Supporting Information for

Adapting Gas Fermenting Bacteria for Light-driven Domino Valorization of CO2

Lin Su^{1,2,‡}, Santiago Rodríguez-Jiménez^{1,‡}, Marion I. M. Short¹, Erwin Reisner^{1,*}

¹Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, U.K.

² Present address: School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.

[‡]These authors contributed equally to this work.

*E-mail: reisner@ch.cam.ac.uk

Supplementary Notes

Supplementary Note 1 regarding isotopic labelling experiments using ¹³C-syngas. The ¹³C-coupled proton constants for acetate are ¹*J*_{CH} = 127.4 and ²*J*_{CH} = 6.0 Hz (Figure 2A)¹, and for ethanol are ¹*J*_{CH} = 143.0 and ²*J*_{CH} = 2.5 Hz (Figure S6)². Analysis of the qNMR spectra (Figure S7) for *Cl*_{adapt} showed distributions for acetate of 80% ¹³CH₃-¹³COO⁻, 4% ¹³CH₃-¹²COO⁻, 9% ¹²CH₃-¹³COO⁻, and 7% ¹²CH₃-¹²COO⁻ (Tables S2 and S3). For ethanol, the distributions were 90% ¹³CH₃-¹³CH₂OH and 10% ¹²CH₃-¹³CH₂OH (Figure S7, Tables S4 and S5). In contrast, *Cl*_{wt} exhibited 68% ¹³CH₃-¹³COO⁻, 1.6% ¹³CH₃-¹²COO⁻, 1.8% ¹²CH₃-¹³COO⁻, and 29% ¹²CH₃-¹²COO⁻, with no ethanol.

Supplementary Note 2 regarding isotopic labelling experiments using ¹³C-formate and ¹²Csyngas. OD₆₀₀ measurements revealed that Cl_{adapt} exhibited significantly faster growth than Cl_{wt} , achieving a cell population five times greater within four days (**Figure 2B**), consistent with previous observations of accelerated growth on syngas. Cl_{adapt} consumed ~25 mM of ¹³C-formate within two days, while Cl_{wt} utilized only ~15 mM over four days, showing a slower initial rate likely due to downstream bottlenecks (e.g., formate to acetyl-CoA conversion) (**Figure 2C**). After four days, Cl_{adapt} produced 3.86 ± 0.11 mM of ¹³C-acetate, compared to 0.66 ± 0.06 mM by Cl_{wt} , indicating a 6-fold increase in acetate production by the adapted strain (**Figure 2D**). This result underscores Cl_{adapt} 's enhanced efficiency in utilizing formate for such as growth and acetate production, likely reflecting optimized pathway dynamics.

Analysis of ¹²C-syngas conversion showed both ¹²C-formate and ¹²C-acetate production during growth (Figure S9B, C). Although Cl_{wt} initially produced ¹²C-formate at a slower rate (1.5 mM day⁻¹ during the first 2 days), its production rates eventually increased to 6 mM day⁻¹ between day 2 and day 4, matching the rate observed in Cl_{adapt} (6 mM day⁻¹ in first 2 days). This suggests that formate synthesis from syngas is not the limiting step in the CI_{wt} . After four days, CI_{adapt} produced 23.63 ± 0.11 mM of ¹²C-acetate, compared to 3.34 \pm 0.14 mM by Cl_{wt}, indicating a 7-fold increase (**Figure 2D**). The Cl_{adapt} strain also showed a 6-fold increase in utilizing ¹³C-formate, indicating a more efficient overall turnover in the pathway. qNMR analysis revealed that Clwt predominantly synthesized ¹³C-acetate as ¹³CH₃-¹²COO⁻ (Figure S10), while Cl_{adapt} produced both ¹³CH₃-¹²COO⁻ and ¹²CH₃-¹³COO⁻, suggesting that ¹³C-formate might be converted back to ¹³CO₂ or ¹³CO, contributing to the carbonyl branch. These findings are consistent with the earlier observations of $^{12}C/^{13}C$ distribution when using ^{13}C -syngas. The rapid decrease in ^{12}C -formate in CI_{adapt} between days 2 and 3, matching the depletion of ¹³C-formate by day 2, further indicates efficient substrate conversion in the adapted strain. Overall, these results demonstrate that Cladapt has a more robust and efficient Wood-Ljungdahl pathway compared to Cl_{wt}, particularly in the conversion of formate, supporting its enhanced growth and C₂ product generation on syngas.

