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1. Visual transformers 
We introduce MoleCLIP, an image-based molecular representation 

learning framework designed to produce robust semantic embeddings for 

molecular inputs. The primary aim of MoleCLIP is to create a powerful 

molecular image encoder that can be finetuned for various molecular 

property prediction tasks, enhancing the accuracy and eCiciency of these 

predictions. MoleCLIP relies on OpenAI's CLIP,1 a foundation model that 

oCers a solid starting point for MoleCLIP’s continued pretraining phase on 

molecular images.  

At the core of MoleCLIP's architecture is a vision transformer (ViT). 

Transformers were originally developed for text processing, and ViT adapts 

the transformer attention mechanism to images.2 The ViT workflow 

involves breaking down an image into a sequence of patches that serve as 

"tokens", similar to a word in natural language processing. This allows the 

model to learn relationships between diCerent parts of the image and 

extract meaningful features from the images. Figure S1 presents the 

conceptual architecture of ViT. For MoleCLIP, we employ the B/16 variant 

of ViT, which processes images with dimensions of 224x224 pixels, utilizing 

a patch size of 16x16 pixels, and includes 12 transformer encoder layers. 

 

Figure S1 –  ViT architecture overview, following Dosovitskiy el al. 2 
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2. Pretraining 
The pretraining of MoleCLIP was performed on molecular image inputs 

generated by RDKit.3 ChEMBL-25, comprised of 1,870,421 bioactive drug-

like molecules, was used as an unlabeled dataset for pretraining (see (2) in 

data availability).4 The molecules were converted from SMILES5 to images 

before training using RDKit. To enhance the model's ability to embed 

molecules eCectively, two distinct pretraining tasks were combined during 

the pretraining phase: supervised structural classification and self-

supervised contrastive learning.  

a. Structural classification task and loss 
Following ImageMol,6 we incorporated a structural classification 

pretraining task to enable the encoder to diCerentiate between various 

structural groups within the embedding space. This was achieved by 

performing structural clustering (see below), assigning pseudo-labels to 

each molecule, and training the model to predict these labels from the 

embeddings. 

i. K-means structural clustering 

We employed the K-means algorithm for the clustering task using 166-bit 

MACCS (Molecular ACCess System) fingerprints7 extracted using RDKit.3 

Fingerprints are a method for structural molecular encoding by bit 

representation, specifying the presence or absence of functional groups 

within a molecule. The bit vector format provides a compact binary 

representation, making fingerprints useful for cheminformatics tasks such 

as clustering and molecular similarity evaluation. 

Clustering was performed based on the 166-bit representation of the 

molecules. We used Scikit-learn8 mini-batch K-means algorithm with a 

batch size of 20,000. To determine the optimal number of clusters (K), we 

tested K values ranging from 3 to 3000. The optimal K was identified on the 

inertia vs. K curve using the Kneedle package for knee-point detection.9 The 

knee-point curve for the ChEMBL-25 dataset, shown in Figure S2, indicated 
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an optimal K value of 300. Consequently, we set clustering labels for our 

primary model at K = 300 and K = 3000. 

Figure S2 –  k-means knee plot for ChEMBL-25 

ii. Structural classification training 

For the supervised classification task, pseudo-labels were assigned based 

on the clusters. As depicted in Fig. 1b of the main article, a linear head was 

added atop the embedding layer to predict the class. The training involved 

calculating cross-entropy loss between the model’s predictions and the 

assigned pseudo-labels. The structural classification loss for a batch of 

samples is given by: 

ℒ!" =	$$𝑦#,% 	𝑙𝑜𝑔
exp	(𝑥#.%)

∑ exp	(𝑥#,')"
'()

"

%()
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Where 𝑁 is the batch size, 𝐶 is the number of classes, 𝑥 represents the 

predicted values, and 𝑦 is the pseudo label. 
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b. Contrastive task and loss 
In addition to structural classification, a contrastive task was incorporated, 

inspired by the SimCLR - a simple framework for contrastive learning of 

visual representations.10 In this task, unlabeled images were augmented to 

create pairs of original and augmented images. The model then encoded 

both sets, training to minimize the embedding distance between similar 

images while maximizing the distance between diCerent images. We 

applied this method to molecular images, leveraging CLIP's encoder and 

workflow.1 The addition of contrastive learning aims to enhance the 

model's ability to interpret molecular images and distinguish between 

molecules based on subtle visual diCerences. 

i. Image augmentations through generation 

Contrastive learning was performed between batches of default images 

and their corresponding augmented versions. Since all images were 

generated before pretraining, each image was paired with only one 

augmented version. This diCers from the augmentation applied during 

training (see Section S-c-ii), where random augmentations were 

introduced in each training iteration. The augmentation process involved 

randomizing the following RDKit molecular image generation parameters: 

• Font type (38 diCerent types) 

• Font size (14-24) 

• Bond length (10-50 pixels) 

• Bond line width (1-5 pixels) 

• Multiple bond oCset (0.1-0.4) 

• Random rotation 

We note that the atom labels were kept vertical during the rotation 

augmentation. This diCers from the rotation during training (described in 

Table S1), where the entire image is rotated as a unit, including the font 

labels. Figure S3 presents qualitative examples of the various generation-

level augmentations. 
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Figure S3 – Generation-level augmentations 

ii. Contrastive training  

During training, the batches were designed to include molecules from 

diCerent and similar structural classes. This approach helped the model 

distinguish between varied and alike structures. Batches of 32 samples 

from the same class were initially created and then randomly combined to 

form final training batches of 256 samples. 

The contrastive loss was computed similarly to the method used in CLIP. 

However, instead of calculating the similarity between image and text 

inputs, we focused solely on the similarity between original and 
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augmented image pairs. The contrastive loss function for a batch of 

samples (adapted from Zhai et al.) is defined as:11 

ℒ"+ = −
1
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Where 𝑁  is the batch size, Io is the normalized embedding of an original 

image, Ia is the normalized embedding of an augmented image,  and 	)
2
	 is 

the temperature scaling factor. 

Figure S4 presents a NumPy pseudo code adapted from CLIP for the 

contrastive loss calculation.1 In MoleCLIP we set )
2
 to a fixed value of  )

2
=

)
3.34

≈ 15, following CLIP's initialization value. 

