 – 7.07 (m, 4H), 7.03 (t, J = 8.0 Hz, 1H), 6.80 (d, J = 8.8 Hz, 1H), 3.54 (dd, J = 9.6, 5.6 Hz, 2H), 3.45 (dd, J = 8.8, 4.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.6, 145.5, 143.4, 140.2, 139.2, 137.9, 137.5, 132.0, 131.7, 131.5, 131.1, 130.4, 130.0, 128.2, 127.8, 127.5, 127.0, 126.6, 126.4, 126.3, 126.2, 125.5, 124.5, 123.6, 120.4, 114.5, 30.6, 29.9. HRMS (m/z, ESI): calcd for C₃₂H₂₃⁺ (M+H)⁺

407.1722, found 407.1722.

4,5-diphenylindeno[1,2,3-hi]chrysene (4l)

The general procedure A was followed. Yield: 98%, 45.1 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.36 (s, 1H), 9.02 (d, *J* = 8.4 Hz, 1H), 8.11 (d, *J* = 6.4 Hz, 1H), 7.87 (d, *J* = 6.8 Hz, 1H), 7.79 (d, *J* = 6.8 Hz, 1H), 7.73 (t, *J* = 7.2 Hz, 1H), 7.63 – 7.48 (m, 2H), 7.47 – 7.36 (m, 2H), 7.32 – 7.02 (m, 11H), 6.92 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.0, 140.7, 139.9, 139.8, 138.5, 137.7, 136.9, 135.8, 133.0, 132.0, 131.23, 131.2, 131.19, 131.1, 129.0, 128.5, 128.4, 128.2, 128.0, 127.8, 127.6, 127.5, 127.1, 126.9, 126.74, 126.7, 126.5, 123.5, 121.7, 121.3, 119.4, 116.0. HRMS (m/z, ESI): calcd for C₃₆H₂₃⁺ (M+H)⁺ 455.1722, found 455.1714.

11,12-diphenylbenzo[pqr]picene (4m)

The general procedure A was followed. Yield: 75%, 34.1 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.48 (s, 1H), 9.10 (d, *J* = 8.4 Hz, 1H), 8.16 (d, *J* = 9.2 Hz, 1H), 8.08 (d, *J* = 7.6 Hz, 1H), 8.01 (t, *J* = 6.4 Hz, 2H), 7.90 (dd, *J* = 14.4, 7.2 Hz, 2H), 7.75 (t, *J* = 7.6 Hz, 1H), 7.65 – 7.51 (m, 3H), 7.30 – 7.21 (m, 3H), 7.19 – 7.09 (m, 5H), 7.09 – 7.02 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.9, 140.2, 139.1, 136.7, 131.8, 131.6, 131.4, 131.3, 130.5, 130.2, 130.1, 129.2, 128.7, 128.3, 128.2, 128.1, 128.0, 127.64, 127.6, 127.0, 126.8, 126.4, 126.3, 126.2, 126.18, 125.2, 125.1, 125.0, 124.9, 124.8, 123.5, 119.9. HRMS (m/z, ESI): calcd for C₃₆H₂₃⁺ (M+H)⁺ 455.1722, found 455.1718.

Ph

5,6-diphenylbenzo[g]chrysene (4n)

The general procedure A was followed. Yield: 61%, 26.1 mg. ¹H NMR (400 MHz,

Chloroform-*d*) δ 8.80 (t, *J* = 8.8 Hz, 2H), 8.65 (d, *J* = 7.6 Hz, 1H), 8.55 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.66 (p, *J* = 6.4 Hz, 2H), 7.62 – 7.50 (m, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.37 – 7.21 (m, 3H), 7.17 (d, *J* = 7.2 Hz, 2H), 7.12 – 7.01 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.8, 139.5, 138.4, 135.9, 132.4, 132.0, 131.7, 131.5, 131.2, 130.8, 130.7, 129.94, 129.9, 129.6, 129.4, 128.9, 128.6, 128.5, 128.4, 127.9, 127.7, 127.0, 126.9, 126.6, 126.3, 126.2, 125.7, 125.6, 123.7, 123.2. HRMS (m/z, ESI): calcd for C₃₄H₂₃⁺ (M+H)⁺ 431.1722, found 431.1724.

5,6-diphenyl-10H-dibenzo[*gh*,*m*]tetraphen-10-one (40)

The general procedure A was followed. Yield: 84%, 40.4 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.75 (s, 1H), 8.95 (d, *J* = 8.4 Hz, 1H), 8.60 (dd, *J* = 7.2, 4.8 Hz, 2H), 8.52 (d, *J* = 7.6 Hz, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.82 (t, *J* = 7.2 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.66 – 7.51 (m, 3H), 7.33 – 7.19 (m, 4H), 7.19 – 7.14 (m, 3H), 7.10 (d, *J* = 7.6 Hz, 2H), 7.07 – 6.99 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 184.2, 143.0, 141.5, 139.6, 136.5, 136.4, 135.2, 133.5, 132.2, 131.2, 131.16, 131.1, 131.0, 130.2, 129.4, 129.3, 129.0, 128.6, 128.54, 128.5, 128.4, 128.3, 128.2, 127.8, 127.3, 127.28, 126.72, 126.7, 125.3, 125.1, 123.3, 122.9, 120.5. HRMS (m/z, ESI): calcd for C₃₇H₂₃O⁺ (M+H)⁺ 483.1743, found 483.1706.

5,6-diphenylnaphtho[2,1-f]quinolone (4p)

The general procedure A was followed. Yield: 44%, 17.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.08 (d, J = 9.2 Hz, 1H), 8.89 (d, J = 8.8 Hz, 1H), 8.77 (s, 1H), 8.28 (d, J = 9.6 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.73 (t, J = 7.2 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.56 – 7.49 (m, 1H), 7.30 – 7.16 (m, 6H), 7.15 – 7.03 (m, 4H), 6.92 (dd, J = 9.2, 4.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.2, 149.0, 142.9, 140.2,

139.7, 136.6, 136.1, 132.1, 131.2, 131.0, 130.0, 129.5, 129.4, 128.6, 128.0, 127.7, 127.6, 127.1, 127.0, 126.8, 126.6, 125.1, 123.3, 119.3. HRMS (m/z, ESI): calcd for $C_{29}H_{20}N^+$ (M+H)⁺ 382.1590, found 382.1567.

13-methyl-1,2-diphenyl-13*H*-naphtho[2,1-*a*]carbazole (4q)

The general procedure A was followed. Yield: 55%, 23.8 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.84 (d, *J* = 8.4 Hz, 1H), 8.66 (d, *J* = 8.8 Hz, 1H), 8.37 (d, *J* = 8.4 Hz, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.73 – 7.61 (m, 2H), 7.44 (dt, *J* = 16.8, 7.2 Hz, 2H), 7.38 – 7.27 (m, 4H), 7.21 – 7.05 (m, 4H), 7.05 – 6.91 (m, 4H), 2.89 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.5, 141.4, 140.4, 139.6, 137.5, 133.9, 132.8, 131.7, 131.6, 131.4, 130.8, 127.92, 127.87, 127.0, 126.7, 126.6, 126.3, 126.2, 125.6, 123.7, 123.6, 123.0, 120.0, 119.8, 119.6, 118.3, 115.6, 110.3, 36.6. HRMS (m/z, ESI): calcd for C₃₃H₂₄N⁺ (M+H)⁺ 434.1830, found 434.1866.

1,2-diphenylphenanthro[1,2-b]benzofuran (4r)

The general procedure B was followed. Yield: 50%, 21.1 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.89 (d, *J* = 8.4 Hz, 1H), 8.83 (d, *J* = 8.8 Hz, 1H), 8.22 (d, *J* = 8.8 Hz, 1H), 8.03 – 7.95 (m, 1H), 7.70 (t, *J* = 7.2 Hz, 1H), 7.63 (q, *J* = 8.4 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.35 – 7.14 (m, 11H), 7.07 – 7.01 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.7, 153.3, 141.5, 139.4, 138.8, 134.2, 132.4, 132.3, 132.0, 131.3, 130.9, 130.2, 129.9, 128.3, 127.6, 127.1, 126.9, 126.8, 126.6, 126.5, 126.3, 124.0, 123.2, 122.7, 122.3, 120.2, 119.2, 119.1, 118.2, 111.7. HRMS (m/z, ESI): calcd for C₃₂H₂₁O⁺ (M+H)⁺ 421.1587, found 421.1635.

1,2-diphenylbenzo[b]phenanthro[2,1-d]thiophene (4s)

The general procedure A was followed. Yield: 67%, 29.5 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.95 (d, *J* = 8.8 Hz, 1H), 8.90 (d, *J* = 8.4 Hz, 1H), 8.42 (d, *J* = 8.8 Hz,

1H), 8.21 (d, J = 7.6 Hz, 1H), 7.77 – 7.61 (m, 2H), 7.57 – 7.47 (m, 2H), 7.42 (t, J = 7.6 Hz, 1H), 7.40 – 7.31 (m, 2H), 7.31 – 7.16 (m, 7H), 7.13 (d, J = 6.8 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.9, 139.7, 139.3, 139.2, 138.6, 136.0, 135.2, 134.6, 132.8, 131.7, 131.1, 130.6, 129.6, 128.14, 128.1, 128.07, 127.6, 127.0, 126.9, 126.8, 126.6, 126.3, 124.1, 123.3, 122.1, 121.3, 120.4, 120.2. HRMS (m/z, ESI): calcd for C₃₂H₂₁S⁺ (M+H)⁺ 437.1286, found 437.1288.

