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Disconnection-aware Chemformer 
Dataset preparation The input to the disconnection-aware Chemformer is a modified 

SMILES string, where the bond to break is marked by tagging the corresponding atoms with 

“<atom>!”. To create the training dataset, atom-mapped reaction SMILES were used to 

identify the atoms whose environments change1. These atoms were first tagged with 

“[<atom>:1]” and then converted into “<atom>!” to reduce the required vocabulary2. The 

conversion was done by tokenizing the canonicalized tagged SMILES (as defined by the 

unmapped SMILES), and then replacing each tagged token with the corresponding original 

SMILES token, followed by an exclamation mark. The implementation for tagging is available 

in AiZynthTrain3 and rxnutils4. 

Fine-tuning Chemformer models We fine-tuned 1) a baseline (backward) Chemformer and 

2) a disconnection-aware Chemformer on both the proprietary dataset and USPTO-50k. The 

baseline backward models predict reactants given (untagged) product SMILES as input. In 

addition, we fine-tuned a forward Chemformer model on the proprietary dataset for round-trip 

validation of backward model predictions (see the following paragraph). For USPTO-50k, the 

Chemformer available from an earlier study5 was used as baseline. The fine-tuning of the 

other models followed the approach reported in earlier work5,6. The training was done with a 

batch size of 64, and the baseline backward and forward Chemformers were trained on 

proprietary data for 30 epochs. The baseline Chemformers were used as pre-trained models 

to fine-tune the disconnection-aware models. The USPTO-50k model was further fine-tuned 

for 35 epochs, and the proprietary model for 15 epochs. The Adam optimizer7 was used 

together with an augmentation probability of 0.5 and 0.0, as well as a learning rate of 0.001 

and 0.0005 for the baseline and disconnection-aware models, respectively. The models 

trained on the proprietary data, as well as the disconnection-aware USPTO-50k-Chemformer 

used an updated vocabulary which included the token “!”.  

Validating single step predictions Each disconnection-aware Chemformer was compared 

to the corresponding baseline Chemformer. The evaluation metrics included 1) exact 

matching, 2) round-trip and 3) disconnection top-N accuracy. The exact matching accuracy 

measures the ability of a model to recover the ground-truth reactants in the dataset. 

Because multiple sets of reactants may be combined to form the same product, we also 

computed round-trip top-N matching accuracy. Round-trip top-N accuracy validates the 

predictions using a forward Chemformer model trained to predict products given reactants as 

input8,9. While the forward model is more specific and can validate more predictions, it is 

noteworthy that the round-trip accuracy becomes dependent on the forward model 

performance. For example, the backward Chemformer can extrapolate beyond the training 

set to create novel reactions. The forward model may fail to validate such novel reactions, 

even if those are indeed valid6. In addition, the round-trip accuracy does not entail whether 

the bond to break was disconnected. We therefore also computed the disconnection top-N 

matching accuracy1. This accuracy was obtained by tagging disconnection sites in the 

products given the predicted reactions, and comparing the tagged product with the ground-

truth dataset. Note that round-trip and disconnection top-N accuracies are calculated in the 
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same way as top-K exact matching accuracy. The round-trip top-N accuracy used here is 

often referred to as coverage elsewhere8. 

Chemformer expansion policy  
The (disconnection-aware) Chemformer expansion policy received an atom-mapped 

SMILES as input together with the list of bonds to break. The atom-mapping was removed 

for all atoms which were not in the list of bonds to break, while atoms which were in the list 

were tagged by “[<atom>:1]”. The atom-map tagging was converted to “<atom>!”. The 

predicted reactants were deduplicated, and invalid molecules were removed. Moreover, the 

predicted reactions were atom-mapped with RXN-mapper10 to propagate atom-mapping in 

the MCTS. The output consisted of the predicted (atom-mapped) reactants, as well as the 

product with the new atom-mapping. The product with the new atom-mapping was used in 

AiZynthFinder to propagate the original atom-mapping to the predicted reactants with 

substructure matching to the product with the input atom-mapping. Finally, predictions which 

did not disconnect the input bond were removed. The Chemformer log-likelihoods were 

rescaled with SoftMax. 