# image_encoder - Vision Transformer  
# I_o[n, h, w, c] - minibatch of original images  
# I_a[n, h, w, c] - minibatch of augmented images  
# W [d_i, d_e] - learned projection of image to embed  
# t - fixed temperature parameter  
 
# extract feature representations of both image batches  
I_o_f = image_encoder(I_o)  
I_a_f = image_encoder(I_a)  
 
# joint embedding [n, d_e]  
I_o_e = l2_normalize(np.dot(I_o_f, W), axis=1)  
I_a_e = l2_normalize(np.dot(I_a_f, W), axis=1)  
 
# scaled pairwise cosine similarities [n, n]  
logits = np.dot(I_o_e, I_a_e) * np.exp(1/t) # symmetric loss function  
labels = np.arange(n)  
 
loss_i = cross_entropy_loss(logits, labels, axis=0)  
loss_t = cross_entropy_loss(logits, labels, axis=1) 
loss = (loss_i + loss_t)/2 

Figure S4 –  NumPy pseudo code for MoleCLIP contrastive loss calculation (taken and adapted 
from CLIP publication)1 
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c. Preprocessing and training  
i. Image preprocessing 

All molecular images were generated in 224x224 dimensions before 

training using the default RDKit image generation settings. Generation-

level augmented images were generated as detailed in S1-c-i. During image 

loading, normalization was performed using OpenAI-CLIP coeCicients 

(mean = [0.48145466, 0.4578275, 0.40821073], std = [0.26862954, 

0.26130258, 0.27577711]). 

ii. Image augmentations during training 

During the training, random augmentations were added to all images, 

including those already augmented during the generation. Table S1 

indicates all the added augmentations, relevant parameters, and 

probability of occurrence. Figure S5 shows qualitative examples of the 

applied augmentations. During pretraining, the default set of 

augmentations was applied. 

Table S1 – MoleCLIP augmentations using Albumentation package functions 

 

Augmentation Default Intensive  

Downscale 

scale_min=0.7, scale_max=0.85, p=0.75, 

 interpolation: downscale - cv2.INTER_AREA, 

upscale - cv2.INTER_NEAREST 

- 

LongestMaxSize 
(following by 

PadIfNeeded) 

max_size = random.randint(135,  224) 

p=0.75, padding border_mode=1 

max_size = random.randint(112,  224) 

p=0.75, padding border_mode=1 

PixelDropout  
(Salt&Pepper) 

dropout_prob=0.01, p=0.3 

(performed two times – for salt and for pepper) 

dropout_prob=0.05, p=0.5 

(performed two times – for salt and for pepper) 

Blur blur_limit = 3, p=0.3 blur_limit=3,  p=0.5 

GaussNoise p = 0.3 p = 0.5 

ToGray p = 0.25 p = 0. 5 

random rotation - limit=360, border_mode=1 
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Figure S5 –  Augmentations during training  

iii. Training parameters 

The encoder was pretrained using four Nvidia-T4 GPUs (64 GB RAM) over 

four epochs on the ChEMBL-25 dataset. The training was performed using 

the Adam optimizer, with a learning rate 5*10-6 for the encoder (100 times 

lower than the CLIP learning rate to prevent catastrophic forgetting)12 and 

of 0.01 for the structural classification linear head. We applied a weight 

decay of 0.1 and a batch size of 256. See (3) in data availability for the 

pretrained weights of the trained model. 
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3. Finetuning 
a. Datasets 

We performed finetuning on four MoleculeNet benchmarks as well as on 

for catalysis datasets. We selected three molecular classes commonly 

used in catalysis to curate the catalysis datasets. The primary criterion for 

dataset selection was that the molecule must be the sole input variable, 

thus excluding experimental datasets where multiple conditions or 

substrates change simultaneously. Details on all finetuning datasets, 

including their size, metrics, and predicted properties, are provided in 

Table S2. 

Table S2 – Finetuning datasets properties 

 

i. MoleculeNet benchmarks 

MoleCLIP was evaluated on four MoleculeNet benchmarks, including 

biophysical and physical chemistry tasks.13 The biophysical benchmarks 

included BACE and BBBP, both binary classification tasks. BACE includes 

 Dataset Number of 
samples 

Targets 
per 

sample 

Regression/ 
Classification 

(metric) 

Predicted 
properties 

M
ol

ec
ul

eN
et

 

BACE 1513 1 Classification 
(ROC-AUC) 

Binding to  
β-secretase 1 

BBBP 2039 1 Classification 
(ROC-AUC) 

Blood-brain 
barrier 

penetration 

FreeSolv 642 1 Regression 
(RMSE/MAE) 

Hydration free 
energy 

Esol 1128 1 Regression 
(RMSE/MAE) 

Water solubility 

C
at

al
ys

is
 

DHBDs 6994 1 Regression 
(MAE) 

DFT calculated 
HOMO/LUMO gap 

NHCs 95 4 Regression 
(MAE) 

DFT calculated 
NBO charges 

Phosphines – yield 90 5 Regression 
(MAE) 

Suzuki reaction 
yields 

Phosphines – selectivity 37 1 Regression 
(MAE) 

Suzuki reaction 
selectivities 
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molecular inhibitors labeled according to their binding ability to human β-

secretase 1, and BBBP consists of molecules labeled for their ability to 

penetrate the blood-brain barrier (BBB). The physical chemistry tasks 

included ESOL and FreeSolv, both regression tasks. ESOL is a compilation 

of solubility in water for common organic small molecules, whereas 

FreeSolv is a collection of free hydration energies for small molecules in 

water. These four datasets were selected for their simplicity, as they are 

relatively small and contain only one label per molecule. 

ii. DHBDs 

The evaluation of MoleCLIP on DHBDs was performed based on the 

OSCAR dataset of 6994 molecules generated through combinatorial 

enumeration.14 The target value for prediction was the HOMO/LUMO gap 

(in eV), derived by subtracting the HOMO energy from the LUMO energy, 

both computed using density functional theory (DFT). The dataset is 

available on GitHub (see (4) in data availability). 

iii. NHCs 

For the NHCs, a dataset of 95 NHC pre-catalysts was collected from the 

literature. The dataset was curated systematically to include known NHC 

motifs according to Flanigan et al.,15 and therefore contains eight 

structurally distinguished subsets. Figure S6 illustrates these NHC motifs 

and details the number of samples representing each subset. Despite our 

eCorts to create a balanced dataset, the oxazolidine-based subset 

contains the fewest molecules due to its paucity in the literature. In 

contrast, the pyrrolidine-based motif is the most prevalent in 

organocatalytic studies, resulting in the largest subset in our dataset. 

For this dataset, we predicted the DFT-computed natural population 

analysis (NPA) charges for four atoms: two corresponding to the C-H bonds 

of the NHC pre-catalysts and two corresponding to the C-C bond of the 

Breslow intermediate with benzaldehyde (as shown in Figure S7). 