Supplementary Note 3 regarding sequencing.

Genomic mutations in Cladapt and Clwt

We conducted whole genome sequencing (WGS) to compare CI_{adapt} with CI_{wt} , aiming to link the observed phenotypic variations to genomic alterations relative to the reference sequence (NC_014328.1) listed in National Center for Biotechnology Information (NCBI) database. The analysis revealed a total of 41 mutations, with 8 unique to CI_{adapt} , associated with 6 genes and 2

non-coding regions (**Table S6, S7, Figure S11**); conversely, Cl_{wt} exhibited 17 unique mutations impacting 2 genes, alongside 16 mutations common to both strains, affecting 7 genes (**Table S6**).

Among the six gene mutations (**Table S7**) identified in *Cl*_{adapt}, two are classified as silent mutations, which are not expected to alter the amino acid sequence or protein structure but may still influence protein synthesis rate, folding, and function due to codon usage differences. While these two genes are not part of the core metabolic pathways such as the Wood-Ljungdahl pathway, they may still have indirect effects on bacterial growth and metabolism. Specifically, CLJU RS04595, a sugarspecific transcriptional regulator, could influence carbohydrate uptake and regulatory networks that impact growth under certain conditions. Likewise, CLJU RS09515, which is linked to phenazine biosynthesis, might modulate redox balance or stress responses, thereby affecting metabolic efficiency. However, further functional studies are needed to clarify the precise roles of these genes in Clostridium ljungdahlii's growth and central metabolism during syngas fermentation. Of the remaining mutations, one affects gene CIJU RS00445, which encodes the deoxyribose-phosphate aldolase. This enzyme catalyzes the conversion of deoxyribose-phosphate aldolase into glyceraldehyde 3-phosphate and glyoxylate, and serves as a crucial link between nucleic acid and carbohvdrate metabolism^{3,4}. Another mutation occurred in the grpE gene, which acts as a nucleotide exchange factor essential for the regulation of the protein folding machinery and the heat shock response⁵. Additionally, a mutation was found in *CIJU_RS06845*, associated with an oligopeptide transporter. This transporter is not only pivotal for nutrient uptake but also plays a role in the internalization of signaling peptides involved in guorum-sensing pathways⁶. Lastly, a mutation in CIJU RS11365 affects a molybdenum-iron protein of nitrogenase, responsible for catalyzing the process of nitrogen fixation, a key biochemical reaction for nitrogen assimilation.⁷

In Cl_{wt} , we identified 17 unique mutations affecting two genes (**Table S7**). One of these genes, $CLJU_RS07315$, encodes the 16S ribosomal RNA. While the 16S rRNA gene is typically conserved, mutations can occur due to environmental pressures. BLAST analysis (**Figure S14**) indicates that Cl_{wt} aligns closely with *Clostridium ljungdahlii* and its relative *Clostridium autoethanogenum*, suggesting that contamination is unlikely. The second gene $CLJU_RS14955$, which has been found to have multiple changes with both Cl_{wt} and Cl_{adapt} strains (**Table S6**), encodes a protein containing a Lamin Tail Domain (LTD). LTDs are conserved globular regions found in lamins, which are structural proteins of the nuclear lamina involved in maintaining nuclear integrity and regulating various nuclear functions. However, the specific function of this LTD-containing protein in *Clostridium ljungdahlii* remains unclear.

While clear evidence linking these mutations directly to the enhanced growth rate of the adapted strain Cl_{adapt} under syngas fermentation and its increased production of C₂ compounds is lacking, the identified genomic alterations support the adaptation process of *Clostridium ljungdahlii* to syngas across 20 transfers. These changes contribute to understanding the genetic underpinnings of the observed phenotypic differences.

Supplementary Note 4 regarding photocatalytic batch mode with the inorganic-bacterial system and exclusion control experiment without solar light irradiation. In batch mode, irradiated TiO₂|CotpyP produced 0.9 ± 0.4 mmol CO g_{TiO2}^{-1} and 3.3 ± 1.1 mmol H₂ g_{TiO2}^{-1} after 24 h (Table 10). This activity corresponds to a CotpyP-based turnover number (TON) for CO of 43 ± 18. After connecting the photoreactor with the bioreactor for 6 days, the bacteria consumed CO and H₂ down to 0.6 ± 0.3 mmol CO g_{TiO2}^{-1} and 0.9 ± 1.4 mmol H₂ g_{TiO2}^{-1} (Table S9), respectively.