Synthetic benchmarking datasets 
To create the synthetic benchmarking datasets for the disconnection-aware multistep 

retrosynthesis, we first extracted all reactions from the reference routes (PaRoutes and 

Reaxys-JMC). The workflow for obtaining bonds to break and bonds to freeze for a target 

molecule from an example route is visualized in Figure S10. Atom-mapping of each reaction 

was obtained with RXN-mapper10. The atom-mapping from the parent reaction was 

propagated to the reactants in the following reaction in order to keep the same atom-

mapping throughout the reaction tree. For each re-mapped reaction, we identified the 

disconnection sites in the product. To obtain bonds to break for each target, we applied the 

convergent disconnection score11 and kept at most three disconnected bonds which had the 

highest positive convergence score. We then randomly chose 𝑁𝑏𝑜𝑛𝑑𝑠 − 1 bonds to freeze 

from the set of bonds with unchanged atomic environments in the route, where 𝑁𝑏𝑜𝑛𝑑𝑠  is the 

number of bonds to break.  

Supplementary Results 

Verifying single step disconnection-aware Chemformer 
The disconnection-aware Chemformer was compared with the baseline Chemformer on both 

USPTO-50k and a proprietary dataset. The performance was measured by exact, round-trip 

and disconnection matching accuracy (Figure S1). In line with previous findings1, both 

models achieved high round-trip accuracies with median top-10 above 0.8, while the 

disconnection-aware model showed improved exact and disconnection-site matching 

accuracies. The disconnection-site matching accuracies were higher than the exact 

matching accuracy (Figure S1ii: top-1: 0.85 vs. 0.62, top-10: 0.92 vs. 0.85), indicating that 

the model generated alternative disconnections to those in the ground truth dataset. 

Furthermore, the disconnection-aware and baseline models generated similar number of 

valid SMILES, while the disconnection-aware model sampled a larger fraction of unique 

SMILES (Figure S2). 

 



Supplementary figures 

 

Figure S1 Top-N accuracy of single step predictions of Chemformer models trained and evaluated on 
i) USPTO-50k and ii) Proprietary data. Top-N accuracy is reported in terms of a) exact matching to 

ground-truth reactants, b) round-trip matching using Chemformer forward, and c) disconnection-site 
matching. Light green corresponds to the baseline Chemformer while dark green is the disconnection-
aware Chemformer. Box-plot elements: center line is the median, box limits are the upper and lower 

quartiles, whiskers are 1.5 times the interquartile range, outliers are depicted as black dots. 
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Figure S2 Inference metrics of Chemformers (baseline – light green, disconnection-aware – dark 

green) on the proprietary dataset. The metrics were obtained during a) backward (retrosynthesis 

prediction) and b) forward (round-trip) inference. Box-plot elements: center line is the median, box 

limits are the upper and lower quartiles, whiskers are 1.5 times the interquartile range, outliers are 

depicted as black dots. 
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Figure S3 Performance of the different disconnection-aware strategies with standard search as 
baseline. Performance is measured in terms of a) percentage of solved targets, b) median search 
time, c) percentage of targets which were solved and satisfy the bond constraints and d) average 

number of routes which were solved and satisfy the bond constraints. The statistics were computed 
over batches of 128 Reaxys-JMC targets. Each colored dot corresponds to one batch. Box-plot 

elements: center line is the median, box limits are the upper and lower quartiles, whiskers are 1.5 
times the interquartile range, outliers are depicted as black dots. 

  



 

Figure S4 a) Dissimilarity of generated routes compared to the standard strategy and b) route 

diversity of the generated routes in terms of average pairwise route distance. Statistics were gathered 

from averages over batches of 128 Reaxys-JMC targets. Each colored dot corresponds to one batch. 

Box-plot (black boxes) elements: center line is the median, box limits are the upper and lower 

quartiles, whiskers are 1.5 times the interquartile range, outliers are depicted as black dots. 