Geometry optimizations of the pre-catalysts and their respective Breslow 
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reactive intermediates were performed using Gaussian 16 software.16 The 

functional used for DFT calculation is M06-2X, previously benchmarked for 

thermodynamic and kinetic accuracy of main group elements and non-

covalent interactions.17,18 A triple zeta potential basis-set (def2-TZVP) was 

chosen based on Zhao and Truhlar’s evaluation of the M06-2X functional 

for organic molecules, indicating that a triple zeta quality is generally more 

quantitative.19,20 Charges were calculated using the NBO 3.1 extension.21 

The dataset is available on GitHub (see (5) in data availability). 

Figure S6 –  NHC motifs and their representation in the dataset 

Figure S7 –  Examples of the precatalyst (I) and Breslow intermediate with benzaldehyde 
(II). The four atoms for which DFT-computed NPA charges were predicted are highlighted 
in yellow. 22 The figure was produced using CYLview20.22 
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iv. Phosphines – yield 

The dataset from Newman-Stonebraker et al.,23 includes 90 phosphines for 

which high-throughput experimentation was performed. The dataset 

includes reaction yields from Ni-catalyzed Suzuki coupling reactions using 

five substrate combinations. We predicted the yields of each combination 

vs. the 90 phosphines varied across each set. The example reaction is 

presented in Figure S8-A. The dataset is available on GitHub (see (6) in data 

availability). 

v. Phosphines – selectivity 

The data of Niemeyer et al.,24 selected for the selectivity dataset, includes 

37 phosphines. The predicted value in this dataset is ∆∆G‡, which 

represents the energy diCerence in kcal/mol between competing pathways 

to provide each of the two possible enantiomeric products. The ∆∆G‡ 

values are mathematically derived from the experimentally measured 

selectivity. The values were collected from a single reaction, illustrated in 

Figure S8-B. The dataset is available on GitHub (see (7) in data availability). 

 

Figure S8 –  A. Suzuki reaction conducted by Newman-Stonebraker et al.23 The reaction 

was performed using 5 combinations of aryls, varying in their functional groups. B. Suzuki 

reaction conducted by Niemeyer et al.23 
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b. Training process 
i. Hyperparameter optimization 

We performed hyperparameter optimization for MoleCLIP, GEM,25 and 

ImageMol.6 During this process, the best model selection was determined 

based on the test set results, where the validation loss was minimized. For 

the finetuning of MoleCLIP, a 3-layer, 512-dimensional multilayer 

perceptron (MLP) was added on top of the encoder. The encoder and the 

MLP head were trained concurrently, though with diCerent learning rates. 

The specific parameters used for hyperparameter scanning of MoleCLIP 

are detailed in Table S3. Throughout all training sessions of MoleCLIP, the 

Adam optimizer was employed with the following settings: β1=0.9, β2=0.98, 

ε=1*10-6, weight decay=1*10-5.  

 

Table S3 – Hyperparameters of MoleCLIP Finetuning 

 

For the finetuning of ImageMol, we employed the authors' encoder 

architecture and initial weights. We maintained batch sizes and number of 

epochs consistent with those used for MoleCLIP. Following ImageMol 

methodology, a simple linear head was appended to the encoder and 

Dataset MoleculeNet full 
benchmarks 

DHBDs NHCs, 
Phosphines 

Batch size 64 64 4 

Encoder learning rate 5*10-6 5*10-6 5*10-6 

MLP head learning rates 
1*10-3, 4*10-4, 1*10-4, 

4*10-5, 1*10-5 
4*10-4, 1*10-4, 4*10-5 

1*10-3, 4*10-4, 1*10-

4, 4*10-5, 1*10-5 

Image augmentation 
level 

None, Default, 
Intensive 

Intensive None,  Default , 
Intensive 

Epochs during 
hyperparameter 

optimization 
60 60 100 

Epochs during 
Finetuning 

60 180 300 
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trained concurrently. The stochastic gradient descent (SGD) optimizer was 

employed with a momentum of 0.9 and a weight decay of 1*10-5. 

Hyperparameter tuning focused only on the learning rate, testing values of 

0.0005, 0.005, 0.05, and 0.5 (following the ImageMol author's 

recommendations of values between 0.0005 and 0.5). 

For GEM finetuning, we also used the pretrained weights provided by the 

original authors, maintaining the exact batch sizes and the number of 

epochs as for MoleCLIP. A 128-dimensional, 3-layer MLP was added atop 

the encoder in line with the GEM methodology. Optimization was carried 

out using the Adam optimizer. We performed a grid search on dropout rates 

of 0, 0.2, and 0.5, along with encoder-head learning rate pairs of (0.001, 

0.001), (0.004, 0.004), and (0.0001, 0.001), following the 

recommendations of the GEM authors. 

We also ran reference evaluations with ECFP representations extracted 

using RDKit (radius = 2). To model these fixed representations, we 

employed the same MLP head used for MoleCLIP (3-layer, 512-

dimensional). Learning rate tuning was conducted as outlined in Table S3. 

 

ii. Image preprocessing and augmentation 

Image preprocessing was consistently applied to the molecular image 

inputs, following the procedure used during pretraining (refer to S1-d-i). As 

part of hyperparameter optimization, we evaluated diCerent augmentation 

strategies for each model. These included training with no augmentation, 

the default augmentations used for pretraining, and intensive 

augmentation. The intensive procedure included the same augmentations 

as the default but with increased probability and adjusted parameters to 

enhance their impact. Additionally, random rotation augmentation was 

added to the intensive augmentations. Table S1 details the various 

augmentations and their corresponding parameters. 

For ImageMol, we applied the augmentations recommended by the 

authors: horizontal flip, grayscale conversion, and random rotation, each 
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with a 0.5 probability. Notably, for the random rotation in ImageMol, we 

adhered to the authors' approach of using black fill around the rotated 

image, whereas for MoleCLIP, we used a white fill. 

iii. Evaluation 

The finetuning datasets were split to train, validation, and test sets using 

varied splitting methods and ratios. Evaluations are reported only for the 

optimal hyperparameters based on the test results at the point where the 

validation loss was minimal. We used three times more epochs for the final 

run to ensure the model had reached a stable state. However, for 

MoleculeNet benchmarks, we maintained a consistent 60 epochs for both 

hyperparameter optimization and finetuning to enable comparison to the 

state-of-the-art (SOTA) results in the literature. We used the receiver 

operating characteristic area under the curve (ROC-AUC) as the metric for 

classification tasks, whereas the root means squared error (RMSE) and 

mean absolute error (MAE) were employed for regression tasks. 

c. Results 
For a summary of all finetuning results, see (8) in data availability 

i. MoleculeNet benchmarks 

We employed the standard splitting procedures and metrics to benchmark 

MoleCLIP against several SOTA models on the MoleculeNet datasets. 