This resulted in an increase of OD_{600} , from 0.10 ± 0.01 to 0.61 ± 0.29 , and a decrease of acetate concentration from 1.45 ± 1.05 mM to 0.43 ± 0.55 mM (**Figure S12**). The concomitant consumption of syngas and the increase in biomass are in alignment with our results (**Figure 1**). The decrease in acetate over 6 days indicates that under our experimental conditions the bacterial cultures prioritized biomass production over C₂ products. In all cases, CO₂ containing 2% CH₄ was used as the internal gas chromatography standard, and the generated gaseous products, H₂ and CO, were monitored daily by analyzing the headspace using gas chromatography. The production of acetate and OD_{600} were monitored daily using qNMR and UV-Vis spectroscopy, respectively.

Under dark conditions, TiO₂|**CotpyP** was unable to produce syngas. Nonetheless, bacteria were still able to increase their biomass over 6 days, reaching a ΔOD_{600} of 0.36 ± 0.03 by depleting all residual acetate present in solution (Δ [acetate] of -0.27 ± 0.04 mM) from the parental culture and cellular carbon reserves within the cells (**Figure S13**).

Supporting Information Figures

Figure S1. Depicts the schematic of the process of recovering strains from -80 °C stocks and testing under syngas growth under batch and continuous flow. For a fair comparison as the wildtype strain would not be able to grow with syngas directly, both Cl_{wt} and Cl_{adapt} strains were first recovered from -80 °C stocks in ATCC Medium 1754 containing fructose, supplemented with a 20% CO₂ and 80% N₂ gas mixture. Subsequently, the strains were transferred to ATCC Medium 1754 (13 mL) with 5.00 g L⁻¹ fructose and syngas (25% CO / 10% H₂ / 65% CO₂) in the headspace (112 mL), followed by a final transfer to ATCC Medium 1754 without fructose, exclusively utilizing syngas in the headspace. After these three-transfer recovery growth, cultures were subjected to growth experiments.

Figure S2. Picture of the scaled-up photoreactor setup during batch mode, where the photoreactor, irradiated for 24 h, is connected to the bioreactor for 6 days.

Figure S3. Fructose concentrations in the ATCC Medium 1754 during *C. ljungdahlii* adaptation growth. The initial concentration was estimated based on the dilution ratio from fructose stocks and residual fructose in the inoculum from previous growth, representing the level at inoculation onset; the final concentration was quantified using NMR at the end of the incubation period.

Figure S4. OD₆₀₀ variations during syngas adaptation across successive transfer growths.

Figure S6. The growth rate calculations with flitting results. CI_{wt} growth under (A) batch syngas mode and (B) flow syngas mode. CI_{adapt} growth under (C) batch syngas mode and (D) flow syngas mode. The growth rate (μ) and coefficient of determination (R²) are noted in each panel.

Figure S7. ¹H NMR spectra of acetate produced by wildtype strain CI_{wt} (A) and adapted strain CI_{adapt} (B). These spectra resulted from fermentation of a ¹³CO₂/¹³CO/H₂ (65:25:10) gas mixture. Peak fitting was conducted using the Multiplet Analysis and Line Fitting functions in Mnova (version 15.0, Mestrelab).

Figure S8. ¹H NMR spectra of ethanol's CH₂ peaks produced by the adapted strain CI_{adapt} . Panel (A) displays peaks between 3.86 and 3.81 ppm, and panel (B) shows peaks between 3.51 and 3.45 ppm. Ethanol's CH₃ peaks are not shown, as they could not be reliably distinguished and accurately peak-fitted. These spectra were obtained from fermentation using a ¹³CO₂/¹³CO/H₂ (65:25:10) gas mixture. Peak fitting was conducted using the Multiplet Analysis and Line Fitting functions in Mnova (version 15.0, Mestrelab).

Figure S9. Bacteria growth (A), and resultant production of (B) 12 C formate, (C) 12 C acetate, when cultivated strains on 13 C formate alongside 12 C syngas.