8-methyl-4,5-diphenylindeno[1,2,3-hi]chrysene (5a)

The general procedure A was followed. Yield: 97%, 45.5 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.33 (s, 1H), 8.77 (s, 1H), 8.13 (d, *J* = 6.8 Hz, 1H), 7.86 (d, *J* = 6.4 Hz, 1H), 7.77 (d, *J* = 6.4 Hz, 1H), 7.49 – 7.37 (m, 3H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.28 – 7.04 (m, 11H), 6.92 (d, *J* = 8.8 Hz, 1H), 2.69 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.1, 140.7, 140.0, 139.8, 138.6, 136.9, 136.8, 136.4, 135.6, 133.0, 131.4, 131.24, 131.2, 130.8, 130.1, 129.0, 128.7, 128.6, 128.3, 128.1, 128.0, 127.8, 127.6, 127.4, 127.0, 126.8, 126.4, 123.0, 121.7, 121.3, 119.3, 116.1, 22.4. HRMS (m/z, ESI): calcd for C₃₇H₂₅⁺ (M+H)⁺ 469.1878, found 469.1871.

7-methyl-4,5-diphenylindeno[1,2,3-hi]chrysene (5b)

The general procedure A was followed. Yield: 94%, 44.2 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.35 (s, 1H), 8.91 (d, *J* = 8.8 Hz, 1H), 8.12 (d, *J* = 7.6 Hz, 1H), 7.88 (d, *J* = 6.4 Hz, 1H), 7.80 (d, *J* = 6.8 Hz, 1H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.48 – 7.38 (m, 2H), 7.32 (s, 1H), 7.28 – 7.19 (m, 6H), 7.19 – 7.13 (m, 3H), 7.10 (d, *J* = 7.6 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.2, 140.8, 139.9, 139.6, 138.6, 137.8, 136.9, 136.5, 135.8, 132.9, 132.1, 131.3, 131.2, 129.3, 129.1, 128.8, 128.3, 128.1, 128.0, 127.8, 127.6, 127.5, 127.3, 127.1, 126.8, 126.4, 123.5, 121.7, 121.3, 119.2, 116.1, 21.9. HRMS (m/z, ESI): calcd for C₃₇H₂₅⁺

(M+H)⁺ 469.1878, found 469.1882.

7-methoxy-4,5-diphenylindeno[1,2,3-*hi*]chrysene (5c)

The general procedure A was followed. Yield: 98%, 47.5 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.26 (s, 1H), 8.90 (d, J = 9.2 Hz, 1H), 8.09 (dd, J = 6.0, 2.4 Hz, 1H), 7.91 – 7.83 (m, 1H), 7.77 (d, J = 6.8 Hz, 1H), 7.46 – 7.39 (m, 2H), 7.36 (dd, J = 9.6, 2.8 Hz, 1H), 7.25 – 7.20 (m, 5H), 7.20 – 7.12 (m, 4H), 7.11 – 7.06 (m, 2H), 6.91 – 6.83 (m, 2H), 3.69 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.2, 143.1, 140.8, 139.9, 139.3, 138.6, 138.3, 136.9, 135.9, 133.5, 132.6, 131.4, 131.2, 131.1, 129.1, 128.3, 128.1, 127.7, 127.6, 127.4, 127.1, 127.06, 126.8, 126.5, 126.1, 125.3, 121.7, 121.2, 119.0, 117.7, 115.9, 107.7, 55.2. HRMS (m/z, ESI): calcd for C₃₇H₂₅O⁺ (M+H)⁺ 485.1827, found 485.1837.

8-fluoro-4,5-diphenylindeno[1,2,3-*hi*]chrysene (5d)

The general procedure A was followed. Yield: 71%, 34.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.07 (s, 1H), 8.53 (d, *J* = 11.6 Hz, 1H), 8.06 (d, *J* = 6.0 Hz, 1H), 7.84 (d, *J* = 6.8 Hz, 1H), 7.76 (d, *J* = 6.8 Hz, 1H), 7.57 – 7.47 (m, 1H), 7.42 (q, *J* = 8.0, 4.0 Hz, 2H), 7.29 – 7.16 (m, 7H), 7.16 – 7.00 (m, 5H), 6.88 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.6 (d, *J*_{C-F} = 246.1 Hz), 142.8, 140.7, 139.6, 138.3, 136.9, 136.0, 133.2, 132.7 (d, *J*_{C-F} = 8.3 Hz), 131.1, 130.6, 130.52, 130.5, 129.2, 128.9, 128.4, 128.3, 127.8, 127.7, 127.6, 127.2, 126.9, 126.6, 121.8, 121.3, 119.6, 116.0 (d, *J*_{C-F} = 23.8 Hz), 115.8, 108.1 (d, *J*_{C-F} = 22.5 Hz). HRMS (m/z, ESI): calcd for C₃₆H₂₂F⁺ (M+H)⁺ 473.1627, found 473.1615.

7-fluoro-4,5-diphenylindeno[1,2,3-*hi*]chrysene (5e)

The general procedure A was followed. Yield: 95%, 44.9 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.13 (s, 1H), 8.86 (dd, J = 9.2, 5.6 Hz, 1H), 8.07 – 7.97 (m, 1H), 7.82 (m, 1H), 7.73 (d, J = 6.8 Hz, 1H), 7.45 – 7.34 (m, 3H), 7.25 – 7.15 (m, 6H), 7.15 – 7.05 (m, 4H), 7.04 – 6.98 (m, 2H), 6.83 (d, J = 8.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.3 (d, $J_{C-F} = 246.3$ Hz), 142.7, 140.7, 139.3, 139.2 (d, $J_{C-F} = 4.3$ Hz), 138.8, 138.4, 136.9, 136.2, 133.5 (d, $J_{C-F} = 8.7$ Hz), 132.8, 131.13, 131.1, 131.0, 128.9, 128.4, 128.3, 127.94, 127.9, 127.8, 127.7, 127.5, 127.2, 127.0, 126.7, 126.0 (d, $J_{C-F} = 8.6$ Hz), 121.7, 121.3, 119.4, 116.0 (d, $J_{C-F} = 24.1$ Hz), 115.7, 111.8 (d, $J_{C-F} = 22.0$ Hz). HRMS (m/z, ESI): calcd for C₃₆H₂₂F⁺ (M+H)⁺ 473.1627, found 473.1623.

8-chloro-4,5-diphenylindeno[1,2,3-hi]chrysene (5f)

The general procedure A was followed. Yield: 96%, 47.1 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.06 (s, 1H), 8.87 (s, 1H), 8.06 (d, J = 6.4 Hz, 1H), 7.82 (d, J = 6.4 Hz, 1H), 7.72 (d, J = 6.8 Hz, 1H), 7.49 – 7.35 (m, 4H), 7.29 – 7.16 (m, 6H), 7.15 – 6.96 (m, 5H), 6.84 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.7, 140.6, 139.44, 139.36, 138.3, 137.9, 136.9, 136.1, 133.1, 132.9, 132.2, 131.1, 131.0, 130.3, 130.2, 129.7, 129.1, 128.7, 128.4, 128.3, 127.8, 127.7, 127.6, 127.23, 127.2, 127.0, 126.7, 123.0, 121.9, 121.3, 119.6, 115.6. HRMS (m/z, ESI): calcd for C₃₆H₂₂Cl⁺ (M+H)⁺ 489.1332, found 489.1330.

7-chloro-4,5-diphenylindeno[1,2,3-hi]chrysene (5g)

The general procedure A was followed. Yield: 98%, 48.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.29 (s, 1H), 8.95 (d, J = 9.2 Hz, 1H), 8.17 – 8.09 (m, 1H), 7.92 – 7.85 (m, 1H), 7.82 (d, J = 7.2 Hz, 1H), 7.67 (dd, J = 8.8, 2.4 Hz, 1H), 7.53 (s, 1H), 7.49 – 7.40 (m, 2H), 7.30 – 7.21 (m, 6H), 7.19 – 7.13 (m, 3H), 7.13 – 7.06 (m, 2H),

6.91 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.2, 147.4, 142.7, 140.8, 139.1, 139.0, 138.4, 137.0, 136.4, 133.1, 132.8, 131.2, 131.1, 131.0, 129.6, 128.9, 128.6, 128.4, 127.9, 127.8, 127.6, 127.4, 127.3, 127.1, 126.9, 126.8, 125.3, 121.8, 121.4, 119.6, 115.7. HRMS (m/z, ESI): calcd for C₃₆H₂₂Cl⁺ (M+H)⁺ 489.1332, found 489.1319.

4,5-diphenyl-7-(trifluoromethyl)indeno[1,2,3-hi]chrysene (5h)

The general procedure A was followed (note: 20 mol% of Pd(OAc)₂ and 40 mol% of P(2-MeC₆H₄)₃ were used). Yield: 55%, 28.7 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.30 (s, 1H), 9.08 (d, *J* = 8.8 Hz, 1H), 8.18 – 8.08 (m, 1H), 7.94 – 7.86 (m, 2H), 7.84 (s, 1H), 7.81 (d, *J* = 7.2 Hz, 1H), 7.50 – 7.40 (m, 2H), 7.31 – 7.20 (m, 6H), 7.20 – 7.11 (m, 3H), 7.11 – 7.03 (m, 2H), 6.91 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.5, 140.7, 140.1, 139.1, 138.7, 138.3, 137.0, 136.5, 133.3, 132.9, 131.3, 131.1, 131.0, 130.8, 129.8, 128.8, 128.54, 128.48, 128.36 (q, *J*_{C-F} = 31.9 Hz), 127.93, 127.9, 127.7, 127.5, 127.2, 127.0, 125.4 (q, *J*_{C-F} = 4.8 Hz), 124.5 (q, *J*_{C-F} = 262.2 Hz), 124.6, 122.3 (q, *J*_{C-F} = 4.8 Hz), 121.9, 121.4, 119.9, 115.8. HRMS (m/z, ESI): calcd for C₃₇H₂₂F₃⁺ (M+H)⁺ 523.1668, found 523.1793.