Following a scaCold splitting approach, each dataset was split using an 

8:1:1 ratio for training, validation, and testing. This method groups 

molecules by their Murcko scaColds, assigning the most frequent 

scaColds to the training set and the least frequent to the test set. ScaCold 

splitting is a more rigorous evaluation method than random splitting, as it 

challenges the model to generalize from common molecular structures to 

rare ones. 

Table S4 presents MoleCLIP's performance on the four MoleculeNet 

benchmarks alongside the results of several SOTA models as reported in 

their respective publications. The optimal results for MoleCLIP, achieved 
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through hyperparameter tuning, are listed with the corresponding 

parameters. The results show that MoleCLIP performs comparably to the 

SOTA models despite being pretrained on significantly fewer data. 

Table S4 – This table provides the numerical values illustrated in Fig. 2 of the main manuscript. 
Performance of MoleCLIP on MoleculeNet benchmarks compared to SOTA models. The table 
shows performances and optimal hyperparameters for MoleCLIP, with standard deviation errors 
from three independent runs. SOTA results are from original publications. Pretraining data 
volume is given for all models as the product of epochs and dataset size. Despite lower 
pretraining data volume, MoleCLIP achieves comparable performance to SOTA models. 

 

ii. Catalysis datasets 

We finetuned MoleCLIP, GEM, and ImageMol on four catalysis datasets. 

The DHBDs, NHCs, and Phosphines-yield datasets were randomly split 

into training, validation, and test sets using an 8:1:1 ratio. A 6:2:2 split ratio 

was applied for the Phosphines-selectivity dataset to ensure suCiciently 

large validation and test sets (seven examples in each). ScaCold splitting, 

commonly used in the MoleculeNet datasets, was not applied here since 

it is less meaningful in datasets that contain minimal scaCold variability. 

For the NHCs and phosphines datasets, we performed splits using five 

random seeds (1, 2, 3, 4, 5) and averaged the results across all repetitions. 

During hyperparameter optimization, each seed was run three times (15 in 

total hyperparameters set), and models were trained for 100 epochs. We 

  Classification (ROC-AUC) Regression (RMSE) 

Model Model Input Pretraining 
Data Volume 

BACE 

(1513 samples) 

BBBP 

(2039 samples) 

FreeSolv 

(642 samples) 

Esol 

(1218 samples) 

Baseline ECFP  
(radius = 2) - 0.827±0.006 0.60±0.02 4.12±0.19 1.58±0.03 

ChemBERTa-226 String 77M 0.799 0.742 - 0.86 

MolCLR27 Graph 500M 0.890±0.003 0.736±0.005 2.20±0.20 1.11±0.01 

Uni-Mol28 Graph 209M 0.857±0.002 0.729±0.006 1.48±0.05 0.79±0.03 

GEM29 Graph 400M 0.856±0.003 0.724±0.003 1.86±0.09 0.83±0.03 

ImageMol6 Image 120M 0.839±0.003 0.739±0.003 2.02±0.07 0.97±0.07 

MoleCLIP Image 7.6M 0.829±0.005 0.747±0.009 2.00±0.14 0.97±0.01 
MoleCLIP hyperparameters  

(augmentation level, head learning rate) Intensive, 4*10-4 Default, 1*10-4 Default, 4*10-4 Intensive, 1*10-5 
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reran the model with optimal hyperparameters with ten repetitions per 

seed (50 in total) for 300 epochs. For the DHBDs dataset, given its larger 

size, we used three random seeds (1, 2, 3). In this case, hyperparameter 

optimization involved three repetitions per run (nine in total), with models 

trained for 60 epochs. The final model was rerun with three repetitions per 

seed for 180 epochs. This procedure was consistently applied to MoleCLIP, 

ImageMol, and GEM. For error calculations, variance was computed 

separately for each seed. Pooled variance values and standard deviations 

were then calculated. Error intervals were derived using standard errors 

with 50 repeats (nine for the DHBDs) and 95% confidence. 

Table S5 – Performance of MoleCLIP on catalysis benchmarks compared to ImageMol and GEM. 
Optimal hyperparameters are provided for all models. MAE was used as the evaluation metric 
across all datasets, with error intervals calculated at 95% confidence. Overall, MoleCLIP 
outperforms ImageMol on all datasets and surpasses GEM on three out of four datasets. 

 

 

Dataset 
DHBDs 

(eV) 
NHCs 

(Charge) 
Phosphines -

yield (%) 

Phosphines -
selectivity 
(kcal/mol) 

Number of samples 6994 95 90 37 

Baseline 
(ECFP) 

Learning rate 0.00004 0.001 0.0004 0.0004 

Performance 
(MAE) 0.275±0.003 0.0158±0.0005 12.2±0.2 1.20±0.02 

MoleCLIP 

Head learning 
rate 4*10-4 1*10-3 1*10-4 4*10-4 

Augmentations 
level Intensive None None Intensive 

Performance 
(MAE) 0.197±0.002 0.0138±0.001 9.5±0.3 0.95±0.04 

ImageMol 
Learning rate 0.005 0.005 0.005 0.0005 

Performance 
(MAE) 0.199±0.001 0.0218±0.003 11.3±0.5 1.23±0.06 

GEM 

Learning rates 
(Encoder, head) 4*10-3, 4*10-3 4*10-3, 4*10-3 1*10-3, 1*10-3 1*10-4, 1*10-3 

Dropout 0.1 0.1 0.1 0.2 

Performance 
(MAE) 0.181±0.003 0.0145±0.0007 9.6±0.4 1.03±0.04 



19 
 

Table S5 shows MoleCLIP's performance on the catalysis benchmarks 

compared to GEM and ImageMol. The reported optimal results include the 

respective hyperparameters obtained through optimization. The results 

indicate that MoleCLIP outperforms ImageMol across all datasets and 

surpasses GEM on three out of four datasets. We note that MoleCLIP's 

advantage over GEM on the phosphine-yield dataset is not statistically 

significant. 

 

d. Drug-target a<inity 
Drug-target aCinity (DTA) prediction is a fundamental task in computational 

drug discovery, aiming to estimate the binding strength between a drug 

molecule and its biological target.30 Representation learning can 

potentially enhance DTA prediction by providing more informative 

representations of both drug molecules and target proteins. This is usually 

done by concatenating the learned representation of the drug and the 

protein sequence, resulting in a fused representation which is used for 

aCinity prediction. 

To provide a preliminary evaluation of MoleCLIP in the context of DTA 

prediction, we used two common benchmark datasets: KIBA and Davis. 