Figure S10. ¹H NMR spectrum of acetate produced by wildtype strain CI_{wt} and adapted strain CI_{adapt} . This spectrum results from fermentation of ¹³C formate with a ¹²CO₂/¹²CO/H₂ (65:25:10) gas mixture.

Figure S11. Visual Comparison of Genomic Variations in *Clostridium ljungdahlii* Strains Relative to the NCBI Reference Sequence. Mutations unique to the wildtype strain Cl_{wt} are marked in blue, those unique to the adapted strain Cl_{adapt} in red, and mutations shared by both strains in grey.

Figure S12. Performance of the Adapted Strain Coupled with Light-Driven Syngas Generation Systems under batch conditions. This figure shows the acetate concentration and optical density (OD_{600}) obtained when connecting in batch mode the bacteria cultures with the photoreactor containing TiO₂|**CotpyP** and 0.1 M TEOA over 6 days. CO₂ containing 2% CH₄ as internal standard was used to purge the photoreactor before starting solar light irradiation.

Figure S13. Performance of the Adapted Strain Coupled with the Light-Driven Syngas Generation System under Flow Conditions but No Solar Light Irradiation. This figure shows the acetate concentration and optical density (OD_{600}) obtained when connecting under flow the CI_{adapt} strain cultures with the photoreactor containing TiO₂|**CotpyP** and 0.1 M TEOA over 6 days and with no solar light irradiation. CO₂ containing 2% CH₄ as internal standard was used to purge the whole setup throughout the experiments.

Figure S14. Distance tree of BLAST results for the mutated 16S rRNA sequence from Cl_{wt} , compared with closely related strains. This tree was generated using BLAST pairwise alignments. Query_3501555 is the mutated 16S rRNA sequence we submitted for BLAST.

Supporting Information Tables

Table S1. Growth rate calculated during syngas growth. The R^2 reflects the calculated fitting error when processing the growth rate analysis. All errors represent the mean \pm SD (n = 3 biological independent samples).

Strain	Syngas mode	Growth rate (day ⁻¹)	R ²
Cl wt	batch	0.26 ± 0.01	0.96 ± 0.04
	flow	0.23 ± 0.22	0.88 ± 0.09
Cl adapt	batch	0.38 ± 0.02	0.93 ± 0.02
•	flow	0.96 ± 0.11	0.92 ± 0.07

Table S2. Detailed Summary of Acetate Peaks from ¹H NMR Spectra (Figure S7). This table lists the isotopic composition, chemical shift, and integrated areas of each peak. Analysis was performed using the Multiplet Analysis in Mnova (version 15.0, Mestrelab).

Strain	Specific isotope	Peak's chemical shift	Integrated
	molecule	(ppm)	Area (%)
	¹³ CH ₃ - ¹³ COO ⁻	2.09	17.0
	¹³ CH ₃ - ¹² COO ⁻	2.08	1.1
	¹³ CH ₃ - ¹³ COO⁻	2.07	16.8
	¹² CH ₃ - ¹³ COO⁻	1.93	1.0
Cl wt	¹² CH ₃ - ¹² COO ⁻	1.92	28.7
	¹² CH ₃ - ¹³ COO⁻	1.92	0.8
	¹³ CH ₃ - ¹³ COO⁻	1.77	17.2
	¹³ CH ₃ - ¹² COO⁻	1.76	0.5
	¹³ CH ₃ - ¹³ COO⁻	1.76	16.9
	¹³ CH ₃ - ¹³ COO ⁻	2.11	20.4
	¹³ CH ₃ - ¹² COO ⁻	2.11	2.2
	¹³ CH ₃ - ¹³ COO⁻	2.10	19.6
	¹² CH ₃ - ¹³ COO⁻	1.95	4.4
Cl adapt	¹² CH ₃ - ¹² COO⁻	1.95	7.4
	¹² CH ₃ - ¹³ COO⁻	1.94	4.2
	¹³ CH ₃ - ¹³ COO⁻	1.79	20.2
	¹³ CH ₃ - ¹² COO⁻	1.79	2.2
	¹³ CH ₃ - ¹³ COO⁻	1.78	19.5

Table S3. Summary of Area Measurements for each acetate isotope and the ${}^{13}C/{}^{12}C$ Ratio. This table presents a detailed analysis of the area contributions from different isotopes, along with the calculated ${}^{13}C/{}^{12}C$ ratios. For acetate species ${}^{13}CH_3$ - ${}^{12}COO^-$ and ${}^{12}CH_3$ - ${}^{13}COO^-$, which contain mixed ${}^{12}C$ and ${}^{13}C$ isotopes, the quantities were divided equally when calculating the ${}^{13}C/{}^{12}C$ ratio.