7-nitro-4,5-diphenylindeno[1,2,3-hi]chrysene (5i)

The general procedure A was followed. Yield: 50%, 24.9 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.89 (s, 1H), 9.26 (s, 1H), 8.23 (dd, J = 9.2, 2.0 Hz, 1H), 8.17 (d, J = 6.8 Hz, 1H), 7.85 (d, J = 6.4 Hz, 1H), 7.81 (d, J = 6.8 Hz, 1H), 7.67 (d, J = 9.2 Hz, 1H), 7.46 (p, J = 7.2 Hz, 2H), 7.32 – 7.23 (m, 6H), 7.20 – 7.11 (m, 3H), 7.11 – 7.05 (m, 2H), 6.88 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.9, 142.2, 141.7, 140.7, 139.3, 138.7, 138.0, 137.4, 137.2, 135.1, 134.2, 133.3, 132.0, 131.1, 130.7, 130.5, 129.6, 128.8, 128.7, 128.5, 128.0, 127.94, 127.9, 127.7, 127.4, 127.1,

122.2, 121.4, 120.2, 120.1, 120.0, 115.3. HRMS (m/z, ESI): calcd for $C_{36}H_{22}NO_2^+$ (M+H)⁺ 500.1572, found 500.1548.

4,5-di-*m*-tolylindeno[1,2,3-*hi*]chrysene (6a)

The general procedure A was followed (note: the products were isolated as an inseparable mixture of diastereoisomers, *d.r.* = 1:1). Yield: 90%, 43.5 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.37 (s, 1H), 9.01 (d, *J* = 8.8 Hz, 1H), 8.16 – 8.07 (m, 1H), 7.91 – 7.84 (m, 1H), 7.81 (d, *J* = 6.8 Hz, 1H), 7.72 (t, *J* = 7.2 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.46 – 7.36 (m, 2H), 7.21 – 7.08 (m, 3H), 7.07 – 6.84 (m, 7H), 2.26 (s, 1.50H), 2.25 (s, 1.44H), 2.23 (s, 1.47H), 2.21 (s, 1.53H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.8, 140.7, 140.1, 140.06, 139.7, 138.6, 137.8, 137.76, 137.7, 137.0, 136.9, 136.8, 135.7, 133.0, 132.1, 132.0, 131.9, 131.8, 131.2, 131.1, 129.1, 128.7, 128.6, 128.3, 128.24, 128.2, 128.16, 128.1, 128.05, 127.5, 127.4, 127.39, 127.3, 127.1, 127.08, 127.06, 126.6, 123.4, 121.7, 121.3, 119.4, 116.1, 21.5. HRMS (m/z, ESI): calcd for C₃₈H₂₇⁺ (M+H)⁺ 483.2035, found 483.2025.

4,5-di-*p*-tolylindeno[1,2,3-*hi*]chrysene (6b)

The general procedure A was followed. Yield: 97%, 47.2 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.33 (s, 1H), 8.98 (d, *J* = 8.4 Hz, 1H), 8.08 (d, *J* = 6.4 Hz, 1H), 7.85 (d, *J* = 6.4 Hz, 1H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.48 (t, *J* = 6.8 Hz, 1H), 7.44 – 7.35 (m, 2H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.10 – 6.91 (m, 9H), 2.34 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.7, 140.1, 140.05, 138.6, 137.8, 136.9, 136.8, 136.2, 135.8, 135.7, 133.0, 132.3, 131.2, 131.17, 131.0, 130.9, 129.1, 128.9, 128.4, 128.1, 128.0, 127.4, 127.0, 126.6, 123.4,

121.7, 121.2, 119.3, 116.0, 21.5, 21.4. HRMS (m/z, ESI): calcd for $C_{38}H_{27}^+$ (M+H)⁺ 483.2035, found 483.2026.

4,5-bis(4-ethylphenyl)indeno[1,2,3-*hi*]chrysene (6c)

The general procedure A was followed. Yield: 94%, 48.2 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.34 (s, 1H), 8.98 (d, *J* = 8.8 Hz, 1H), 8.13 – 8.05 (m, 1H), 7.85 (dd, *J* = 6.0, 2.0 Hz, 1H), 7.77 (d, *J* = 7.2 Hz, 1H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.49 (t, *J* = 7.2 Hz, 1H), 7.44 – 7.35 (m, 2H), 7.14 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.08 – 6.94 (m, 9H), 2.61 (p, *J* = 7.4 Hz, 4H), 1.21 (t, *J* = 7.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 142.8, 142.2, 140.7, 140.3, 140.2, 138.6, 137.9, 137.1, 136.8, 135.7, 133.0, 132.2, 131.2, 131.14, 131.1, 131.0, 129.1, 128.9, 128.14, 128.1, 128.0, 127.8, 127.4, 127.0, 126.6, 123.4, 121.7, 121.2, 119.3, 116.1, 28.8, 28.7, 16.1, 15.7. HRMS (m/z, ESI): calcd for C₄₀H₃₁⁺ (M+H)⁺ 511.2348, found 511.2340.

4,5-bis(4-(*tert*-butyl)phenyl)indeno[1,2,3-*hi*]chrysene (6d)

The general procedure A was followed. Yield: 89%, 50.8 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.38 (s, 1H), 9.02 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 6.4 Hz, 1H), 7.87 (d, *J* = 6.8 Hz, 1H), 7.80 (d, *J* = 6.0 Hz, 1H), 7.75 – 7.67 (m, 2H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.41 (p, *J* = 7.2 Hz, 2H), 7.21 – 7.08 (m, 6H), 7.01 (d, *J* = 7.6 Hz, 2H), 6.97 (d, *J* = 7.6 Hz, 2H), 1.29 (s, 9H), 1.28 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.6, 149.0, 140.8, 140.4, 140.1, 138.6, 138.1, 136.8, 136.7, 135.7, 133.0, 132.1, 131.2, 131.1, 130.9, 130.7, 129.1, 128.8, 128.2, 128.1, 128.07, 127.4, 127.0, 126.6, 124.9, 124.2, 123.4, 121.7, 121.2, 119.3, 116.1, 34.6, 34.5, 31.53, 31.49. HRMS (m/z, ESI): calcd for C₄₄H₃₉⁺ (M+H)⁺ 567.2974, found 567.2960.

4,5-bis(4-(4-butylcyclohexyl)phenyl)indeno[1,2,3-hi]chrysene (6e)

The general procedure A was followed. Yield: 69%, 50.3 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.39 (s, 1H), 9.03 (d, *J* = 8.4 Hz, 1H), 8.13 (d, *J* = 6.4 Hz, 1H), 7.88 (d, *J* = 6.8 Hz, 1H), 7.80 (d, *J* = 6.8 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.46 – 7.37 (m, 2H), 7.14 (t, *J* = 8.0 Hz, 1H), 7.06 – 6.91 (m, 9H), 2.41 (q, *J* = 11.6 Hz, 2H), 1.86 (d, *J* = 11.2 Hz, 8H), 1.47 – 1.35 (m, 4H), 1.35 – 1.19 (m, 14H), 1.06 (t, *J* = 11.6 Hz, 4H), 0.92 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.4, 145.8, 140.8, 140.4, 140.36, 138.6, 138.1, 137.1, 136.8, 135.7, 133.0, 132.2, 131.2, 131.1, 131.05, 130.9, 129.2, 128.9, 128.2, 128.1, 128.09, 127.4, 127.0, 126.6, 126.56, 125.8, 123.4, 121.7, 121.2, 119.3, 116.1, 44.5, 44.46, 37.5, 37.3, 34.7, 34.5, 33.8, 29.4, 23.2, 14.3. HRMS (m/z, ESI): calcd for C₅₆H₅₉⁺ (M+H)⁺ 731.4539, found 731.4511.

4,4'-(indeno[1,2,3-*hi*]chrysene-4,5-diyl)bis(*N*,*N*-diphenylaniline) (6f)

The general procedure A was followed. Yield: 73%, 57.5 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.39 (s, 1H), 9.04 (d, *J* = 8.8 Hz, 1H), 8.21 – 8.12 (m, 1H), 7.94 – 7.91 (m, 1H), 7.89 (d, *J* = 6.4 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.48 – 7.41 (m, 2H), 7.40 – 7.32 (m, 2H), 7.31 – 7.23 (m, 8H), 7.15 (t, *J* = 8.4 Hz, 8H), 7.07 – 6.99 (m, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.04, 148.0, 146.5, 146.3, 140.8, 140.0, 138.6, 137.85, 137.8, 137.0, 135.9, 134.1, 133.1, 132.22, 132.2, 132.1, 131.3, 131.29, 129.5, 129.0, 128.8,

128.2, 128.1, 127.6, 126.9, 126.8, 126.77, 124.4, 124.3, 124.2, 123.6, 123.1, 122.9, 122.8, 121.7, 121.3, 119.4, 116.1. HRMS (m/z, ESI): calcd for $C_{60}H_{41}N_2^+$ (M+H)⁺ 789.3191, found 789.3170.