 

 

Figure S5 Round-trip top-N accuracy of reactions extracted from retrosynthesis experiments on a) 

PaRoutes set-n1 and b) Reaxys-JMC targets. Statistics were computed over batches of 128 samples. 

Box-plot elements: center line is the median, box limits are the upper and lower quartiles, whiskers 

are 1.5 times the interquartile range, outliers are depicted as black dots. 
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Figure S6 Expansion policy statistics. a) Frequency of Chemformer expansion policy used in all 

reactions. b) Occurrence of Chemformer expansion policies at different depths in the reaction trees. c) 

Frequency of trees with at least one Chemformer reaction (error bars are 95% CI). d) Frequency of 

trees with template-based expansion policy in at least one reaction. Averages were computed over 

batches of 128 PaRoutes set-n1 targets in a), c) and d). Each colored dot represents a batch. Box-

plot (black boxes) elements: center line is the median, box limits are the upper and lower quartiles, 

whiskers are 1.5 times the interquartile range, outliers are depicted as black dots. 

  



 

Figure S7 Expansion policy statistics. a) Frequency of Chemformer expansion policy used in all 

reactions. b) Occurrence of Chemformer expansion policies at different depths in the reaction trees 

(error bars are 95% CI). c) Frequency of trees with at least one Chemformer reaction. d) Frequency of 

trees with template-based expansion policy in at least one reaction. Averages were computed over 

batches of 128 Reaxys-JMC targets in a), c) and d). Each colored dot represents a batch. Box-plot 

(black boxes) elements: center line is the median, box limits are the upper and lower quartiles, 

whiskers are 1.5 times the interquartile range, outliers are depicted as black dots. 

 

Figure S8 Target molecules used to mimic an application scenario. 



 

Figure S9 a) Frequency of Chemformer expansion policy at different ranks. b) Example output 

showing the priors and policy at each rank for the first 20 compounds. The figures are created from 

one-step expansion with the disconnection-aware Chemformer and Template-based models using 

compounds and bonds to break from the PaRoutes set-n1 dataset. 

 

Figure S10 The workflow for creating multistep retrosynthesis benchmarking datasets. The extracted 
“bonds to break” (green) and “bonds to freeze” (yellow) are visualized on a target molecule from the 

PaRoutes set-n1 dataset.  
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Supplementary tables 
 

Table S1 Tree depth statistics (0-indexed) of the disconnection-aware strategies applied to PaRoutes 

set-n1 targets. 

Strategy Mean ± standard 
deviation 

median max 

Standard 1.97 ± 0.98 2 6 

Route-ranking 2.59 ± 1.39 2 6 

MO search 2.75 ± 1.49 2 6 

Chemformer 2.03 ± 0.94 2 6 

Chemformer-MO 2.21 ± 0.94 2 6 

 

Table S2 Tree depth statistics (0-indexed) of the disconnection-aware strategies applied to Reaxys-

JMC targets. 

Strategy Mean ± standard 
deviation 

median max 

Standard 1.95 ± 0.73 2 5 

Route-ranking 2.42 ± 1.08 2 6 

MO search 2.50 ± 1.30 2 6 

Chemformer 2.00 ± 0.70 2 6 

Chemformer-MO 2.09 ± 0.66 2 6 

 

Table S3 Constraint satisfaction, dissimilarity to reference (standard search) and route diversity. The 

disconnection-aware strategies are compared to the standard search and freezing the bond between 

the thiazole and benzene rings. 

Strategy Solved 
targets 

Fulfilled 
constraints 

Dissimilarity to 
standard 

Route 
diversity 

Freezing bond 10/10 10/10 (7/10 top-1) 0.28 0.18 

Standard 10/10 9/10 (9/10 top-1)  0.00 0.33 

Route ranking 9/10 9/10 (9/10 top-1) 0.09 0.18 

MO search 9/10 9/10 (9/10 top-1) 0.08 0.34 

Chemformer 10/10 10/10 (10/10 top-1) 0.11 0.32 

Chemformer-MO 10/10 10/10 (10/10 top-1) 0.10 0.38 
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