Strain	Specific isotope molecule	Area (%) per isotope	Specific carbon isotopes	¹³ C/ ¹² C Ratio
Cl _{wt}	¹³ CH ₃ - ¹³ COO ⁻	68	¹³ C	
	¹³ CH ₃ - ¹² COO ⁻	1.6	13/12 C	70.30
	¹² CH ₃ - ¹³ COO ⁻	1.8	_ ~ 0	70.30
	¹² CH ₃ - ¹² COO ⁻	29	¹² C	
Cl adapt	¹³ CH ₃ - ¹³ COO ⁻	80	¹³ C	
	¹³ CH ₃ - ¹² COO ⁻	4.4	13/12 C	96.14
	¹² CH ₃ - ¹³ COO ⁻	8.6	— - U	00.14
	¹² CH ₃ - ¹² COO ⁻	7.4	¹² C	

Strain	Specific isotope molecule	Peak's chemical shift (ppm)	Integrated Area (%)
	¹³ CH ₃ - ¹³ CH ₂ OH	3.87	3.2
	¹² CH ₃ - ¹³ CH ₂ OH	3 86	0. <u>0</u>
	¹³ CH ₃ - ¹³ CH ₂ OH	3.86	3.1
	¹³ CH ₃ - ¹³ CH ₂ OH	3.85	8.2
	¹² CH ₃ - ¹³ CH ₂ OH	3.85	1.3
	¹³ CH ₃ - ¹³ CH ₂ OH	3.84	7.7
	¹³ CH ₃ - ¹³ CH ₂ OH	3.83	7.8
	¹² CH ₃ - ¹³ CH ₂ OH	3.83	1.3
	¹³ CH ₃ - ¹³ CH ₂ OH	3.83	8.2
	¹³ CH ₃ - ¹³ CH ₂ OH	3.81	3.0
	¹² CH ₃ - ¹³ CH ₂ OH	3.81	0.9ª
~	¹³ CH ₃ - ¹³ CH ₂ OH	3.81	6.2
adapt	¹³ CH ₃ - ¹³ CH ₂ OH	3.51	3.2
	¹² CH ₃ - ¹³ CH ₂ OH	3.51	0.9 ^b
	¹³ CH ₃ - ¹³ CH ₂ OH	3.50	2.9
	¹³ CH ₃ - ¹³ CH ₂ OH	3.49	8.0
	¹² CH ₃ - ¹³ CH ₂ OH	3.49	1.0
	¹³ CH ₃ - ¹³ CH ₂ OH	3.49	7.9
	¹³ CH ₃ - ¹³ CH ₂ OH	3.47	7.5
	¹² CH ₃ - ¹³ CH ₂ OH	3.47	1.4
	¹³ CH ₃ - ¹³ CH ₂ OH	3.47	8.1
	¹³ CH ₃ - ¹³ CH ₂ OH	3.46	3.3
	¹² CH ₃ - ¹³ CH ₂ OH	3.45	0.9
		3 4 5	3.1

Table S4. Detailed Summary of Ethanol Peaks from ¹H NMR Spectra (Figure S8). This table lists the isotopic composition, chemical shift, and integrated areas of each peak. Analysis was performed using the Multiplet Analysis in Mnova (version 15.0, Mestrelab).

NB: Multiplet Analysis in Mnova was not able to peak fit ${}^{12}CH_3$ - ${}^{13}CH_2OH$ peaks at 3.86 and 3.81 ppm in Figure S8A and 3.51 ppm in Figure S8B. ^a The integrated areas of ${}^{12}CH_3$ - ${}^{13}CH_2OH$ peaks at 3.86 and 3.81 ppm in Figure S8A were estimated using the same relative integration area found between peaks at 3.45, 3.47 and 3.49 ppm in Figure S8B. ^b The same integrated area of ${}^{12}CH_3$ - ${}^{13}CH_2OH$ peak at 3.45 ppm was used for 3.51 ppm, assuming both peaks have the same integrated area.