4,5-bis(2-fluorophenyl)indeno[1,2,3-*hi*]chrysene (6g)

The general procedure A was followed. Yield: 45%, 22.2 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.32 (s, 1H), 8.98 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 6.4 Hz, 1H), 7.84 – 7.79 (m, 1H), 7.77 (d, J = 6.8 Hz, 1H), 7.73 – 7.65 (m, 1H), 7.53 – 7.41 (m, 2H), 7.40 – 7.31 (m, 2H), 7.31 – 7.13 (m, 5H), 7.06 – 6.96 (m, 3H), 6.95 – 6.86 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.9 (d, $J_{C-F} = 245.5$ Hz), 159.8 (d, $J_{C-F} = 245.4$ Hz), 140.7, 138.5, 137.2, 136.3, 134.9, 132.9, 132.2, 131.9, 131.6, 131.5, 131.0, 130.81, 129.8 (d, $J_{C-F} = 34.7$ Hz), 129.7 (d, $J_{C-F} = 34.8$ Hz), 128.5 (d, $J_{C-F} = 56.6$ Hz), 128.3, 127.9, 127.6, 127.4 (d, $J_{C-F} = 17.9$ Hz), 127.24, 127.22, 127.1, 126.2, 124.6 (d, $J_{C-F} = 3.4$ Hz), 123.9 (d, $J_{C-F} = 3.7$ Hz), 123.8, 121.8, 121.3, 119.6, 116.1, 115.6 (d, $J_{C-F} = 22.0$ Hz), 115.1 (d, $J_{C-F} = 22.1$ Hz). HRMS (m/z, ESI): calcd for C₃₆H₂₁F₂⁺ (M+H)⁺ 491.1533, found 491.1545.

4,5-bis(4-fluorophenyl)indeno[1,2,3-*hi*]chrysene (6h)

The general procedure A was followed. Yield: 90%, 44.5 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.36 (s, 1H), 9.02 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 6.0 Hz, 1H), 7.89 (d, *J* = 6.8 Hz, 1H), 7.83 (d, *J* = 7.2 Hz, 1H), 7.76 (t, *J* = 6.4 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.48 – 7.39 (m, 2H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.13 – 7.01 (m, 4H), 7.00 – 6.88 (m, 5H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.9 (d, *J*_{C-F} = 247.8 Hz), 161.6 (d, *J*_{C-F} = 246.9 Hz), 140.7, 139.2, 138.9 (d, *J*_{C-F} = 3.7 Hz), 138.5, 137.1, 137.0, 136.2, 135.6

(d, $J_{C-F} = 3.4$ Hz), 133.0, 132.7, 132.64, 132.56, 132.0, 131.5, 131.3, 128.6 (d, $J_{C-F} = 39.9$ Hz), 128.1 (d, $J_{C-F} = 54.3$ Hz), 127.6, 127.5, 127.4, 127.0, 126.9, 123.6, 121.8, 121.4, 119.5, 116.0, 115.6 (d, $J_{C-F} = 21.1$ Hz), 114.9 (d, $J_{C-F} = 21.4$ Hz). HRMS (m/z, ESI): calcd for $C_{36}H_{21}F_{2}^{+}$ (M+H)⁺ 491.1533, found 491.1520.

4,5-bis(3-chlorophenyl)indeno[1,2,3-*hi*]chrysene (6i)

The general procedure A was followed(note: the products were isolated as an inseparable mixture of diastereoisomers). Yield: 97%, 51.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.25 (s, 1H), 8.93 (d, *J* = 8.4 Hz, 1H), 8.09 – 7.97 (m, 1H), 7.87 – 7.78 (m, 1H), 7.75 (d, *J* = 6.8 Hz, 1H), 7.68 (t, *J* = 6.8 Hz, 1H), 7.51 – 7.42 (m, 2H), 7.40 – 7.31 (m, 2H), 7.19 – 7.01 (m, 7H), 7.00 – 6.84 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 144.5, 141.3, 140.7, 138.5, 138.4, 137.1, 136.3, 136.2, 134.5, 134.4, 133.9, 133.7, 133.0, 131.6, 131.4, 131.34, 131.26, 131.2, 131.1, 129.8, 129.7, 129.5, 129.4, 129.3, 129.25, 129.1, 129.0, 128.6, 128.4, 127.8, 127.6, 127.5, 127.4, 127.35, 127.2, 127.1, 127.0, 123.6, 121.8, 121.4, 119.6, 115.9. HRMS (m/z, ESI): calcd for C₃₆H₂₁Cl₂⁺ (M+H)⁺ 523.0942, found 523.0927.

4,5-bis(4-chlorophenyl)indeno[1,2,3-hi]chrysene (6j)

The general procedure A was followed. Yield: 99%, 52.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.25 (s, 1H), 8.94 (d, *J* = 8.4 Hz, 1H), 8.05 (dd, *J* = 4.8, 2.0 Hz, 1H), 7.90 – 7.81 (m, 1H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.72 (t, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 1H), 7.48 – 7.36 (m, 3H), 7.29 – 7.13 (m, 5H), 7.05 – 6.92 (m, 4H), 6.89 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.3, 140.6, 138.6, 138.4, 138.0, 137.1, 136.4, 136.2, 133.1, 132.9, 132.7, 132.4, 132.36, 131.6, 131.5, 131.3, 128.8,

128.6, 128.4, 128.1, 128.0, 127.7, 127.6, 127.4, 127.0, 126.9, 123.6, 121.8, 121.3, 119.5, 115.8. HRMS (m/z, ESI): calcd for $C_{36}H_{21}Cl_2^+$ (M+H)⁺ 523.0942, found 523.0931.

4,5-bis(3-(trifluoromethyl)phenyl)indeno[1,2,3-*hi*]chrysene (6k)

The general procedure A was followed (note: the products were isolated as an inseparable mixture of diastereoisomers, *d.r.* = 1:1). Yield: 91%, 53.9 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.21 (d, *J* = 3.2 Hz, 1H), 8.92 (d, *J* = 8.4 Hz, 1H), 8.05 – 7.95 (m, 1H), 7.84 – 7.75 (m, 1H), 7.75 – 7.65 (m, 2H), 7.48 (t, *J* = 8.0 Hz, 1H), 7.45 – 7.19 (m, 9H), 7.18 – 7.01 (m, 3H), 6.81 (d, *J* = 4.0 Hz, 0.52H), 6.78 (d, *J* = 4.4 Hz, 0.49H). ¹³C NMR (101 MHz, Chloroform-d) δ 143.5, 143.46, 140.6, 140.3, 140.2, 138.4, 138.3, 137.1, 136.3, 134.6, 134.5, 134.2, 132.9, 131.6, 131.56, 131.33, 131.3, 131.2, 131.17, 128.9, 128.4, 128.31, 128.28, 128.1 (q, *J*_{C-F} = 3.6 Hz), 127.9 (q, *J*_{C-F} = 3.6 Hz), 127.6, 127.5, 127.44, 127.4, 127.2, 127.1, 127.06, 127.0, 125.5, 125.4, 124.1 (q, *J*_{C-F} = 273.4 Hz), 124.0 (q, *J*_{C-F} = 273.7 Hz), 123.8, 123.7, 123.63, 123.6, 121.8, 121.3, 119.5, 115.7. HRMS (m/z, ESI): calcd for C₃₈H₂₁F₆⁺ (M+H)⁺ 591.1469, found 591.1501.

4,5-bis(4-(trifluoromethyl)phenyl)indeno[1,2,3-hi]chrysene (6l)

The general procedure A was followed. Yield: 93%, 55.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.29 (s, 1H), 8.99 (d, J = 8.4 Hz, 1H), 8.12 – 8.04 (m, 1H), 7.92 – 7.83 (m, 1H), 7.83 – 7.72 (m, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 4H), 7.45 – 7.37 (m, 3H), 7.22 – 7.09 (m, 5H), 6.79 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.5, 143.3, 140.7, 138.3, 137.2, 136.5, 136.1, 133.0, 131.7,

131.5, 131.46, 131.4, 131.2, 129.5 (q, $J_{C-F} = 32.7$ Hz), 129.2 (q, $J_{C-F} = 32.6$ Hz), 128.5, 128.4, 127.7, 127.6, 127.58, 127.5, 127.3, 127.2, 127.1, 125.44 (q, $J_{C-F} = 3.6$ Hz), 124.82 (q, $J_{C-F} = 3.6$ Hz), 124.23 (q, $J_{C-F} = 273.3$ Hz), 124.2 (q, $J_{C-F} = 273.2$ Hz), 123.7, 121.9, 121.4, 119.7, 115.8. HRMS (m/z, ESI): calcd for $C_{38}H_{21}F_6^+$ (M+H)⁺ 591.1469, found 591.1454.