Since we did not pretrain a dedicated protein encoder, we employed a 1D 

convolutional neural network (1D-CNN) to encode protein sequences, 

training it from scratch. This encoder transforms string representations of 

proteins into 512-dimensional embeddings, using 32 convolutional filters 

and an embedding dimension of 128. The resulting protein embeddings 

were concatenated with the 512-dimensional outputs from the pretrained 

MoleCLIP molecular encoder, forming a combined 1024-dimensional 

representation. This vector was then passed through a three-layer MLP 

with 512 hidden units to produce the final prediction. 

We initialized the molecular encoder with pretrained MoleCLIP weights 

and trained the model on each dataset for 200 epochs using a learning rate 
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of 0.0005, following the GraphDTA training protocol.31  The datasets were 

split using the same 80/20 train-test split. Mean squared error (MSE) 

results are reported in Table S6. Whereas our model does not outperform 

current state-of-the-art methods, it achieves better results compared to 

WideDTA, which demonstrates the versatility of MoleCLIP towards various 

tasks.  

It is important to note that the model architecture is imbalanced, as it 

leverages a high capacity pretrained encoder for molecular inputs but a 

lightweight, randomly initialized protein encoder. This exercise was merely 

aimed at piquing curiosity toward the use of MoleCLIP in drug aCinity tasks. 

We anticipate that incorporating a more sophisticated, pretrained protein 

encoder, together with a careful hyperparameter optimization to balance 

the two modalities, could substantially enhance the overall performance 

of the model on the DTA task. 

Table S6 – Performance of MoleCLIP on DTA prediction task compared to other existing models. 
MSE was used as the evaluation metric across all datasets. 

 

 

 

 

 

 

  

Model 
Davis 

(30,056 samples) 

KIBA 

(118,254 samples) 

WideDTA32 0.262 0.179 

GraphDTA31 0.229 0.139 

SAG-DTA33 0.209 0.130 

HiSIF-DTA34 0.191 0.120 

MoleCLIP 0.246 0.170 
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4. Analysis 
a. R-group replacement    

We curated additional ESOL and FreeSolv datasets versions by modifying 

the molecular images, specifically replacing certain functional groups with 

numbered R-groups, as indicated in Table S7. This replacement was 

executed using a dedicated code substituting specific functional groups 

with corresponding R-groups. All R-groups were added in black, ignoring 

the specific atom colors usually assigned by RDKit for each functional 

group. The code for generation of R-replaced molecular images is available 

in our GitHub repository (see (1) in data availability). 

Table S7 – R-group numbering for functional groups 

 

 

 

 

 

 

 

 

The original and modified datasets were evaluated using MoleCLIP and 

ImageMol, following similar procedures as outlined in S2-b, including 

hyperparameter optimization. The evaluation process for all experiments 

involved training for 60 epochs with three random seeds and three 

repetitions per seed for hyperparameter optimization, followed by 180 

epochs and five repetitions per seed for the final evaluation. MAE was used 

as the evaluation metric across all tests. Error intervals for the 

performance diCerences were calculated at 95% confidence based on the 

standard errors of the two values. Detailed results in Table S8 indicate that 

MoleCLIP's relative performance compared to ImageMol significantly 

R-number Functional 

group 

–R1 –CH3 

–R2 –OH 

–R3 –NH2 

–R4 –SH 

–R5 –F 

–R6 –Cl 

–R7 –Br 

–R8 –I 
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improves in the R-replaced datasets versus the original datasets, 

demonstrating MoleCLIP's superior robustness to distribution shifts. The 

results are detailed in (7) in data availability. 

Table S8 – Evaluation of MoleCLIP and ImageMol on the original and R-replaced datasets for 
Esol and FreeSolv. MAE was used as the evaluation metric across all datasets, with error bars 
representing 95% confidence intervals.  

 

To extend this analysis to catalysis-related datasets, we first selected our 

largest catalysis dataset, which is the DHBDs dataset (6,994 samples) 

involving HOMO/LUMO gap prediction. In this case, however, R-group 

replacement had a minimal impact on the performance of both MoleCLIP 

and ImageMol (see Table S9). These slight changes were too small for 

drawing meaningful insights, and suggest that, for this specific task, our R-

group modification does not significantly aCect prediction accuracy. 

Thus, we performed the analysis also on the Phosphines-yield dataset, 

comprising of only 90 samples. Whereas both models showed reduced 

performance following the R-replacement, MoleCLIP exhibited a smaller 

performance drop compared to ImageMol, indicating greater robustness 

(see Table S9). Although both models exhibited reduced performance upon 

this replacement, MoleCLIP's performance was still better (11.5±0.3) than 

the baseline (12.2±0.2, see Table S5), whereas ImageMol’s performance 

dropped significantly below it (14.4±0.7). We note that due to the reliance 

Dataset 
Esol  

Original 
Esol  

R replaced 
FreeSolv  
Original 

FreeSolv  
R replaced 

MoleCLIP 

Head learning 
rate 0.001 0.00001 0.0001 0.001 

Augmentations 
level Default Default Default Default 

Performance 
(MAE) 0.484±0.007 0.514±0.010 0.77±0.05 1.00±0.06 

ImageMol 
Learning rate 0.005 0.005 0.0005 0.005 

Performance 
(MAE) 0.466±0.014 0.532±0.013 0.78±0.03 1.14±0.05 

%Δ Difference 
100 * (ImageMol - MoleCLIP) / 

MoleCLIP 
-3.7±2.8 % 3.5±2.9 % 1.3±6.9 % 14.0±6.7 % 
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on a fixed fingerprint representation, the baseline cannot undergo R-group 

replacement. Impressively, MoleCLIP’s performance following R-group 

replacement was comparable to ImageMol’s original performance on this 

dataset (11.3±0.5). Thus, despite the limited dataset size, MoleCLIP 

exhibited a much stronger performance in this data size regime, even with 

this distribution shift. 

Table S9 – Evaluation of MoleCLIP and ImageMol on the original and R-replaced datasets for the 
DHBDs and Phosphines-yield datasets. MAE was used as the evaluation metric across all 
datasets, with error bars representing 95% confidence intervals.  