Table S5. Summary of Area Measurements for each ethanol isotope and the ${}^{13}C/{}^{12}C$ Ratio. This table presents a detailed analysis of the area contributions from different isotopes, along with the calculated ${}^{13}C/{}^{12}C$ ratios. For ethanol species ${}^{12}CH_3 - {}^{13}CH_2OH$, which contains mixed ${}^{12}C$ and ${}^{13}C$ isotopes, the quantities were divided equally when calculating the ${}^{13}C/{}^{12}C$ ratio.

Strain	Specific isotope molecule	Area (%) per isotope	Specific carbon isotopes	¹³ C/ ¹² C Ratio
<u> </u>	¹² CH ₃ - ¹³ CH ₂ OH	91.3	¹³ C	06:4
Cladapt	¹³ CH ₃ - ¹³ CH ₂ OH	8.7	^{13/12} C	90.4

Position and Mutation	REF	ALT	Gene	Sample
85591	С	Т	CLJU_RS00445	Cl adapt
883819	G	A	grpE	<i>Cl</i> _{adapt}
1040146	С	Т	CLJU_RS04595	Cl adapt
1430390	G	GGCAGGAGCATTA	CLJU_RS06530	Shared
1430479	С	A	CLJU_RS06530	Shared
1496011	G	A	CLJU_RS06845	Cl adapt
1614559	G	A	CLJU_RS07315	Clwt
1614561	С	Т	CLJU_RS07315	Cl _{wt}
1619490	СТ	С	rrf	Shared
1966227	G	Т	deoC	Shared
2109343	С	Т	CLJU_RS09515	Cl adapt
2235661	Т	G	CLJU_RS10055	Shared
2533491	С	Т	CLJU_RS11365	Cl adapt
2698277	Т	ТА	CLJU_RS22935	Shared
3079839	Т	С	non-coding	Cl adapt
3352167	Т	С	CLJU_RS14955	Cl _{wt}
3352220	С	Т	CLJU_RS14955	<i>Cl</i> _{wt}
3352422	Т	С	CLJU_RS14955	Cl _{wt}
3352434	С	Т	CLJU_RS14955	<i>Cl</i> _{wt}
3352475	С	Т	CLJU_RS14955	<i>Cl</i> _{wt}
3352548	С	Т	CLJU_RS14955	<i>Cl</i> _{wt}
3352599	С	Т	CLJU_RS14955	Shared
3352602	Т	С	CLJU_RS14955	Shared
3352611	С	Т	CLJU_RS14955	Shared
3352677	С	Т	CLJU_RS14955	Shared
3352736	G	A	CLJU_RS14955	Shared
3352780	Т	G	CLJU_RS14955	Shared
3352838	А	С	CLJU_RS14955	<i>Cl</i> _{wt}
3352950	Т	С	CLJU_RS14955	<i>Cl</i> _{wt}
3352953	Т	С	CLJU_RS14955	<i>Cl</i> _{wt}
3353157	Т	A	CLJU_RS14955	<i>Cl</i> _{wt}
3353159	G	С	CLJU_RS14955	<i>Cl</i> _{wt}
3353160	Т	A	CLJU_RS14955	<i>Cl</i> _{wt}
3353163	Т	С	CLJU_RS14955	<i>Cl</i> _{wt}
3353230	А	G	CLJU_RS14955	Shared
3353348	С	A	CLJU_RS14955	Clwt
3353396	С	Т	CLJU_RS14955	Shared
3353651	Т	С	CLJU_RS14955	Cl _{wt}

Table S6. Mutations found in CI_{adapt} and CI_{wt} strains, relative to the NCBI reference sequence (NC_014328.1).

3353655	А	G	CLJU_RS14955	Shared
3867526	С	А	non-coding	Cl adapt
4428830	А	С	CLJU_RS20060	Shared

Table S7.	'. Summary of Functional Mutations in Genes Differentiating the Adapted ($Cl_{ ext{adapt}}$) and V	Vild-
Type (Clw	wt) Strains of Clostridium ljungdahlii.	