4,5-bis(4-(trifluoromethoxy)phenyl)indeno[1,2,3-hi]chrysene (6m)

The general procedure A was followed. Yield: 81%, 50.4 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.34 (s, 1H), 9.03 (d, J = 8.4 Hz, 1H), 8.18 – 8.05 (m, 1H), 7.94 – 7.86 (m, 1H), 7.82 (d, J = 6.8 Hz, 1H), 7.77 (t, J = 7.2 Hz, 1H), 7.61 – 7.51 (m, 2H), 7.48 – 7.39 (m, 2H), 7.19 (t, J = 8.0 Hz, 1H), 7.15 – 7.03 (m, 8H), 6.93 (d, J = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.3, 148.1, 141.7, 140.7, 138.7, 138.4, 138.2, 137.2, 136.5, 136.4, 133.0, 132.5, 132.4, 131.6, 131.5, 131.4, 128.6, 128.5, 128.0, 127.74, 127.7, 127.4, 127.3, 127.2, 127.1, 123.7, 121.8, 121.4, 121.2, 120.6 (q, $J_{C-F} = 258.1$ Hz), 120.4, 119.6, 115.9. HRMS (m/z, ESI): calcd for C₃₈H₂₁F₆O₂⁺ (M+H)⁺ 623.1367, found 623.1337.

4,4'-(indeno[1,2,3-*hi*]chrysene-4,5-diyl)dibenzonitrile (6n)

The general procedure A was followed. Yield: 97%, 49.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.26 (s, 1H), 9.00 (d, J = 8.4 Hz, 1H), 8.13 – 8.04 (m, 1H), 7.94 – 7.85 (m, 1H), 7.84 – 7.76 (m, 2H), 7.60 – 7.48 (m, 5H), 7.48 – 7.41 (m, 2H), 7.34 (d, J = 8.4 Hz, 1H), 7.21 – 7.07 (m, 5H), 6.71 (d, J = 8.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.5, 144.3, 140.6, 138.2, 137.6, 137.4, 136.8, 135.5, 132.9, 132.3, 132.26, 131.9, 131.85, 131.8, 131.4, 130.8, 128.7, 128.1, 127.9, 127.7, 127.6, 127.4,

127.3, 127.0, 126.8, 123.8, 121.9, 121.5, 119.8, 118.7, 118.6, 115.7, 111.4, 111.2. HRMS (m/z, ESI): calcd for $C_{38}H_{21}N_2^+$ (M+H)⁺ 505.1699, found 505.1673.

dimethyl 4,4'-(indeno[1,2,3-*hi*]chrysene-4,5-diyl)dibenzoate (60)

The general procedure A was followed. Yield: 70%, 40.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.43 (s, 1H), 9.09 (d, J = 8.4 Hz, 1H), 8.21 – 8.14 (m, 1H), 8.00 – 7.90 (m, 5H), 7.86 (d, J = 6.8 Hz, 1H), 7.80 (t, J = 7.2 Hz, 1H), 7.55 (t, J = 7.6 Hz, 1H), 7.52 – 7.42 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.93 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.1, 147.8, 144.6, 140.8, 137.2, 136.5, 131.7, 131.4, 131.3, 131.28, 129.8, 129.2, 129.1, 128.9, 128.7, 128.6, 128.5, 127.8, 127.7, 127.6, 127.4, 127.3, 127.1, 123.7, 121.9, 121.4, 119.7, 118.6, 118.0, 115.9, 52.3, 52.3. HRMS (m/z, ESI): calcd for C₄₀H₂₇O₄⁺ (M+H)⁺ 571.1831, found 571.1847.

4,4'-(indeno[1,2,3-*hi*]chrysene-4,5-diyl)dibenzaldehyde (6p)

The general procedure A was followed. Yield: 89%, 45.6 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.99 (s, 1H), 9.97 (s, 1H), 9.31 (s, 1H), 9.01 (d, *J* = 8.4 Hz, 1H), 8.13 – 8.07 (m, 1H), 7.90 – 7.85 (m, 1H), 7.82 – 7.77 (m, 2H), 7.74 (dd, *J* = 8.0, 5.2 Hz, 4H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.47 – 7.39 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.13 (dd, *J* = 8.4, 7.2 Hz, 1H), 6.83 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.04, 191.99, 149.3, 146.1, 140.6, 138.3, 138.2, 137.2, 136.6, 136.1, 135.0, 134.9, 133.0, 131.9, 131.87, 131.7, 131.4, 131.0, 129.8, 129.2, 128.6, 128.4, 127.8, 127.5, 127.4, 127.2, 127.1, 123.8, 121.9, 121.4, 119.7, 115.8. HRMS (m/z, ESI): calcd for C₃₈H₂₃O₂⁺ (M+H)⁺ 511.1620, found 511.1632.

4,5-di(naphthalen-1-yl)indeno[1,2,3-hi]chrysene (6q)

The general procedure A was followed. Yield: 69%, 38.5 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.57 (s, 1H), 9.19 (d, *J* = 8.8 Hz, 1H), 8.20 (d, *J* = 7.2 Hz, 1H), 7.87 (d, *J* = 6.8 Hz, 1H), 7.83 – 7.70 (m, 4H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.60 – 7.53 (m, 2H), 7.51 (d, *J* = 9.2 Hz, 1H), 7.49 – 7.38 (m, 5H), 7.37 – 7.26 (m, 3H), 7.15 (d, *J* = 7.2 Hz, 1H), 7.01 – 6.85 (m, 4H), 6.74 (d, *J* = 8.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 140.8, 140.5, 139.1, 138.6, 137.3, 136.9, 136.8, 136.2, 133.4, 133.2, 133.1, 132.9, 132.5, 131.6, 130.1, 129.6, 129.2, 128.4, 128.3, 128.2, 128.1, 127.7, 127.66, 127.6, 127.3, 127.1, 127.05, 126.95, 126.7, 126.5, 126.1, 126.0, 125.8, 125.6, 125.4, 125.3, 124.8, 124.5, 123.7, 121.8, 121.3, 119.5, 116.3, 116.2. HRMS (m/z, ESI): calcd for C₄₄H₂₇⁺ (M+H)⁺ 555.2035, found 555.2013.

2,2'-(indeno[1,2,3-hi]chrysene-4,5-diyl)dithiophene (6r)

The general procedure A was followed. Yield: 85%, 39.8 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.33 (s, 1H), 9.00 (d, J = 8.4 Hz, 1H), 8.17 – 8.07 (m, 1H), 7.93 – 7.87 (m, 1H), 7.86 (d, J = 6.8 Hz, 1H), 7.83 – 7.72 (m, 2H), 7.58 (t, J = 8.0 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.38 (dd, J = 10.4, 5.2 Hz, 2H), 7.31 (t, J = 8.4 Hz, 1H), 7.11 (d, J = 8.8 Hz, 1H), 7.04 (q, J = 4.0 Hz, 2H), 6.94 (dd, J = 7.2, 3.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.9, 140.9, 139.9, 138.4, 137.0, 136.7, 134.7, 133.0, 132.7, 132.3, 131.9, 131.6, 129.7, 129.23, 129.2, 128.8, 128.5, 128.1, 127.64, 127.6, 127.4, 127.3, 127.2, 127.1, 126.9, 126.4, 126.3, 123.5, 121.8, 121.3, 119.7, 115.7. HRMS (m/z, ESI): calcd for C₃₂H₁₉S₂⁺ (M+H)⁺ 467.0850, found 467.0842.

8-(*tert*-butyl)-3,11,12-tris(4-(*tert*-butyl)phenyl)benzo[*pqr*]picene (6s)

The general procedure A was followed. Yield: 46%, 34.6 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.56 (s, 1H), 9.16 (s, 1H), 8.29 – 8.21 (m, 2H), 8.17 (d, *J* = 9.6 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.70 (d, *J* = 8.4 Hz, 1H), 7.67 – 7.56 (m, 5H), 7.31 – 7.21 (m, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.0 Hz, 2H), 1.61 (s, 9H), 1.49 (s, 9H), 1.35 (s, 9H), 1.33 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.2, 149.4, 148.94, 148.9, 141.2, 139.4, 138.6, 137.5, 137.3, 136.5, 131.0, 130.9, 130.5, 129.95, 129.9, 129.8, 129.5, 129.3, 128.9, 128.3, 128.2, 128.0, 127.9, 126.7, 126.0, 125.5, 125.4, 125.3, 125.2, 124.7, 124.2, 119.5, 119.2, 35.5, 34.8, 34.6, 34.5, 31.8, 31.7, 31.6, 31.5. HRMS (m/z, ESI): calcd for C₅₈H₅₉⁺ (M+H)⁺ 755.4539, found 755.4521.

4,4'-(3-(4-(diphenylamino)phenyl)benzo[*pqr*]picene-11,12-diyl)dibenzaldehyde (6t)

The general procedure A was followed. Yield: 72%, 54.1 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.93 (s, 1H), 9.89 (s, 1H), 9.40 (s, 1H), 9.06 (d, *J* = 8.4 Hz, 1H), 8.23 (d, *J* = 9.2 Hz, 1H), 8.10 (d, *J* = 9.6 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.77 – 7.65 (m, 4H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.51 (t, *J* = 9.6 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 3H), 7.25 (t, *J* = 8.0 Hz, 4H), 7.22 – 7.11 (m, 10H), 7.00 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 192.1, 192.0, 150.3, 147.9, 147.4, 146.7, 138.0, 137.6, 135.4, 135.0, 134.9, 134.5, 132.1, 132.0, 131.5, 130.8, 130.6, 130.4,

129.7, 129.6, 129.5, 129.3, 128.72, 128.69, 128.6, 128.0, 127.6, 127.55, 127.5, 127.1, 126.7, 125.6, 125.3, 125.1, 125.0, 124.8, 123.8, 123.3, 119.5. HRMS (m/z, ESI): calcd for C₅₆H₃₆NO₂⁺ (M+H)⁺ 754.2668, found 754.2647.