 

  

Dataset 
DHBDs  
Original 

DHBDs  
R replaced 

Phosphines-yield 
Original 

Phosphines-yield 
R replaced 

MoleCLIP 

Head learning 
rate 0.00004 0.00004 0.0001 0.0001 

Augmentations 
level Intensive Intensive None None 

Performance 
(MAE) 0.197±0.002 0.199±0.02 9.5±0.3 11.5±0.3 

ImageMol 
Learning rate 0.005 0.005 0.005 0.005 

Performance 
(MAE) 0.199±0.001 0.202±0.002 11.3±0.5 14.4±0.7 

%Δ Difference 
100 * (ImageMol - MoleCLIP) / 

MoleCLIP 
1.0±1.1 % 1.5±1.4 % 18.9±6.1 % 25.2±6.6 % 
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b. Domain-focused pretraining 
i. Pretraining on buried-volume prediction 

Using the phosphines domain as a test case, we conducted a domain-

specific pretraining session and evaluated its eCectiveness using 

phosphine-related prediction sets. This selected pretraining task focused 

on predicting buried volume values, which are known to correlate with yield 

and selectivity activity cliCs within the phosphines domain.23 For this 

purpose, we utilized the Kraken dataset, which includes 1,540 literature-

sourced molecules and their corresponding DFT-calculated properties. 

The selected training targets were the minimum and Boltzmann buried 

volume values. 

The pretraining phase was initialized from the ChEMBL-pretrained weights 

of the MoleCLIP primary model. This phase was executed similarly to a 

finetuning process, where the MoleCLIP encoder and an additional 3-layer 

MLP head (512-dimensional) were trained simultaneously. The focused 

pretraining lasted for 300 epochs with a constant learning rate of 5*10-6, 

weight decay of 1*10-5, and batch size of 64. We applied the default 

augmentation procedure (Table S1) from the pretraining of MoleCLIP's 

primary model. 

The resulting model's performance, referred to as MoleCLIPbv, was 

assessed on phosphines-yield and phosphines-selectivity datasets 

following the data-splitting procedure outlined in S2-c-ii. Hyperparameter 

optimization was performed in alignment with the primary MoleCLIP 

model. We compared the performance diCerences between MoleCLIPbv  

and the primary MoleCLIP model. Detailed results and optimal 

hyperparameters for fine-tuning are presented in Table S10, demonstrating 

that MoleCLIPbv outperforms the primary MoleCLIP model. 
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Table S10 – Results and optimal hyperparameters for the domain-focused pretrained 
model evaluated on the phosphines-yield and phosphines-selectivity datasets. The 
evaluation metric is MAE, with errors represented as 95% confidence intervals. 
Performance diHerences are compared to the primary MoleCLIP model results, as 
detailed in Table S5. The domain-focused pretrained model significantly improves 
performance over the primary MoleCLIP model, demonstrating the eHectiveness of 
domain-specific pretraining in enhancing prediction accuracy for phosphine-related 
properties. 

  

Dataset  
Phosphines -

yield (%) 

Phosphines -
selectivity 
(kcal/mol) 

MoleCLIPbv  
ChEMBL – 4 epochs 

Kraken (buried volume) - 100 epochs 
 

Head learning rate 0.00001 0.0004 
Augmentations 

level Default Intensive 

Performance 
(MAE) 9.1±0.3 0.82±0.03  

%Δ Di8erence 
100 * (MoleCLIP –  MoleCLIPbv) / MoleCLIP 4.2±3.3 % 13.7±4.5 % 
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iii. Controls 

To evaluate the significance of each component in the MoleCLIPbv 

pretraining workflow, we conducted a series of control pretraining 

experiments. These experiments were designed as follows: 

• Control I – Pretraining on phosphine domain-specific molecules 

instead of ChEMBL.  

We only utilized MoleCLIP's primary tasks of contrastive learning and 

structural classification on phosphines. This control model was also 

initialized with CLIP weights. For this control, we curated a synthetic 

phosphines dataset with approximately 1.9 million samples through 

combinatorial enumeration, analogous to the approach used for the 

Kraken dataset.35 This process involved 12,610 phosphanides (12,034 

from PubChem36 and 576 from Kraken) used as substituents for 

generating phosphine ligands. By iterating over all substituents, we 

generated all possible PA₃ ligands and PAB₂ ligands by randomly 

selecting 149 additional substituents in each iteration. This process 

resulted in 1,891,500 molecules (12,610 * 150). For a SMILES version of 

the dataset, see (3) in data availability. We trained two CLIP-initialized 

MoleCLIP encoders using the following two parameter sets for 

structural classification: K1 = 300, K2 = 3000 and K1 = 30, K2 = 300. All 

other pretraining parameters and procedures followed MoleCLIP's 

primary model pretraining protocol as specified in S1-e. 

• Control II – Adding a phosphine-specific pretraining stage to our 

ChEMBL pretrained model without the buried volume task.   

We applied a sequential training strategy by further pretraining the 

ChEMBL-pretrained model using phosphine-specific data and applying 

MoleCLIP's primary tasks. Since the model faced only realistic 

molecules during the ChEMBL pretraining, we also wished to include 

realistic molecules during the continued pretraining phase. Hence, we 

filtered the synthetic phosphines dataset designed for Control I using 

the SCScore model that evaluates synthesizability (based on the 
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number of reaction steps required for synthesis).37 We excluded 

molecules with SCScore values above 3.5, resulting in a refined dataset 

containing 151,497 molecules. For a SMILES version of the dataset, see 

(3) in data availability. Pretraining on this refined was conducted for ten 

epochs, equivalent to one epoch on approximately 1.5 million 

molecules. For this experiment, we used the structural classification 

parameters K1 = 300 and K2 = 3000, as used in MoleCLIP's primary 

model. All pretraining parameters and procedures followed MoleCLIP's 

primary model pretraining protocol as specified in S1-e. 

• Control III - Pretraining only on the domain-specific buried volume 

prediction task. 

This control model was initialized with CLIP weights and was only 

pretrained on the buried volume task. The pretraining spanned 300 

epochs and adhered to the same procedure used for primary domain-

focused pretraining (as described in S3-c-i). For this 

 

The performance of these control models on the phosphines-yield and 

selectivity datasets is summarized in Table S11. The results are detailed in 

(7) in data availability. The results demonstrate that these control models 

generally exhibit inferior finetuning performance compared to the 

MoleCLIP primary model. This highlights the eCectiveness of the 

methodology used for training MoleCLIPbv, in integrating domain-specific 

knowledge within the training and utilizing it for the phosphine-specific 

task. 
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Table S11 – Results and optimal hyperparameters of the controls based on the phosphines-yield 
and phosphines-selectivity datasets. The inferior performance of the control models compared 
to the MoleCLIP primary model highlights the necessity of all components of MoleCLIPbv training 
methodology (see Table S10) for eHective domain-specific pretraining. Errors represented as 
95% confidence intervals. 

 

* For control III, because of the poor results, we did not perform a complete evaluation 
based on 50 repeats, and the results are reported for 50 repeats (five seeds, three repeats 
per seed, 100 epochs) 

 

 

c. Ablation study 
Several ablated models were trained to evaluate the eCects of diCerent 

aspects of the model on finetuning performance. The trainings followed the 

same procedures as performed for the primary model, including all 

parameters of pretraining, finetuning, and hyperparameter optimization. 

The control models were evaluated on MoleculeNet benchmarks under 

8:1:1 train/validation/test scaCold splitting. The detailed results of these 

controls are presented in Table S12. 

i.        Pretraining from scratch 

To evaluate the impact of the CLIP foundation model on our results, we 

attempted to pretrain the ViT-B/16 encoder from scratch. However, the 

Dataset  Yield Selectivity 

Control - I 
Phosphines - 4 epochs 

K1 = 30, K2 = 300 

Performance 
(MAE) 9.9±0.4 1.12±0.05 

Augmentations 
level Intensive Intensive 

Head learning rate 0.00001 0.0004 

Control - I 
Phosphines  - 4 epochs 

K1 = 300, K2 = 3000 

Performance 
(MAE) 9.8±0.4 1.08±0.06 

Augmentations 
level Intensive Intensive 

Head learning rate 0.00001 0.001 

Control - II 
ChEMBL – 4 epochs 

Phosphines filtered - 10 epochs 
K1 = 300, K2 = 3000 

Performance 
(MAE) 9.6±0.3 1.14±0.06 

Augmentations 
level Intensive Intensive 

Head learning rate 0.00001 0.001 

Control – III * 
CLIP initialized 

Kraken (buried volume) - 100 epochs 

Performance 
(MAE) 13.8±0.4 1.70±0.01 

Augmentations 
level None Intensive 

Head learning rate 0.00001 0.001 
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model failed to converge despite experimenting with various learning rates 

and temperature factors. Consequently, we have not included any 

finetuning results from this control experiment. 

ii. K values for Structural classification  

As the optimal K value for ChEMBL-25 was 300, we set the clustering labels 

for our primary model to K1 = 300 and K2 = 3000. Thus, we experimented 

with K1 = 30 and K2 = 300 to assess the impact of higher K values on 

promoting finer structural distinctions within the latent space.  

iii. Temperature factor 

The temperature factor in contrastive learning is a hyperparameter applied 

to the loss function that influences the smoothness of the learned latent 

space, where a higher temperature results in a smoother latent space. In 

MoleCLIP, we fixed the temperature parameter at 𝜏 = 0.07. To evaluate its 

eCect on model performance, we also tested temperatures of 𝜏 = 0.05 and 

𝜏 = 0.1.  

iv. Pretraining period 

As the number of epochs for the primary model was set to 4, we evaluated 

the model performance after a shorter training period of one epoch and a 

longer training period of ten epochs.  

v. Pretraining data 

To assess the impact of pretraining data on MoleCLIP's performance, we 

pretrained MoleCLIP using the ImageMol dataset, which comprises 

10-million drug-like molecules extracted from PubChem. The model was 

trained for two epochs, corresponding to the same number of iterations as 

ten epochs on the ChEMBL dataset.  

vi. Augmentations ablation 

The eCect of augmentation during pretraining was evaluated by removing 

the during-training augmentation but not removing the generation stage 

augmentations that were applied during the contrastive task.  
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vii. Pretraining tasks ablation 

To evaluate the eCect of each of the two pretraining tasks, we conducted 

pretraining with each one of the tasks alone. 

 

Table S12 – Finetuning results of control models on the MoleculeNet benchmarks under 
scaHold splitting. Errors represented as standard deviations based on three independent runs. 

 
 

  

  Classification (ROC-AUC) Regression (RMSE) 

Control 
BACE 

(1513 samples) 

BBBP 

(2039 samples) 

FreeSolv 

(642 samples) 

Esol 

(1218 samples) 

Baseline (ECFP) 0.827±0.006 0.60±0.02 4.12±0.19 1.58±0.03 

Primary MoleCLIP model 0.829±0.005 0.747±0.009 2.00±0.14 0.99±0.01 

K values: 30, 300 0.833±0.010 0.719±0.007 1.92±0.09 0.89±0.02 

𝝉 = 𝟎. 𝟎𝟓 0.823±0.004 0.717±0.006 2.14±0.11 0.92±0.03 

𝝉 = 𝟎. 𝟏 0.808±0.015 0.708±0.021 2.34±0.21 0.96±0.03 

1 epoch 0.841±0.011 0.712±0.009 2.09±0.08 1.00±0.05 

10 epochs 0.815±0.003 0.726±0.012 2.28±0.16 0.95±0.01 

Pubchem-10m  
(2 epochs) 0.827±0.009 0.706±0.008 2.17±0.19 0.93±0.03 

No augmentations 
during pretraining 0.830±0.005 0.742±0.019 2.17±0.14 0.93±0.02 

Only contrastive task 0.815±0.020 0.664±0.020 2.66±0.06 1.15±0.04 

Only classification task 0.833±0.017 0.707±0.006 2.41±0.05 1.03±0.03 
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d. Interpretability 
We note that interpretability methods usually rely on qualitative manual 

assessment of the results. Whereas this approach can be valuable for 

gaining intuition and incorporating expert knowledge, it also introduces 

potential bias through the selection of specific examples and subjective 

interpretation. Given these considerations, interpretability results should 

be approached with caution and are best viewed as exploratory tools that 

oCer intuition about model behavior, rather than as evidence of what the 

model has learned. 

To gain insight into the model’s internal decision-making process we 

applied two interpretability techniques: 

• t-distributed Stochastic Neighbor Embedding (t-SNE) - To better 

understand the representations learned during pretraining, we applied 

visualization techniques to illustrate diCerent aspects of the model’s 

latent space. This was done by t-SNE, allowing us to project high-

dimensional features into a two-dimensional space. By inspecting 

samples within the embedded space, we aimed to derive qualitative 

insights about how the model organizes the encoded information and 

diCerentiates between data points.  

• Saliency mapping – This method was employed in order to identify the 

regions of an input image that most strongly influenced the model's 

performance, either during the pretraining or finetuning phase. This 

involved computing the gradient of the output with respect to the input 

image, thereby providing an assessment of each region’s importance. 

Since our architecture is based on a ViT, which processes images as 

16×16 pixel patches (tokens), we computed saliency at the patch level. 

The resulting token-level importance scores were then interpolated 

back to the original image resolution (224×224) to generate a heatmap.   
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i.        Role of pretraining tasks  

To assess the contribution of each pretraining task to the learned 

embeddings and downstream performance, we analyzed their eCects on 

the organization of the latent space and the model's predictive ability. To 

isolate the eCect of each of our two tasks (structural classification and 

contrastive learning) we compared our primary model with models trained 

in our ablation study: one trained only with contrastive learning and 

another with only the structural classification task. 

To make the visualization of this large space tractable, we constructed a 

subset of the ChEMBL dataset containing 3,000 molecules, comprising 10 

randomly selected representatives from each of the 300 classes used in 

the structural classification task. The impact of contrastive learning was 

evaluated using t-SNE to visualize the embedding of each molecule 

alongside its augmented version. We then measured the distance in the 

latent space between pairs of diCerently augmented versions of the same 

molecule. We performed this analysis with our primary model (trained with 

both tasks) and with a classification-only model. As shown in Figure S9, the 

model lacking the contrastive objective failed to embed augmented pairs 

in close proximity. This observation is supported quantitatively by a 

significantly higher mean distance between corresponding pairs in the 

classification-only model. 
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Figure S9 - t-SNE visualization of the latent space for 3,000 molecules from ChEMBL and 
their augmented versions. In our primary model (top), augmented pairs are embedded in 
close proximity, while the model trained with the classification task only (bottom) shows 
a significantly greater distance between augmented pairs.  

 

Next, we evaluated the role of the structural classification task in shaping 

the latent space organization. We created a new ChEMBL subset, by 

randomly picking 10 structural classes from those used in the structural 

classification task, and randomly sampling 300 molecules out of each 

class. This resulted in a subset of 3000 molecules. We visualized the 

embeddings of all the molecules using t-SNE, assigning a unique color to 
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each cluster. We compared the results for our primary model and the 

contrastive-only model. The contrastive-only model exhibited a less 

structured latent space and was unable to clearly separate structural 

classes (see Figure S10). This is further supported by a higher Davies–

Bouldin Index, indicating less diCerentiation between classes compared to 

our primary model. 

Figure S10 - t-SNE visualization of embeddings for 3,000 molecules from ChEMBL, 
colored by K-means clustering (k=10) based on MACCS fingerprints. The primary model 
(top) shows better separation between clusters compared to the contrastive-only model 
(bottom). The contrastive-only model also has higher Davies–Bouldin Index, indicating 
poorer structural organization. 
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We aimed to assess how the pretraining tasks influenced performance 

during finetuning. To do this, we used the NHCs dataset due to its 

relatively small size, which facilitated manual interpretation, and because 

it was curated by our lab, allowing us to draw better chemical insights. 

Each of our three models, the primary model, the contrastive-only model, 

and the classification-only model, was trained on the NHC charge 

prediction finetuning task. We then visualized their saliency maps to 

examine which regions of the input images were most influential in the 

model’s predictions (Figure S11). 

Figure S11 - Saliency map comparison across models on the NHCs finetuning task using 
three diHerent pretrained models: contrastive-only, classification-only, and the primary 
model. Brighter regions indicate higher attention by the model.  

The results reveal distinct patterns across the models. The contrastive-

only model primarily focused on peripheral groups, which aligns with its 

objective of distinguishing molecules based on fine-grained, localized 

diCerences. In contrast, the classification-only model concentrated on the 
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central scaCold, as this structure typically defines the molecule’s broader 

structural class. Interestingly, the primary model appeared to integrate 

both strategies: it focuses on both peripheral groups and the central 

scaCold and, in some cases, highlighted regions not emphasized by either 

of the other models. These observations suggest that each pretraining task 

contributes complementary information. 

ii. ECect of generation-level augmentation on pretraining 

During pretraining, particularly under contrastive learning, the model is 

exposed to various augmentations of molecular images, including 

variations of line-width, font size, type, etc. Such augmentations may aCect 

recognizability of chemically meaningful substructures, especially when 

functional groups become proportionally smaller in larger molecules. To 

investigate whether the model remains robust to these variations, we 

examined saliency maps generated using our primary model for the same 

molecules under diCerent augmentations. This analysis allowed us to 

evaluate whether the model consistently pays attention to the same 

chemically relevant regions regardless of image augmentations. 

Visualizations such as the positive examples presented in Figure S12 (top) 

were the most commonly observed, generally supporting the model’s 

robustness to these variations, with the model usually focusing on the 

same functional groups across augmentations. Nonetheless, we observed 

a few negative cases where the model failed to refer to similar regions. 

These failures were more common in very large molecules, where the 

visual scale of individual groups is reduced, making them harder to detect. 

We also note that our augmentation procedure includes sampling font 

sizes from a fixed range. As a result, images of large molecules that 

originally have smaller font sizes as their default, often only have 

augmented images with larger font sizes. While this improves the visibility 

of functional groups, it can obscure bond structures and could lead to 

misinterpretations.  
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Figure S12 - Saliency visualizations for a single molecule presented under diHerent 
generation-level augmentations (e.g., bond length, font variation). Brighter regions 
indicate higher attention by the model. The top section shows positive examples where 
the model focuses on to the same molecular substructures despite the augmentations. 
These are representative of most of the saliency maps we evaluated. The bottom section 
shows negative examples where the model’s attention shifts to diHerent regions across 
augmentations, which were not commonly encountered. 
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Data availability 

The code, datasets, and results related to MoleCLIP are openly available through the following 
links: 

(1) MoleCLIP code and resources –  
https://github.com/Milo-group/MoleCLIP 

(2) ChEMBL-25 dataset – 
https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/ 

(3) Pretrained weights and curated phosphines datasets – 
https://zenodo.org/records/13826016 

(4) DHBDs dataset –  
https://github.com/Milo-group/MoleCLIP/tree/main/Datasets/DHBDs  

(5) NHCs dataset –  
https://github.com/Milo-group/MoleCLIP/tree/main/Datasets/NHCs 

(6) Phosphines – yield dataset –  
https://github.com/Milo-group/MoleCLIP/tree/main/Datasets/Phosphines_yield 

(7) Phosphines – selectivity dataset –  
https://github.com/Milo-group/MoleCLIP/tree/main/Datasets/Phosphines_selectivity 

(8) Summary of all finetuning results – 
https://github.com/Milo-group/MoleCLIP/tree/main/Paper_results 

 

 

 
  

  

https://github.com/Milo-group/MoleCLIP
https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_25/
https://zenodo.org/records/13826016
https://github.com/Milo-group/MoleCLIP/tree/main/Datasets/DHBDs
https://github.com/Milo-group/MoleCLIP/tree/main/Datasets/NHCs
https://github.com/Milogroup/MoleCLIP/tree/main/Datasets/Phosphines_yield
https://github.com/Milo-group/MoleCLIP/tree/main/Datasets/Phosphines_selectivity
https://github.com/Milo-group/MoleCLIP/tree/main/Paper_results
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