Strain	Position and Mutation	Amino Acid Changes	Gene	Gene product functions ^a		
	85591, C → T	Ala \rightarrow Val	CLJU_RS00445	Deoxyribose-phosphate aldolase		
	883819, $G \rightarrow A$	$Glu \to Lys$	grpE	Nucleotide exchange factor		
Cl adapt	1040146, C → T	silent mutations	CLJU_RS04595	Sugar-specific transcriptional regulator		
	1496011, G → A	$Gly \to Asp$	CLJU_RS06845	Oligopeptide transporter		
	2109343, C → T	silent mutations	CLJU_RS09515	Phenazine biosynthesis		
	2533491, C → T	$Thr \to lle$	CLJU_RS11365	Nitrogenase molybdenum iron protein		
	3079839, T → C	-	non-coding	unknown		
	3867526, C → A	-	non-coding	unknown		
	1614559, G → A	-	CI III DS07215	16S ribosomal RNA		
	1614561, C → T	-	0230_1(30/373			
	3352167, T → C	silent mutations				
	3352220, C \rightarrow T	$Asp\toAsn$				
	3352422, T → C	silent mutations				
	3352434, $C \rightarrow T$	silent mutations				
	3352475, C → T	$Asp\toAsn$				
	3352548, C → T	silent mutations				
<i>Cl</i> wt	3352838, $A \rightarrow C$	$Ser\toAla$		LTD domoin containing		
	3352950, T → C	silent mutations	CLJU_RS14955	protein, function unknown		
	3352953, T → C	silent mutations		·····		
	3353157, T → A	$Pro \to Ala$				
	3353159, G → C	$Pro \to Ala$				
	3353160, T → A	Lys \rightarrow Asn				
	3353163, T → C	silent mutations]			
	3353348, $C \rightarrow A$	Ala \rightarrow Ser				
	3353651, T→ C	$IIe \rightarrow Val$				

^a The functions of the gene products were inferred by analyzing structural similarities in the AlphaFold Protein Structure Database, with clustering performed using Foldseek Cluster.⁸

Co-catalyst (µM)	Photocatalyst (mg)ª	Sacrificial donor (M)	CO ₂ flow rate (ml min ⁻¹)	CO ₂ -derived products	Activity (mmol g ⁻¹ min ⁻¹)	Accumulated product (mmol) / time (h)	Yield (mmol g _{photocatalyst} ⁻¹)	Product selectivity (%)	Ref.
Co(tppS3N1) (10)	ZnSe-BF₄ (0.5 µM)ª	Ascorbic acid (0.1)	4	CO	0.1	18.6 x 10 ^{−3} (17)	79.7	41	9
Cu ₂ O	Reduced TiO ₂ (40)	H ₂ O	1.2	CH ₄	1.3 x 10 ⁻⁶	18.5 x 10 ⁻⁶ (6)	462 x 10 ^{−6}		10
Pt	TiO ₂ P25 on a GDE (25)	H ₂ O	10	CO and CH₄	5.4 and 0.4 x 10 ⁻³	0.10 (12)	3.9 and 0.3	93, 7	11
-	TiO ₂ P25 (70)	H ₂ O	5	CH ₄	5 x 10 ⁻⁶	1.4 x 10 ⁻⁴ (6.8)	2.0 x 10 ⁻³	100	12
-	Bi ₂ WO ₆ (15)	H ₂ O	0.4	СО	1.3 x 10 ^{−5}	1.2 x 10 ⁻² (4)	3.1 x 10 ^{−3}	99	13
Cu	TiO ₂	H ₂ O	3	CH₃OH	6.9 x 10 ⁻⁶	-	4.2 x 10 ⁻⁴	100	14
Cu-Fe	TiO ₂ P25	H ₂ O	5	C_2H_4 and CH_4	9.7 and 15.2 x 10 ⁻⁶	-	2.3 and 3.6 x 10 ⁻³	39, 61	15
NiO	InTaO₄ (125)	H ₂ O		CH ₃ OH and acetaldehyde	2.7 and 5.0 x 10 ⁻⁶	1.2 and 2.3 x 10 ⁻⁴ (6)	9.6 and 18.0 x 10 ⁻⁷	35, 65	16
CotpyP (7.3)	TiO ₂ P25 (365)	TEOA (0.1)	30	CO	1.5 x 10 ^{−6}	1.3 (144)	3.5	29	This work

 Table S8.
 Summary of reported photocatalytic flow systems for CO₂ reduction.

^a Unit is milligram, unless otherwise stated.

Table S9. Summary of photocatalytic syngas generation by TiO₂|CotpyP hybrid in CO₂-saturated 0.1 M TEOA aqueous solutions under batch and flow modes.

Experiment mode	Yield _{CO} / µmol CO g _{TiO2} ⁻¹	Yield _{H2} / µmol H ₂ g _{TiO2} ⁻¹	TON _{co}
Batch ^a (before bioreactor)	899 ± 377	3286 ± 1056	43 ± 18
Batch ^a (after bioreactor)	602 ± 292	869 ± 1421 ^d	29 ± 14
Experiment mode	Activity CO / nmol CO g_{TiO2}^{-1} min ⁻¹	Activity H_2 / nmo $H_2 g_{TiO2}^{-1} min^{-1}$	bl
Flowb	148 ± 97	367 ± 606 ^e	
	n. d.°	n. d.º	

^a Batch experiments = 24 h (see **Figure S15**); ^b in all flow mode experiments, CO₂ containing 2% CH₄ was continuously flowed at 30 mL min⁻¹; ^c control experiment without light. Turnover number (TON) is calculated by dividing mol of gaseous product by mol of catalyst. ^d The average of H₂ yield obtained from batch experiments after six days of connection to a bioreactor (869.4 ± 1420.8 µmol H₂ g_{TiO2}⁻¹) was lower than its standard deviation because H₂ was completely consumed in two of the experiments, while in a third experiment, a significant amount of H₂ remained. This led to an average value lower than its standard deviation. ^e The average rate values are lower than their standard deviation due to variations in the measured H₂ gas production. Specifically, one of the experiments generated significantly more H₂ than the others, resulting in a lower average value and a much larger standard deviation (367 ± 606 nmol H₂ g_{TiO2}⁻¹ min⁻¹).

References

1 J. M. A. Al-Rawi, J. A. Elvidge, J. R. Jones and E. A. Evans, *J. Chem. Soc., Perkin Trans.* 2, 1975, **0**, 449–452.

2 B. W. Koenig and K. Gawrisch, J. Phys. Chem. B, 2005, 109, 7540–7547.

3 H. Liu, J. Zhang, J. Yuan, X. Jiang, L. Jiang, G. Zhao, D. Huang and B. Liu, *Biotechnol. Biofuels*, 2019, **12**, 101.

4 J. P. Petzel, M. C. McElwain, D. DeSantis, J. Manolukas, M. V. Williams, P. A. Hartman, M. J. Allison and J. D. Pollack, *Arch. Microbiol.*, 1989, **152**, 309–316.

5 C. Harrison, Cell Stress Chaperones, 2003, 8, 218–224.

6 R. Gardan, C. Besset, A. Guillot, C. Gitton and V. Monnet, J. Bacteriol., 2009, 191, 4647–4655.

7 M. S. Weininger and L. E. Mortenson, Proc. Natl. Acad. Sci., 1982, 79, 378–380.

8 I. Barrio-Hernandez, J. Yeo, J. Jänes, M. Mirdita, C. L. M. Gilchrist, T. Wein, M. Varadi, S. Velankar, P. Beltrao and M. Steinegger, *Nature*, 2023, **622**, 637–645.

9 C. D. Sahm, G. M. Ucoski, S. Roy and E. Reisner, ACS Catal., 2021, 11, 11266–11277.

10 S. Ali, J. Lee, H. Kim, Y. Hwang, A. Razzaq, J.-W. Jung, C.-H. Cho and S.-I. In, *Appl. Catal. B: Environ.*, 2020, **279**, 119344.

11 H. Jung, C. Kim, H.-W. Yoo, J. You, J. S. Kim, A. Jamal, I. Gereige, J. W. Ager and H.-T. Jung, *Energy Environ. Sci.*, 2023, **16**, 2869–2878.

12 M. Dilla, R. Schlögl and J. Strunk, *ChemCatChem*, 2017, **9**, 696–704.

13 C. S. Ribeiro, J. Z. Y. Tan, M. M. Maroto-Valer and M. A. Lansarin, *J. Environ. Chem. Eng.*, 2021, **9**, 105097.

14 J. C. S. Wu, H.-M. Lin and C.-L. Lai, Appl. Catal. A: Gen., 2005, 296, 194–200.

15 T.-V. Nguyen and J. C. S. Wu, Appl. Catal. A: Gen., 2008, 335, 112–120.

16 P.-Y. Liou, S.-C. Chen, J. C. S. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer and R. Linforth, *Energy Environ. Sci.*, 2011, **4**, 1487–1494.

End of ESI