11,12-bis(4-(diphenylamino)phenyl)chrysene-6-carbaldehyde (6u)

The general procedure A was followed. Yield: 64%, 47.9 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.47 (s, 1H), 9.24 (d, *J* = 8.0 Hz, 1H), 9.12 (s, 1H), 8.76 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.66 (t, *J* = 7.2 Hz, 1H), 7.50 (q, *J* = 7.6 Hz, 2H), 7.22 – 7.10 (m, 9H), 7.08 – 6.98 (m, 8H), 6.92 (t, *J* = 8.0 Hz, 6H), 6.88 – 6.80 (m, 4H), 6.75 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 193.4, 147.9, 147.8, 146.5, 146.3, 143.4, 137.5, 136.7, 134.3, 133.6, 132.1, 132.0, 131.9, 131.8, 130.32, 130.3, 130.1, 129.5, 129.4, 129.3, 128.2, 127.9, 127.6, 127.3, 125.2, 124.9, 124.5, 124.2, 124.0, 123.0, 122.94, 122.87. HRMS (m/z, ESI): calcd for C₅₅H₃₉N₂O⁺ (M+H)⁺ 743.2984, found 743.2968.

2,2'-(((1*E*,1'*E*)-((3-(4-(diphenylamino)phenyl)benzo[*pqr*]picene-11,12-diyl)bis(4,1-phenylene))bis(ethene-2,1-diyl))bis(5,5-dimethylcyclohex-2-en-3-yl-1-ylidene))di malononitrile (6v)

The general procedure A was followed (note: 0.05 mmol scale reaction was carried out). Yield: 42%, 22.9 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.38 (s, 1H), 9.04 (d, J = 8.4 Hz, 1H), 8.22 (d, J = 9.2 Hz, 1H), 8.08 (d, J = 9.6 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 9.6 Hz, 1H), 7.76 – 7.68 (m, 1H), 7.56 –

7.48 (m, 3H), 7.40 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 7.29 – 7.20 (m, 5H), 7.21 – 7.11 (m, 7H), 7.10 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 6.99 (t, J = 7.2 Hz, 2H), 6.86 (d, J = 14.8 Hz, 2H), 6.82 (d, J = 13.6 Hz, 2H), 6.61 (s, 1H), 6.56 (s, 1H), 2.37 (s, 2H), 2.29 (s, 2H), 2.21 (s, 2H), 2.16 (s, 2H), 0.91 (s, 6H), 0.86 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.2, 169.1, 153.7, 153.6, 147.8, 147.3, 145.7, 141.9, 138.3, 137.8, 136.7, 135.9, 134.9, 134.1, 133.8, 132.1, 132.0, 131.5, 131.4, 130.3, 129.6, 129.55, 129.5, 129.45, 129.2, 129.1, 128.9, 128.7, 128.5, 128.2, 127.6, 127.32, 127.3, 127.1, 126.5, 125.6, 125.5, 125.4, 125.1, 125.0, 124.8, 123.7, 123.6, 123.5, 123.48, 123.3, 123.2, 119.6, 113.51, 113.49, 112.8, 112.7, 78.8, 78.7, 42.9, 42.8, 39.2, 39.1, 32.0, 31.9, 28.1, 28.0. HRMS (m/z, ESI): calcd for C₈₀H₆₀N₅⁺ (M+H)⁺ 1090.4770, found 1090.4719.

(*E*)-2-(3-(2-(11,12-bis(4-(diphenylamino)phenyl)chrysen-6-yl)vinyl)-5,5-dimethylc yclohex-2-en-1-ylidene)malononitrile (6w)

The general procedure A was followed (note: 0.05 mmol scale reaction was carried out). Yield: 40%, 18.0 mg. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.98 (s, 1H), 8.84 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.88 (d, J = 15.6 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.70 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.46 (t, J = 7.2 Hz, 1H), 7.24 – 7.13 (m, 10H), 7.04 (t, J = 8.4 Hz, 8H), 6.97 – 6.91 (m, 7H), 6.90 – 6.85 (m, 4H), 6.82 (d, J = 8.4 Hz, 2H), 2.56 (s, 2H), 2.55 (s, 2H), 1.08 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.4, 153.9, 148.0, 147.9, 146.4, 146.1, 140.8, 138.1, 136.6, 134.6, 134.0, 132.3, 132.2, 132.0, 131.7, 131.5, 130.1, 129.9, 129.45, 129.43, 129.2, 129.0, 128.1, 127.2, 126.2, 124.7, 124.4, 124.3, 124.2, 124.1, 123.4, 123.2, 123.1, 122.9, 122.8, 120.8, 113.6, 112.9, 79.2, 43.2, 39.5, 32.3, 28.3. HRMS (m/z, ESI): calcd for C₆₇H₅₁N₄⁺ (M+H)⁺ 911.4035, found 911.4030.

3.4 Mechanistic Studies

Control experiments:

(a) Reaction of **1a** with **NBE-CO₂Me** in the condition of quantitative Pd(OAc)₂:

The oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with substrates **1a** (0.1 mmol, 1.0 equiv), $Pd(OAc)_2$ (1.0 equiv), $P(2-MeC_6H_4)_3$ (2.5 equiv) and K_2CO_3 (4.5 equiv) in the air. Followed by the mediator NBE-CO₂Me (1.5 equiv) and the anhydrous toluene (1.0 mL) were added via syringe under nitrogen flow. Then the tube was evacuated and back-filled with N₂ for three times. Finally, the reaction mixture was stirred at 130 °C for 6 h and then cooled to room temperature. Upon completion of the reaction, the mixture was analyzed by the Agilent 6546 Q-TOF LC/MS system detection and intermediate **D** were detected.

(b) Reaction of 1a with NBE-CO₂Me and 2a in the condition of quantitative $Pd(OAc)_2$:

The oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with substrates **1a** (0.1 mmol, 1.0 equiv), **2a** (2.0 equiv), $Pd(OAc)_2$ (1.0 equiv), $P(2-MeC_6H_4)_3$ (2.5 equiv) and K_2CO_3 (4.5 equiv) in the air. Followed by the mediator NBE-CO₂Me (1.5 equiv) and the anhydrous toluene (1.0 mL) were added via syringe under nitrogen flow. Then the tube was evacuated and back-filled with N₂ for three times. Finally, the reaction mixture was stirred at 130 °C for 24 h and then cooled to room temperature. Upon completion of the reaction, the mixture was analyzed by the Agilent 6546 Q-TOF LC/MS system detection and intermediate **G** were detected.

Fig. S5. MS spectrum of intermediate G.

Fig. S6. Proposed reaction mechanism.

3.5 General procedures for the synthesis of substrates

(a)The synthesis of substrates 1t and 1u:

The oven-dried Schlenk tube (100 mL) equipped with a stirring bar was charged with 1,6-dibromopyrene (**S3**, 2.0 mmol, 1.0 equiv), 4-tert-butylphenylboronic acid or 4-(diphenylamino)phenyl boronic acid (**S4** 1.0 equiv), Pd(PPh₃)₄ (5 mol%), and K_2CO_3 (4.5 equiv) in the air. Followed by the toluene/EtOH/H₂O (5/1/1, 10 mL) were added via syringe under nitrogen flow. Then the tube was evacuated and back-filled with N₂ for three times. Finally, the reaction mixture was stirred at 100 °C for 6 h and then cooled to room temperature. Upon completion of the reaction, the mixture was quenched by 2N HCl aqueous solution and ethyl acetate (EA). The organic phases were separated and the aqueous phase was extracted with EA three times. The combined organic phases were washed with brine, dried with anhydrous Na_2SO_4 and concentrated *in vacuo*. The resulting residue was purified via silica gel column chromatography using PE/EA (200/1 – 20/1) as the eluent.

Characterization of substrates 1t and 1u:

1-bromo-6-(4-(*tert***-butyl)phenyl)pyrene (1t**): ¹H NMR (400 MHz, Chloroform-*d*) δ 8.45 (d, J = 9.2 Hz, 1H), 8.30 – 8.21 (m, 3H), 8.19 (d, J = 9.2 Hz, 1H), 8.02 (d, J =8.0 Hz, 1H), 8.00 – 7.92 (m, 2H), 7.64 – 7.52 (m, 4H), 1.46 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.5, 138.7, 138.0, 130.6, 130.4, 130.35, 130.3, 130.1, 129.2, 128.7, 128.5, 127.1, 126.3, 126.0, 125.9, 125.5, 125.4, 125.3, 124.5, 120.0, 34.8, 31.6. HRMS (m/z, ESI): calcd for C₂₆H₂₄Br⁺ (M+H)⁺ 415.0983, found 415.0795.

4-(6-bromopyren-1-yl)-*N*,*N*-diphenylaniline (1u): ¹H NMR (400 MHz, Chloroform-*d*) δ 8.44 (d, *J* = 9.2 Hz, 1H), 8.31 (d, *J* = 9.2 Hz, 1H), 8.24 (dd, *J* = 7.6, 6.0 Hz, 2H), 8.18 (d, *J* = 9.2 Hz, 1H), 8.03 (d, *J* = 8.0 Hz, 1H), 7.99 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 4H), 7.30 – 7.18 (m, 6H), 7.09 (t, *J* = 7.2 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.8, 147.4, 138.4, 134.7, 131.5, 130.6, 130.31, 130.29, 130.1, 129.5, 129.2, 128.6, 128.4, 127.1, 126.3, 125.9, 125.4, 125.36, 124.8, 124.6, 123.3, 120.0. HRMS (m/z, ESI): calcd for C₃₄H₂₅BrN⁺ (M+H)⁺ 526.1092, found 526.0902.

(b) The synthesis of symmetrical 1,2-diarylalkynes:

All the symmetrical 1,2-diarylalkynes were prepared according to the reported literatures^[S2].

(c) The synthesis of norbornene mediators:

The structurally modified norbornenes were synthesized following the procedure as described in literatures^[S3, S4].

4. Photophysical properties and applications of products.

4.1. The absorption and fluorescence properties of products

Fluorescence spectra were collected on HITACHI F-700003040428 Fluorescence Spectrometer. UV–vis spectra were recorded on Agilent Cary60 spectrometer. Samples for the experiments were prepared in a 4.0 mL glass cuvette with a septum screw cap. In a typical experiment, a 5.0×10^{-5} M and 1.0×10^{-6} M solution of product in DCM for the collection of emission spectrum and UV-vis spectrum were prepared respectively.

Compunds	Absorb.(λ_{abs} , nm) ^{<i>a</i>}	Emission (λ_{em} , nm) ^b	CIE ₁₉₃₁
4a	258, 303, 345, 362	370, 388	(0.16, 0.02)
4 b	264, 298, 310	366, 381	(0.16, 0.03)
4 c	265, 299, 310	369, 386	(0.16, 0.04)
4d	277, 319, 333	382, 399	(0.16, 0.02)
4e	277, 322, 335	386, 404	(0.16, 0.02)
4 f	279, 327, 341, 378	393, 409	(0.16, 0.02)
4 g	273, 317, 332, 373	, 332, 373 384, 402	
4h	281, 345	415	(0.16, 0.03)
4i	282, 341, 356	409	(0.16, 0.02)
4j	255, 288, 360	435	(0.15, 0.06)
4 k	279, 326, 341, 376	385, 403	(0.16, 0.01)
41	267, 282, 292, 320, 371, 392	445	(0.15, 0.08)
4 m	251, 290, 306, 319, 377, 398	428, 452	(0.15, 0.04)
4 n	298, 333	404	(0.16, 0.02)
40	252, 275, 327, 433 496		(0.15, 0.49)
4 p	272, 332, 370 388, 401		(0.16, 0.02)
4 q	310, 376, 395	428	(0.16, 0.03)
4r	290, 352, 370	290, 352, 370 379, 395, 415	
4 s	265, 296, 359, 377	383, 403, 425	(0.17, 0.01)
5a	268, 284, 320, 375, 395	446	(0.15, 0.07)
5b	261, 284, 296, 320, 372, 391	445	(0.15, 0.08)
5c	264, 302, 322, 370, 388	446	(0.15, 0.08)
5d	283, 319, 373, 395	444	(0.15, 0.08)
5e	262, 281, 292, 320, 367, 385	450	(0.15, 0.13)
5 f	271, 283, 322, 373, 395	445	(0.15, 0.10)
5g	285, 296, 321, 369, 388	451	(0.15, 0.13)
5h	286, 320, 370, 392	454	(0.15, 0.14)
5i	290, 356, 388	551	(0.37, 0.58)
6a	264, 282, 318, 372, 390	444	(0.15, 0.08)
6b	262, 284, 318, 372, 392	443	(0.15, 0.07)
6c	264, 282, 318, 372, 392	440	(0.15, 0.07)
6d	266, 282, 320, 373, 393	442	(0.15, 0.07)

Table S2. Absorption maxima and emission maxima of products.

6e	265, 282, 319, 373, 394	442	(0.15, 0.07)
6f	293, 376	527	(0.26, 0.60)
6g	264, 288, 318, 368, 386	449	(0.15, 0.13)
6h	264, 282, 318, 370, 390	446	(0.15, 0.10)
6i	264, 288, 318, 368, 388	449	(0.15, 0.12)
6j	264, 286, 318, 370, 388	446	(0.15, 0.10)
6k	288, 318, 377, 388	451	(0.15, 0.13)
61	264, 288, 318, 368, 388	451	(0.15, 0.13)
6m	266, 288, 318, 370, 388	447	(0.15, 0.11)
6n	288, 320, 368, 388	456	(0.15, 0.15)
60	260, 288, 320, 368, 388	448	(0.15, 0.12)
6р	260, 288, 318, 370, 388	449	(0.15, 0.12)
6q	288, 316, 370, 390	446	(0.15, 0.10)
6r	264, 282, 320, 372, 388	454	(0.15, 0.13)
6s	256, 292, 326, 392, 412	448, 463	(0.14, 0.09)
6t	288, 416	523	(0.24, 0.61)
6u ^c	290, 352	412, 436, 561	(0.31, 0.34)
6v	290, 414	535	(0.32, 0.62)
6w ^d	278, 306, 450	394, 418, 571	(0.33, 0.33)
6w NPs ^e	281, 305, 459	426, 465, 610	(0.33, 0.28)

^{*a*} Absorption maximum in CH₂Cl₂ (1×10⁻⁶ M). ^{*b*} Emission maximum in CH₂Cl₂ (5.0×10^{-5} M). ^{*c*} CH₂Cl₂ used as solvent (2.5×10^{-7} M). ^{*d*} Toluene used as solvent (2.4×10^{-6} M). ^{*e*} H₂O used as solvent (2.0×10^{-5} M).

Fig. S7. Normalized UV-Vis absorption spectra of 4a-4s in DCM $(1 \times 10^{-6} \text{ M})$.

Fig. S8. Normalized fluorescence emission spectra of 4a-4s in DCM (5.0×10^{-5} M).

Fig. S9. Normalized UV-Vis absorption spectra of **5a-6g** in DCM $(1 \times 10^{-6} \text{ M})$.

Fig. S10. Normalized fluorescence emission spectra of 5a-6g in DCM (5.0×10^{-5} M).

Fig. S11. Normalized UV-Vis absorption spectra of **6h-6v** in DCM $(1 \times 10^{-6} \text{ M})$.

Fig. S12. (a - c) Normalized fluorescence emission spectra of 6h-6t and 6v in DCM

 $(5.0 \times 10^{-5} \text{ M})$. (d) Normalized fluorescence emission spectra of **6u** in DCM $(2.5 \times 10^{-7} \text{ M})$.

Fig. S13. (a) Normalized UV-Vis absorption spectra of **6w** in DCM $(1 \times 10^{-6} \text{ M})$; (b) Normalized fluorescence emission spectra of **6w** in toluene $(2.4 \times 10^{-6} \text{ M})$; (c) Fluorescence spectra of **6w** in toluene–hexane mixtures $(2.4 \times 10^{-6} \text{ M})$ with different fractions (f_{hexane}).

Fig. S14. The white-light emissions of **6u** and **6w**. CIE_{1931} chromaticity diagrams **6u** (0.31, 0.34) and **6w** (0.33, 0.33) in CH_2Cl_2 (Concentration: **6u**: 2.5×10^{-7} M; **6w**: 2.4×10^{-6} M).

Fig. S15. (a) Emission-wavelength-dependent excitation spectra of 6u (1.0×10⁻⁸ M in DCM). (b) Emission-wavelength-dependent excitation spectra of 6w (1.3×10⁻⁷ M in toluene). Excitation spectra were collected by Edinburgh Instruments FLS1000.

Fig. S16. Fluorescence lifetime decay curves of 6u in TBCPF film (3 wt%).

Fig. S17. The excited state lifetimes of 6u in TBCPF film.

Fig. S18. Fluorescence lifetime decay curves of 6w in TBCPF film (10 wt%).

Fix Value / ns	Std. Dev / ns	Fix Value	Std. Dev	Rel %
τ ₁ 2.2908	0.0338	B ₁ 799.6371	7.7316	51.32
τ ₂ 🗌 11.1197	0.1709	B2 156.2660	4.3568	48.68
τ ₃ 🗌		B3		
τ ₄ 🗌		B ₄		
$\langle \tau \rangle_{amp}$ 3.7341	0.0534			
$\langle \tau \rangle_{int}$ 6.5888	0.1348			
		A 🗌 1.9782		
		χ^2 : 1.2024		
		χ^2 : 1.2024		

Fig. S19. The excited state lifetimes of 6w in TBCPF film.

4.2. Preparation and characterization of 6w NPs.

The compound **6w** (2.0 mg) was dissolved in THF (2 mL) followed by ultrasound for 10 min. Poloxamer 188 (60 mg) was added to the solution of **6w** in THF and the mixture was treated by ultrasound for 10 min. The resulted mixture was stirred three hours at RT. Then the solvent was removed by reduced pressure. The residue was dissolved in deionized water (2 mL) and stirred overnight at RT to drive the formation of NPs. To remove the residual THF, the nanoparticle suspensions were dialyzed by three times. The concentrations of nanoparticles were calibrated via the UV-vis spectra. Finally, the NPs solution was collected and stored at 4 $^{\circ}$ C.

Fig. S20. (a) Hydrodynamic size distribution of **6w** NPs in aqueous solution. (b) Normalized UV-Vis absorption spectra emission spectra of **6w** NPs. in H₂O (1.0 × 10^{-6} M). (b) Normalized fluorescence emission spectra of **6w** NPs. in H₂O (2.0 × 10^{-5} M). (d) Excitation-wavelength-dependent fluorescence spectra of **6w** NPs in H₂O (2.0 × 10^{-5} M).

4.3. Cell imaging experiments

Cellular Experiments: The Hela cells were cultured in 10% FBS and 1% penicillin-streptomycin-containing DMEM medium at 37 $^{\circ}$ C with 5% CO₂.

Methyl thiazolyl tetrazolium (MTT) assay: To assess the safe usability of **6w** nanoparticles for biomedical applications, the cytotoxicity experiments in Hela cells were carried out using the standard methyl thiazolyl tetrazolium (MTT) assay.

Cell viability assay: The Hela cells were seeded into 96-well plates and incubated with a standard medium overnight. The cell suspensions were treated with different concentrations of **6w** NPs in a deionized water solution (0, 1, 5, 10, 20, 40 μ M) and incubated for another 24 h. Live/dead cell staining was carried out after 20 min white light irradiation and without light irradiation, respectively.

Fig. S21. In vitro cytotoxicity of the **6w** NPs. Cell viabilities of Hela cells incubated with **6w** NPs for 24 h.

Confocal imaging experiments: The confocal imaging experiments were performed on Leica TCS SP8. The nanoparticles of product **6w** (**6w** NPs) was used as fluorescent probe.

Fig. S22. Fluorescence microscopy images of HeLa cells incubated with **6w** NPs (10 μ M) for 2 h at 37 °C. (a) Fluorescence microscope image from channel 1 at 425–500 nm (Excitation 405 nm). (b) Fluorescence microscope image from channel 1 at 500–700 nm (Excitation 405 nm). (c) Fluorescence microscope image from channel 2 at 500–700 nm (Excitation 488 nm). (d) The emission intensity ratio of (a) and (c) of HeLa cells (Image generation by Image J software). Elliptic: mark out the intercellular structure and cellular local imaging information. The scale bar is 25.0 μ m.

Fig. S23. The co-staining experiments. (a) Fluorescent image of HeLa cells cultured with **6w** NPs (10 μ M) ($\lambda_{ex} = 552 \text{ nm}$, $\lambda_{em} = 575-750 \text{ nm}$). (b) Fluorescent image of HeLa cells with Dio-Tracker Green ($\lambda_{ex} = 488 \text{ nm}$, $\lambda_{em} = 508-540 \text{ nm}$). (c) Merged image of (a) and (b). (d) The Pearson correlation coefficient r = 0.57; The scale bar is 25.0 μ m.

Fig. S24. The co-staining experiments. (a) Fluorescent image of HeLa cells cultured with **6w** NPs (10 μ M) ($\lambda_{ex} = 552 \text{ nm}$, $\lambda_{em} = 575-750 \text{ nm}$). (b) Fluorescent image of HeLa cells with Lyso-Tracker Green ($\lambda_{ex} = 488 \text{ nm}$, $\lambda_{em} = 508-540 \text{ nm}$). (c) Merged image of (a) and (b). (d) The Pearson correlation coefficient r = 0.44; The scale bar is 25.0 μ m.

5. References

[S1] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T. K. Throssell, K., Montgomery, J. A., Peralta, Jr., J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, **2016**.

- [S2] J. Bai, N. Xu, H. Wang and X. Luan. Org. Lett. 2022, 24, 5099-5104.
- [S3] J. Wang, Z. Dong, C. Yang and G. Dong. Nat. Chem. 2019, 11, 1106–1112.
- [S4] V. Sukowski, M. Borselen, S. Mathew and M. Á. Fernández-Ibáñez. Angew. Chem. Int. Ed. 2022, 61, e202201750.

6. NMR spectrum of compounds

fl (ppm)

0.000 —

90 80 f1 (ppm)

S63

S64

8,882 8,467 8,467 8,457 8,457 8,450 8,245 8,245 8,245 7,555 7,755 7,

0.000 —

-9.302 -9.302 -9.302 -9.302 -9.322 -9.322 -9.322 -0.322 -0.325 -0.355

----0.000

----0.000

----0.000

S69

$\begin{array}{c} & 0.361 \\ & 0.005$

----0.000

142.977 139.964 139.567 139.562 139.562 139.562 131.365 131.955 131.955 131.955 131.955 131.955 131.955 131.955 131.955 131.955 131.955 131.955 131.955 131.955 132.499 1227.649 1227.6

$\begin{array}{c} 0.480\\ 0.$

----0.000

100 90 f1 (ppm)

----0.000

9.746 9.746 9.8971 9.8961 9.8940 9.81512 9.8512 9.8512 9.8512 9.8512 9.8512 9.8512 9.8512 9.8512 9.8512 9.8512 9.8512 1.7759 1.7559

0000 —

0.000 —

(49,212) (49,212) (49,212) (42,9015) (42,9015) (42,9015) (42,9015) (42,9015) (42,9015) (42,9015) (42,125) (42,

S75

- 0.000

S77

000.0 —

- 162.850 - 160.402 142.767 142.767 142.767 133.5948 136.5948 135.948 135.948 135.948 135.948 131.141 132.5428 130.503 132.5428 132

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

8:126 8:876 8:876 8:845

102.538 102.538 102.089 102.089 102.538 103.219 103.219 103.219 103.219 103.219 103.219 103.215 103.215 103.215 103.215 103.215 103.215 103.215 103.215 103.215 103.25 103.68 103.25 103.68 103.25 103.25 103.25 103.55 103.68 103.55 103.68 103.55 103.68 103.55 103.68 103.55 103.68 103.55 103.68 103.55 103.68 103.55 103.68 103.55 10

0.000 —

-----0.000

142,509 142,509 142,509 142,509 140,0746 138,7102 138,710 132,808 131,119 132,808 131,119 130,757 131,119 130,757 122,819 130,757 122,819 122,819 122,828 122,828 122,582 122,

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>

100 90 fl (ppm)

S87

S88

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

148 036 147 994 140 0764 140 0764 140 0764 140 0764 140 0764 137 581 138 561 138 561 138 561 137 581 137 582 138 145 132 158 132 158 133 130 133 130 133 158 133 156 133 156 133 156 133 156 133 156 128 756 129 045 133 156 133 156 128 756 129 045 129 045 129 045 129 045 129 045 129 045 123 570 128 756 129 045 123 570 128 756 129 045 123 570 128 756 123 570 128 757 128 756 123 570 128 757 128 756 129 045 1

180 170 130 120 110 90 fl (ppm) 60 50 40 30 20 10 0 160 150 140 100 80 70

9.357 9.357 9.357 9.1014 8.127 8.127 7.839 7.756 7.756 7.756 7.756 7.757 7.757 7.757 7.757 7.757 7.756 7.756 7.756 7.756 7.756 7.756 7.756 7.757 7.757 7.757 7.757 7.756 7.756 7.757 7.777 7.756 7.7567 7.756 7.756 7.7567 7.7567 7.7567 7.7567 7.7567 7.7567 7

----0.000

S94

- 9247 - 9247 - 9247 - 9247 - 9247 - 9247 - 9247 - 17893 - 17893 - 17459 -

144.472 144.702 144.702 144.702 144.702 145.703 145.703 145.703 145.703 151.4156 151.4156 151.4156 151.4156 151.4156 151.4156 151.4156 151.4156 151.4156 151.4156 152.675 122.6757 122.6756 122.6756 122.6756 122.6756 122.6756 122.6756 122.6756 122.6756 122.6756 122.7556 122.

143,488 143,488 1443,458 1443,458 1443,458 1443,457 134,572 134,572 134,572 134,572 134,572 134,572 134,572 134,572 134,572 131,365 131,365 131,365 131,365 131,365 131,365 131,365 131,365 131,365 131,365 131,365 131,311,165 131,311,165 131,195 131,195 131,195 132,286 133,230 133,230 131,195 122,286 122,237 122,237 122,126 122,126 122,126 122,126 122,126 122,126 122,126 122,126 <tr

146 474 145 228 137 228 138 534 138 534 136 513 136 513 136 513 136 513 136 513 136 513 131 366 131 366 131 366 131 366 131 366 131 366 131 366 131 366 131 366 131 366 131 366 131 366 131 366 122 653 122 655 125 655 125 655 125 655 125 655 125 655 125 655 125 655 125 65

9.344 - 9.344 - 9.344 - 9.344 - 9.344 - 9.307 - 9.3017 - 9.3016 -

148.325 (441.657) (441.657) (441.657) (441.657) (138.247) (138.247) (138.247) (138.244) (138.244) (138.244) (138.244) (138.244) (138.244) (138.258) (131.538) (131.538) (131.538) (131.538) (131.538) (131.538) (131.538) (131.538) (132.547

0.000 —

147.497 140.508 133.339 1440.508 137.595 137.795 137.795 137.795 137.795 137.795 137.795 137.795 137.795 137.765 137.775 137.7

9.429 9.101 9.108 9.108 9.108 8.178 8.164 8.164 8.164 8.173 7.7333 7.7333 7.7333 7.7331 7.7331 7.7331 7.7331 7.7331 7.7331 7.7332 7.73333 7.7333 7.7333 7.7333 7.7333 7.7333 7.7333 7.73333 7.73333 7.73333 7.733333 7.73333 7.73333 7.7333333 7.73333 7.733333 7.733

----0.000

----0.000

0.000

169, 161 153, 656 157, 565 157, 565 147, 787 147, 787 147, 582 145, 653 145, 653 133, 564 134, 565 134, 565 134, 565 133, 564 133, 554 133, 554 133, 554 133, 554 133, 554 133, 554 133, 554 1229, 565 1229, 5

NMR spectrum of substrates 1t – u:

