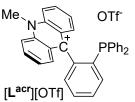
Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2025

L/Z-ligand type amphoterism of an acridinium unit

Elishua D. Litle, Shantabh Bedajna and François P. Gabbaï*

Supporting Information

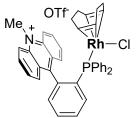
Contents


1 Exper	imental	2
1.1	General experimental	2
1.2	Synthesis	2
2 NMR	spectra	4
2.1	NMR spectra of products	4
2.2	NMR spectra of reactions	9
3 Comp	outational studies	17
3.1	General methods	17
3.2	Geometry optimized structures	17
3.4	Pipek-Mezey LMOs	19
3.5	NBO orbital analysis	20
3.6	Cartesian coordinates of geometry optimized structures	22
4 X-ray	diffraction analysis	24
4.1	Experimental details	24
4.2	Table showing the compounds characterized by X-ray diffraction and their corresponding CCDC numbers.	24
4.2	Solid state structures	25
5 Refer	ences	26

1 Experimental

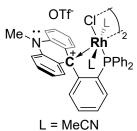
1.1 General experimental

All reactions and manipulations were carried out under an atmosphere of dry, O₂-free nitrogen using standard double-manifold techniques with a rotary oil pump unless otherwise stated. A nitrogen-filled glove box was used to manipulate solids, store air-sensitive starting materials, carry out room temperature reactions, recover reaction products and prepare samples for analysis. All solvents were dried by refluxing under N₂ over Na/K (Et₂O), Na (Hexanes) or CaH₂ (CH₃CN, CH₂Cl₂, C₂H₄Cl₂) and stored under a nitrogen atmosphere over 3Å molecular sieves. The deuterated solvents (CD₂Cl₂, CDCl₃, CD₃CN) used in this work were distilled over CaH₂ and were stored under a nitrogen atmosphere over 3Å molecular sieves. DMSO-*d*₆ was purchased from commercial suppliers and used as received. [Rh(COD)Cl]₂ and [Rh(COE)₂Cl]₂ were purchased from TCI America and used as received. ¹H, ¹³C and ³¹P{¹H} NMR spectra were recorded on a Bruker Avance NEO 400, a Varian VnmrS 500, or a Bruker Avance 500 cold probe spectrometer. The ³¹P HPDec-MAS NMR experiment was carried out on a Bruker Avance-400 solid-state NMR spectrometer (400 MHz for ¹H nuclei) equipped with a standard 4-mm MAS probe head. ¹H and ¹³C chemical shifts are expressed as parts per million (ppm, δ) downfield


of tetramethylsilane (TMS) and are referenced to $CDCl_3$ (7.26/77.16 ppm), CD_3CN (1.94/1.32 ppm) or CD_2Cl_2 (5.32/53.84 ppm) as internal standards. Phosphorus (³¹P) spectra were referenced to H_3PO_4 . The NMR spectrum of [**2**][OTf] was collected at 233 K by precaution, to slow down a possible exchange of the MeCN ligands. Abbreviations used for signal description include: s for singlet, d for doublet, t for triplet, m for

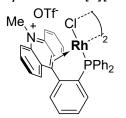
multiplet and br for broad. All coupling constants are absolute values and are expressed in Hertz (Hz). Elemental analyses were performed by Atlantic Microlab (Norcross, GA). The starting material [Lacr]OTf was synthesized as previously described.¹

1.2 Synthesis

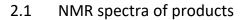

Synthesis of [1][OTf]

[L^{acr}][OTf] (53.6 mg, 0.090 mmol) was dissolved in CH₂Cl₂ (1 mL) in a 20 mL scintillation vial under nitrogen. [Rh(COD)Cl]₂ (22.2 mg, 0.045 mmol) was added to the solution. The resulting solution was stirred for 10 minutes and treated with Et₂O (10 mL) which induced the precipitation of a red/brown solid. This precipitate was isolated by filtration and washed with Hexanes (3 x 10 mL) to afford [**1**][OTf]. Yield: 55.7 mg, 74.2%. Orange needle-like single crystals were obtained by layering Et₂O on a C₂H₄Cl₂ solution of [**1**][OTf]. ¹H **NMR** (500 MHz, CDCl₃, 298 K) δ /ppm: 9.14 (dd, *J* = 14.8, 7.9 Hz, 1H), 8.48 (d, *J* = 9.2 Hz,

2H), 8.19 (ddd, J = 8.8, 6.7, 1.5 Hz, 2H), 7.97 (tt, J = 7.8, 1.4 Hz, 1H), 7.90 (dd, J = 8.6, 1.4 Hz, 2H), 7.72 (tt, J = 7.6, 1.5 Hz, 1H), 7.56 – 7.45 (m, 3H), 7.19 (tt, J = 7.5, 3.5 Hz, 2H), 7.10 – 7.04 (m, 1H), 7.03 – 6.89 (m, 4H), 6.80 (dt, J = 8.0, 4.0 Hz, 4H), 5.51 – 5.47 (m, 2H), 4.81 (s, 3H), 3.05 (dt, J = 5.9, 2.9 Hz, 2H), 2.41 – 2.22 (m, 4H), 2.06 – 2.00 (m, 2H), 1.87 (dt, J = 14.3, 6.8 Hz, 2H). ¹³**C** NMR (126 MHz, CDCl₃, 298 K) δ /ppm: 160.16, 141.42, 141.21, 140.62, 139.19, 136.04, 134.15 (d, J = 11.2 Hz), 132.77, 132.49, 131.23, 130.53, 130.41, 129.28, 129.16, 127.78, 127.69, 127.64, 127.56, 127.48, 126.49, 122.36, 119.81, 118.36, 105.19 – 104.91 (m), 71.36 (d, J = 13.3 Hz), 39.21, 33.09 (d, J = 2.7 Hz), 29.04. ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K) δ /ppm: 33.95 (d, ¹ $_{J_{P-Rh}} = 150.7$ Hz). Elemental Analysis for C₄₁H₃₇ClF₃NO₃PRhS(C₂H₄Cl₂)_{0.25}: C: 56.97; H: 4.38 (Calc.). C: 56.67; H: 4.24 (Found).


Synthesis of [2][OTf]

[L^{acr}][OTf] (30 mg, 0.050 mmol) was dissolved in CH₃CN (2 mL) in a 20 mL scintillation vial under nitrogen. [Rh(COE)₂Cl]₂ (18 mg, 0.025 mmol) was added to the solution. The resulting solution was stirred for 7 days until the solution turned to a dark red color. The solution was mixed with Et₂O (2 mL) and allowed to stir for 1 hour. This solution was then treated with an additional 5 mL of Et₂O which induced the precipitation of a dark red solid. This precipitate was isolated by decantation and washed with Et₂O (3 x 1 mL) to afford a crystalline powder of [**2**][OTf]. Yield: 36.0 mg, 88% yield. Dark red, block-like


single crystals were obtained by layering Et₂O onto a CH₃CN/Et₂O solution of [**2**][OTf]-Et₂O. ¹H NMR (500 MHz, CD₃CN, 298 K) δ /ppm: δ 7.92 (ddd, *J* = 11.7, 8.4, 1.4 Hz, 4H), 7.78 – 7.64 (m, 3H), 7.62 – 7.53 (m, 3H), 7.50 (tdd, *J* = 8.2, 2.9, 1.3 Hz, 4H), 7.15 (ddd, *J* = 8.5, 7.0, 1.6 Hz, 2H), 7.02 (dd, *J* = 8.4, 1.2 Hz, 2H), 6.58 (ddd, *J* = 8.1, 7.0, 1.2 Hz, 2H), 6.50 (dd, *J* = 7.9, 1.6 Hz, 2H), 3.47 (s, 3H), 2.37 (s, 6H). ¹³C NMR (126 MHz, CD₃CN, 298 K) δ /ppm: 161.16 (d, *J* = 25.2 Hz), 141.48, 134.01, 133.71 (d, *J* = 9.1 Hz), 133.30, 133.17, 132.22, 131.87 (d, *J* = 3.1 Hz), 128.58, 128.49, 128.16 (d, *J* = 7.6 Hz), 127.06, 126.63, 126.15, 121.87 (d, *J* = 8.2 Hz), 119.61, 112.53, 63.02 (d, *J* = 18.3 Hz), 33.88. ³¹P{¹H} NMR (162 MHz, CD₃CN, 298 K) δ /ppm: 52.95 (d, ¹*J*_{P-Rh} = 128.4 Hz). Elemental Analysis for C₃₆H₃₁ClN₃PRhSO₃CF₃: C: 53.93; H: 3.79 (Calc.).C: 53.95; H: 3.86 (Found). This analysis was carried out using crystals of [**2**][OTf]-Et₂O. The results indicate loss of the Et₂O interstitial solvent molecules during shipping and handling.

Synthesis of [3][OTf]

[L^{acr}][OTf] (120 mg, 0.20 mmol) was dissolved in CH_2Cl_2 (2 mL) in a 20 mL scintillation vial under nitrogen. [Rh(COE)₂Cl]₂ (71.8 mg, 0.1 mmol) was added to the solution. The resulting solution was stirred for 30 minutes until the solution turned to a dark green color. The solution was treated with Hexanes (10 mL), leading to the formation of a dark green powder. This precipitate was isolated by filtration and washed with hexanes (3 x 10 mL) to afford [**3**][OTf]. Yield: 128.8 mg, 86.8%. Dark green, block-like single crystals were obtained by slow

evaporation of a dichloromethane and diethyl ether solution of [**3**][OTf]. ¹**H** NMR (500 MHz, CD₂Cl₂, 298 K) δ /ppm: 8.12 (s, 2H), 7.89 (br s, 2H), 7.69 (m, 2H), 7.63 (s, 3H), 7.49 (m 8H), 7.19 (t, *J* = 7.6 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 1H), 6.68 (d, *J* = 8.1 Hz, 2H), 3.86 (br s, 3H). ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K) δ /ppm: 64.71 (d, *J* = 135.3 Hz). Elemental Analysis for C₃₂H₂₅CINPRhSO₃CF₃: C: 53.42; H: 3.40; N: 1.89 (Calc.). C: 53.85; H: 3.70; N: 2.06 (Found).

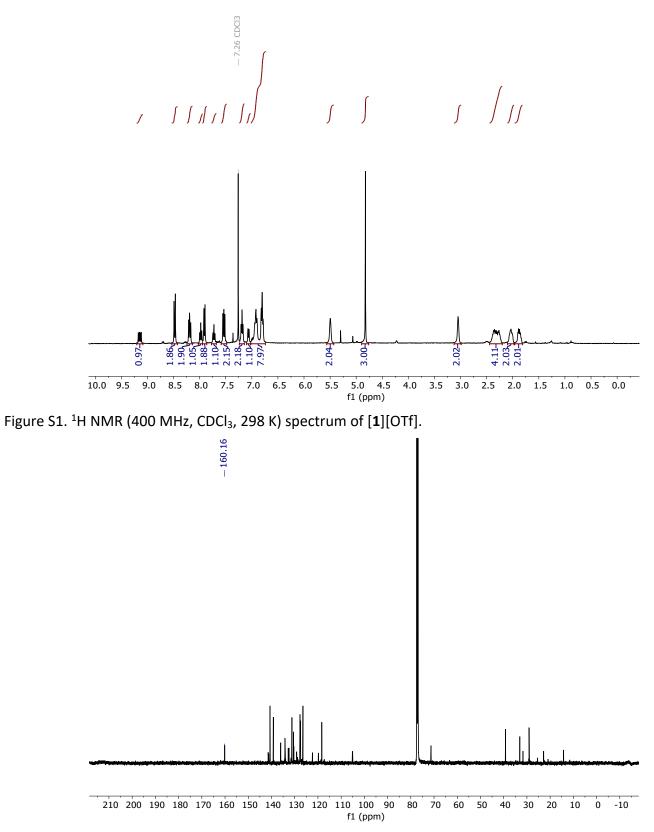


Figure S2. ¹³C{¹H} NMR (126 MHz, CDCl₃, 298K) spectrum of [1][OTf].

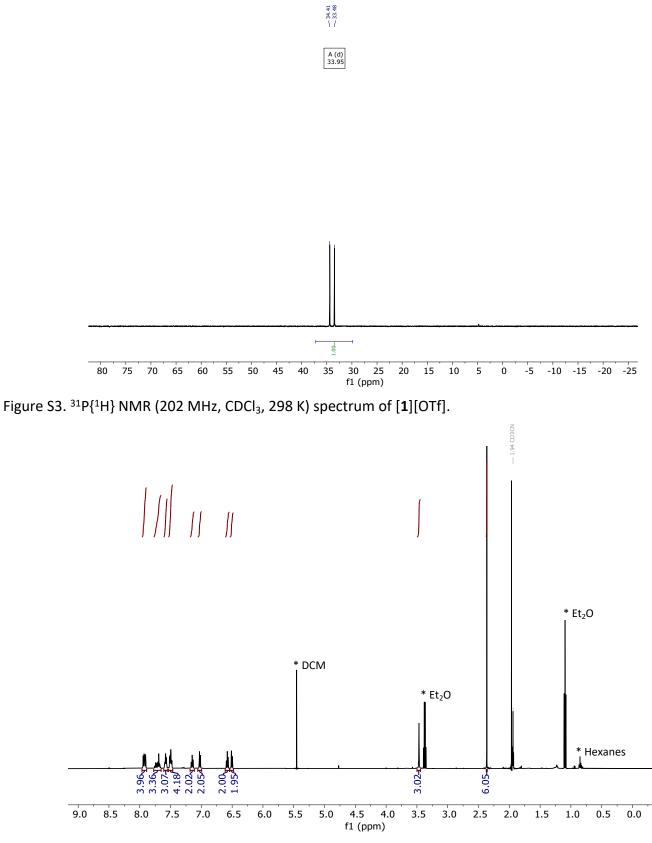


Figure S4. ¹H NMR (500 MHz, CD₃CN, 233 K) spectrum of [**2**][OTf].

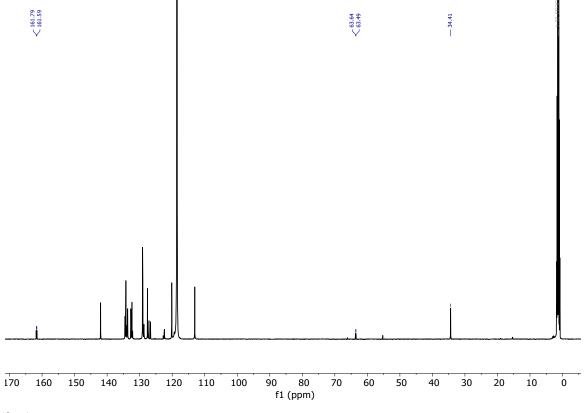


Figure S5. ¹³C{¹H} NMR (126 MHz, CD₃CN, 233K) spectrum of [**2**][OTf].

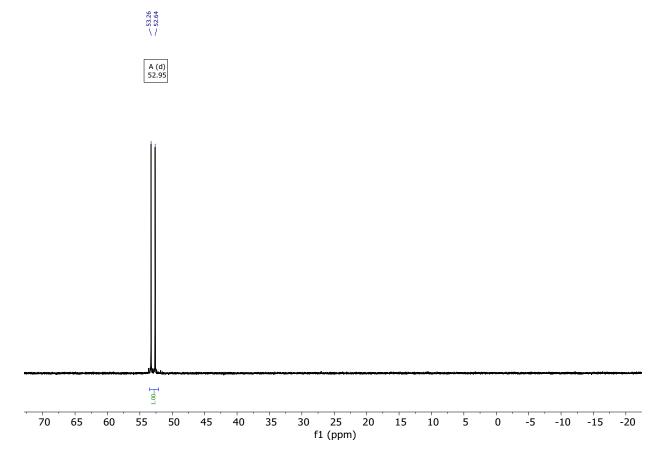


Figure S6. ${}^{31}P{}^{1}H$ NMR (202 MHz, CD₃CN, 233 K) spectrum of [**2**][OTf].

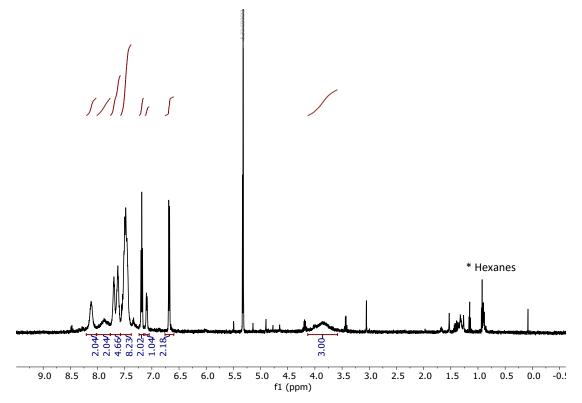


Figure S7. ¹H NMR (500 MHz, CD_2Cl_2 , 298 K) spectrum of [**3**][OTf]. The poor quality of this spectrum reflects the low solubility of the complex.

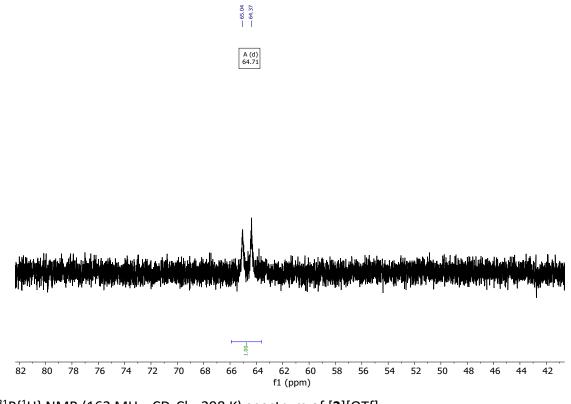
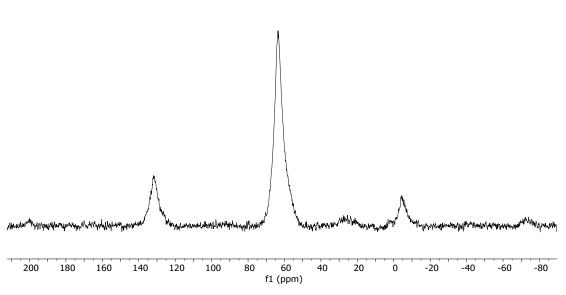
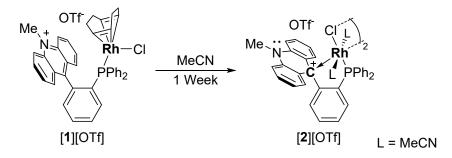




Figure S8. ³¹P{¹H} NMR (162 MHz, CD₂Cl₂, 298 K) spectrum of [**3**][OTf].

--- 63.24

Figure S9. Solid-state ³¹P NMR (162 MHz, 298 K) spectrum of [3][OTf].

Conversion of [1][OTf] into [2][OTf]: [1][OTf] (10 mg), dissolved in CD_3CN (0.6 mL) was loaded into a J. Young tube and. An initial ³¹P{¹H} NMR spectrum was collected, showing a broadening of the signal corresponding to [1][OTf] at 33.88 ppm. Additional spectra were collected every 24 hours over a week. The signal at 33.88 ppm gradually disappeared while that of [2][OTf] at 53.68 ppm gained intensity. In the course of this experiment, the solution's color changed from yellow to a dark red. Single crystals of [2][OTf] could be grown from this reaction.

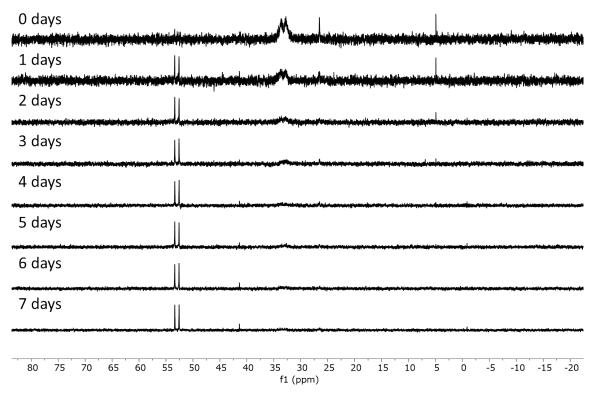
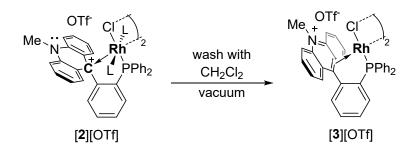



Figure S10. ³¹P{¹H} NMR (162 MHz, CD₃CN, 298 K) spectra collected during the conversion of complex [1][OTf] into [2][OTf] over 1 week.

Conversion of [2][OTf] into [3][OTf]: [3][OTf] (4 mg) in MeCN (0.6 mL) was loaded into a J. Young tube containing a sealed $H_3PO_4/DMSO-d_6$ capillary. The resulting red solution was subjected to ${}^{31}P{}^{1}H{}$ NMR spectroscopy, leading to a signal at 53.68 ppm (d, ${}^{1}J_{P-Rh} = 128.4$ Hz) for [2][OTf]. The solvent from the J. Young tube was removed under a vacuum. The resulting residue was redissolved in CH_2Cl_2 . This procedure was repeated three times. The residue was then dissolved in CH_2Cl_2 (0.6 mL), affording a dark green solution. The ${}^{31}P{}^{1}H{}$ NMR spectrum of this solution displayed a signal at 64.59 ppm (d, ${}^{1}J_{P-Rh} = 137.7$ Hz) corresponding to [3][OTf].

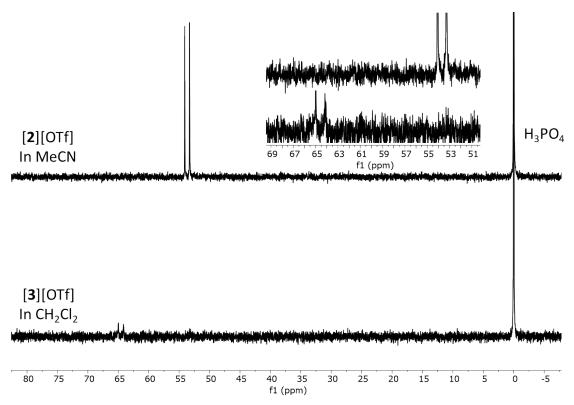
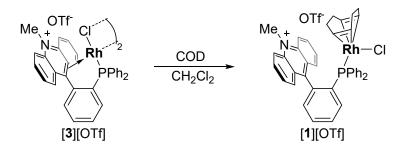



Figure S11. ³¹P{¹H} NMR (162 MHz, DMSO- d_6 , 298 K) spectra collected during the conversion of complex [**2**][OTf] into [**3**][OTf] (L = MeCN).

Conversion of [**3**][OTf] into [**1**][OTf] was done as follows: [**3**][OTf] (4 mg) was loaded into a J. Young tube containing a sealed H₃PO₄/DMSO-*d*₆ capillary and dissolved in CH₂Cl₂ (0.6 mL) forming a dark green solution. A ³¹P NMR spectrum was collected. A signal at δ 64.64 (d, *J* = 137.3 Hz) was identified as [**3**][OTf] (referenced to the H₃PO₄/DMSO-*d*₆). Addition of cyclooctadiene (4 equiv., 1.2 µL) to the J. Young tube led to a change in color from green to yellow over a 10 minute period at which time a ³¹P{¹H} NMR spectrum was collected. A signal at δ 33.88 (d, *J* = 150.8 Hz) was identified as [**1**][OTf] (referenced to the H₃PO₄/DMSO-*d*₆).

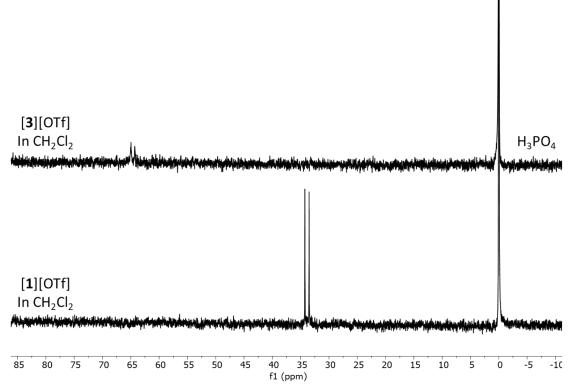


Figure S12. ³¹P{¹H} NMR (202 MHz, DMSO- d_6 , 298 K) spectrum of the conversion of complex [**3**][OTf] (top: 64.69 ppm) into [**1**][OTf] (Bottom: 33.88 ppm). Referenced internally to a capillary of 85% H₃PO₄ dissolved in DMSO- d_6 .

Resitance of [2][OTf] to COD. [3][OTf] (4 mg) was loaded into a J. Young tube, dissolved CD_2Cl_2 (0.6 mL), and converted into [2][OTf] by addition of CD_3CN (0.1 mL), forming a dark green solution. Subsequently, an excess of cyclooctadiene (25 µL) was added to the J. Young tube, which left [2][OTf] unchanged as shown in Fig. S13.

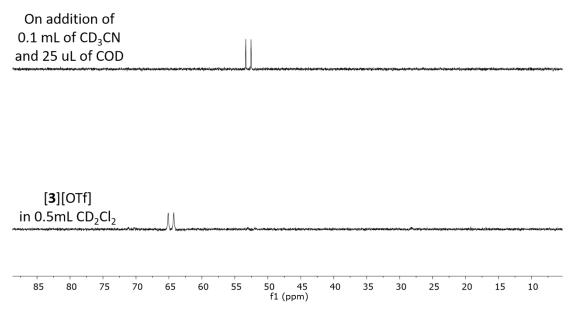


Figure S13. ³¹P{¹H} NMR (202 MHz, 298 K) spectrum of the conversion of complex [**3**][OTf] into [**2**][OTf].

Stability of [**2**][OTf] in the presence of O₂. An NMR sample of [**2**][OTf] was generated by dissolving [**3**][OTf] (4 mg) in CH₂Cl₂ (0.6 ml) and MeCN (0.1 mL) inside a nitrogen-filled glove box. The headspace of the NMR tube was flushed with O₂ for 15 seconds. The sample was then sonicated for 1 minute and subjected to ³¹P{¹H} NMR spectroscopy. The spectrum, displayed in Fig. S14, shows negligible decomposition of [**2**][OTf] even if the phosphine oxide [(o-Ph₂P(O)(C₆H₄)Acr)]⁺ starts appearing at 26 ppm.

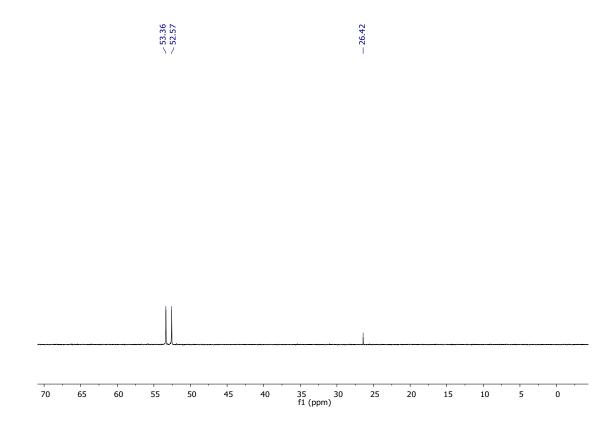


Figure S14. ³¹P{¹H} NMR (202 MHz, 298 K) spectrum of a solution of [**2**][OTf] after exposure to O₂.

Stability of [**3**][OTf] in the presence of O₂. An NMR sample containing [**3**][OTf] (4 mg) in CH₂Cl₂ (0.6 ml) was prepared inside a nitrogen-filled glove box. The headspace of the NMR tube was flushed with O₂ for 15 seconds. The sample was then sonicated for 1 minute and subjected to ${}^{31}P{}^{1}H$ NMR spectroscopy. The spectrum, displayed in Fig. S15, shows almost complete decomposition of [**3**][OTf] and formation of the phosphine oxide [(o-Ph₂P(O)(C₆H₄)Acr)]⁺ which appears at 27 ppm.

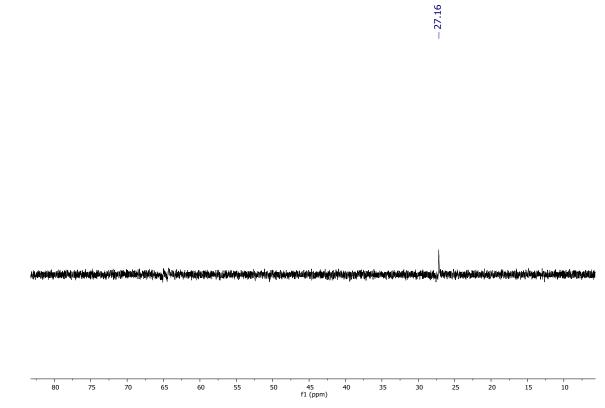


Figure S15. ³¹P{¹H} NMR (202 MHz, 298 K) spectrum of a solution of [**3**][OTf] after exposure to O₂.

Stability of [**2**][OTf] in the presence of H₂O: An NMR sample of [**2**][OTf] was generated by dissolving [**3**][OTf] (4 mg) in CH₂Cl₂ (0.6 ml) and MeCN (0.1 mL) inside a nitrogen-filled glove box. This sample was combined with D₂O (15 μ L), sonicated for 15 min and subjected to ³¹P{¹H} NMR spectroscopy. The spectrum, displayed in Fig. S16, shows that [**2**][OTf] remains largely unperturbed by water.

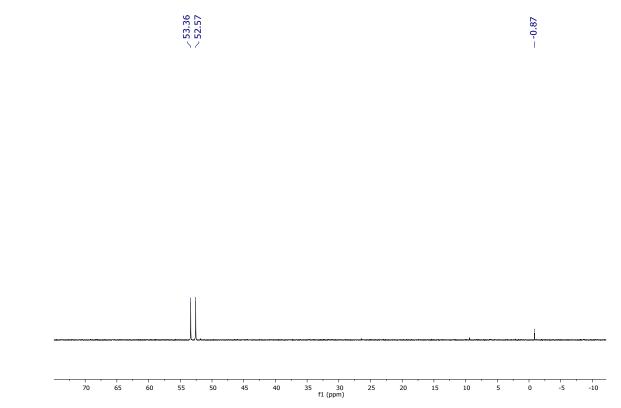


Figure S16. ³¹P{¹H} NMR (202 MHz, 298 K) spectrum of a solution of [**2**][OTf] after addition of water.

Stability of [**3**][OTf] in the presence of H₂O: An NMR sample containing [**3**][OTf] (4 mg) in CH₂Cl₂ (0.6 ml) was prepared inside a nitrogen-filled glove box and combined with D₂O (15 μ L). The tube was sonicated for 15 min and subjected to ³¹P{¹H} NMR spectroscopy. The spectrum, displayed in Fig. S17, shows complete decomposition of [**3**][OTf].

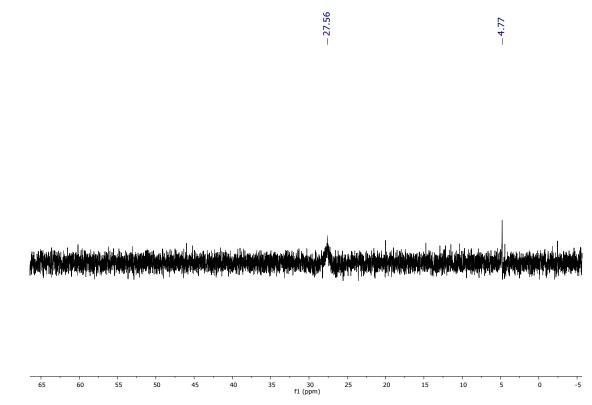


Figure S17. ³¹P{¹H} NMR (202 MHz, 298 K) spectrum of a solution of [**3**][OTf] after addition of water.

3 Computational studies

3.1 General methods

The structures of [**2**][OTf] and [**3**][OTf] were optimized using DFT methods as implemented in Gaussian 16 using the MPW1PW91 functional and a mixed basis set defined as follows: cc-pVTZ-PP for Rh; 6-31G(d',p') for P/Cl; 6-31G(d') for C/N; and 6-31G for H. Frequency calculations, performed using the same level of theory on the optimized geometries, found no imaginary frequencies. NBO analysis was performed using BP86 as the functional and same basis set as mentioned above using the NBO 7.0 program. Pipek-Mezey calculations were carried out on the wave functions derived from the optimized structures using Multiwfn program.² The resulting NBO and Pipek-Mezey orbitals were visualized using the Avogadro program.²

3.2 Geometry optimized structures

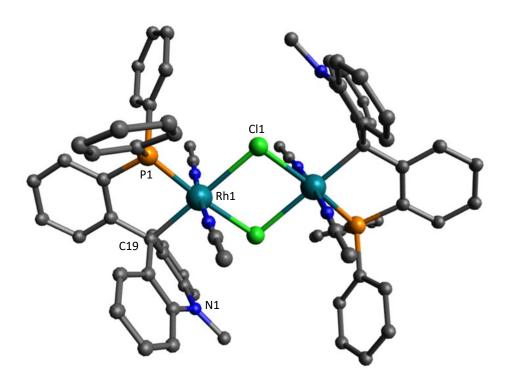


Figure S18. Optimized structure of [2][OTf] (hydrogen atoms omitted for clarity).

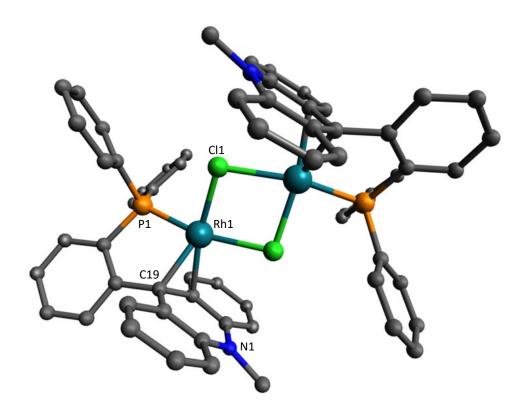


Figure S19. Optimized structure of [3][OTf] (hydrogen atoms omitted for clarity).

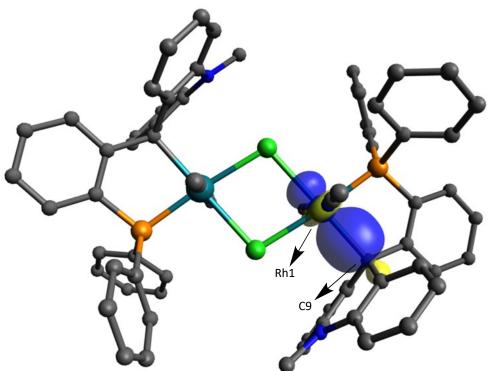


Figure S20. Pipek-Mezey orbital corresponding to the Rh1 \rightarrow C9 bonding in compound [**2**][OTf]. Parentage: Rh1: 47.1%; C9: 36.8%.

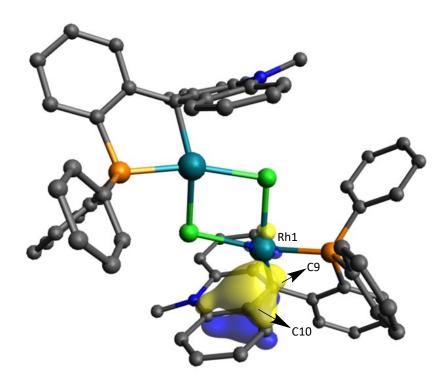


Figure S21. Pipek-Mezey orbital corresponding to the three-centers two-electron bond between C9-C10 and Rh1 in compound [**3**][OTf]. Parentage: Rh1: 17.0%; C10: 37.7%; C9: 12.3%.

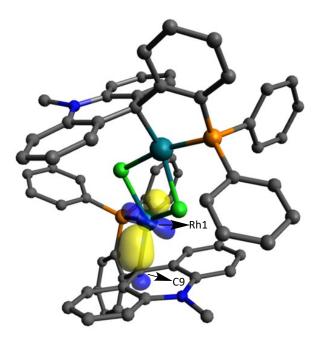


Figure S22. Pipek-Mezey orbital corresponding to the interaction between Rh1 \rightarrow C9 in compound [**3**][OTf]. Parentage: Rh1: 63.7%; C9: 20.5%.

3.5 NBO orbital analysis

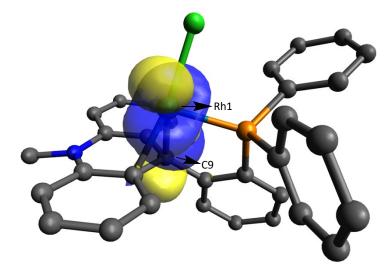


Figure S23. Truncated picture of NBO orbital corresponding to the z-type interaction between Rh1 \rightarrow C9 in compound [**3**][OTf].

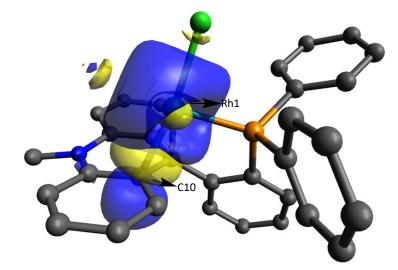


Figure S24. Truncated picture of NBO orbital corresponding to the L-type interaction between C10 \rightarrow Rh1 in compound [**3**][OTf].

3.6 Cartesian coordinates of geometry optimized structures Table S1. Cartesian coordinates for [**2**][OTf].

Atom Number	Coordinates X	Y	Z	Atom Number	Coordinates X	Y	Z
Rh1	-1.95468	0.14881	-0.13534	C74	7.3118	0.21843	1.60102
Rh2	1.95471	-0.14879	0.13531	C75	5.75015	2.42119	-3.29562
CI3	0.05576	1.62139	-0.22375	C76	3.00142	4.03525	0.6197
					3.00142		
Cl4	-0.05576	-1.62133	0.22366	C77	2.85287	5.14642	1.44776
P5	-3.65979	-1.33917	-0.08503	C78	2.00341	-4.28565	3.52186
P6	3.65986	1.33915	0.08508	C79	3.81218	2.75146	2.50102
N7	-1.79882	-0.17406	-2.07169	C80	1.15146	-5.06076	-0.54457
N8	-1.98524	0.39162	1.82423	C81	4.75802	2.98317	-4.09676
N9	-2.11447	4.04664	0.16507	C82	1.78731	-4.57116	2.18099
						-4.57110	
N10	1.79882	0.17403	2.07167	C83	3.18038	5.06454	2.80028
N11	1.98532	-0.39156	-1.82427	C84	3.66261	3.86543	3.32378
N12	2.11426	-4.04654	-0.16517	H85	-2.08491	-2.55079	2.04343
C13	-3.76912	2.39748	0.81283	H86	-5.78146	2.81547	-1.47202
C14	-3.54903	1.65252	-0.47045	H87	-3.84739	1.47142	-3.18337
			2.38369				
C15	-3.11717	-2.52479		H88	-5.30567	1.08689	1.54779
C16	-3.03542	2.57769	-1.53106	H89	-7.92953	1.78903	-2.09312
C17	-5.91015	1.74127	-1.37144	H90	-5.60698	2.24356	3.69662
C18	-1.97924	0.49427	2.97102	H91	-4.21728	4.26088	4.21339
C19	-3.00344	3.54989	1.10689	H92	-2.61762	5.10346	2.56588
610					-2.01702		
C20	-4.1151	-1.97056	1.56755	H93	-3.04109	0.52417	4.76017
C21	-4.84422	0.96056	-0.89491	H94	-1.60566	1.58309	4.7139
C22	-1.6842	-0.39336	-3.19643	H95	-1.40698	-0.18746	4.85874
C23	-3.26049	2.33842	-2.8963	H96	-2.59848	-0.68057	-5.04176
C24	-4.70683	1.96652	1.7634	H97	-1.10135	-1.61883	-4.78438
C24 C25			-1.17317				
	-2.29852	3.73146		H98	-1.01426	0.1391	-5.1
C26	-7.12371	1.16152	-1.72096	H99	-2.94567	2.94484	-4.93524
C27	-4.87501	2.61061	2.9824	H100	-6.40828	-2.08148	-1.02032
C28	-5.05476	-0.41451	-0.75992	H101	-6.21887	-1.48141	1.42414
C29	-4.09545	3.73203	3.27149	H102	-2.66105	-3.46629	4.26019
C30	-3.17594	4.20115	2.343	H103	-8.25821	-0.67228	-1.88161
C31	-3.48158	-2.82617	-1.13928	H104	-6.77672	-2.37337	3.64858
C32	-2.00697	0.6111	4.41279	H105	-2.75056	-4.12476	0.43244
C33	-1.59026	-0.6548	-4.61578	H106	-2.48659	-6.07992	-1.02854
C34	-2.75245	3.16547	-3.88897	H107	-1.6075	4.95718	-4.27961
		-1.0069	-1.11752	H107	-4.20335		
C35	-6.27689				-4.20335	-1.83032	-2.92189
C36	-5.43382	-1.91638	2.03476	H109	-1.56759	6.07712	0.50647
C37	-3.44103	-3.03438	3.63861	H110	-0.28864	5.00516	-0.12075
C38	-7.31179	-0.2186	-1.60098	H111	-0.79601	4.86092	1.55722
C39	-5.75	-2.42112	3.29575	H112	-5.0085	-3.37742	5.0781
C40	-3.00133	-4.03528	-0.6195	H113	-1.24899	5.47415	-1.91597
C41	-2.85278	-5.14651	-1.44748	H114	-3.06896	-5.93457	-3.44187
C42	-2.00359	4.28565	-3.52196	H115	-3.93177	-3.79529	-4.37415
C43	-3.81213	-2.75163	-2.50089	H116	2.08502	2.55079	-2.04342
C44	-1.15174	5.06093	0.54445	H117	5.78138	-2.8156	1.47197
C45	-4.75784	-2.98309	4.09687	H118	3.8474	-1.47153	3.18332
C45 C46	-1.78752	4.57121	-2.18109	H119	5.30561	-1.08694	-1.54787
C47	-3.1803	-5.06472	-2.8	H120	7.92947	-1.78925	2.09311
C48	-3.66255	-3.86565	-3.32358	H121	5.60678	-2.24354	-3.69676
C49	3.76902	-2.39748	-0.8129	H122	4.21695	-4.26076	-4.21355
C50	3.54899	-1.65255	0.4704	H123	2.61729	-5.10331	-2.56602
C51	3.1173	2.52483	-2.38364	H123	3.04142	-0.52316	-4.76014
C52	3.03534	-2.57771	1.53099	H125	1.60638	-1.58263	-4.71426
C53	5.91011	-1.7414	1.37141	H126	1.40705	0.18789	-4.85864
C54	1.97944	-0.49416	-2.97106	H127	2.59862	0.68013	5.04172
C55	3.00326	-3.54983	-1.10698	H128	1.10164	1.61868	4.78453
C56	4.11521	1.97059	-1.56747	H120	1.01426	-0.13927	5.09997
C57	4.8442	-0.96064	0.89489	H130	2.94559	-2.94494	4.93517
C58	1.68417	0.39328	3.19641	H131	6.40836	2.08134	1.0204
C59	3.26043	-2.33849	2.89624	H132	6.21897	1.48145	-1.42402
C60	4.70671	-1.96653	-1.76349	H133	2.66122	3.46634	-4.26014
C61							
	2.29836	-3.73142	1.17308	H134	8.25824	0.67206	1.88167
C62	7.12368	-1.16169	1.72097	H135	6.77689	2.37345	-3.64842
C63	4.87481	-2.61058	-2.98253	H136	2.75067	4.1248	-0.43222
C64	5.05479	0.41442	0.75994	H137	2.4867	6.07986	1.02888
C65	4.09518	-3.73194	-3.27162	H138	1.60728	-4.95718	4.2795
C66	3.17567	-4.20104	-2.34312	H139	4.20339	1.83012	2.92197
C67	3.48165	2.82609	1.13941	H140	1.56724	-6.07697	-0.50663
C68	2.00731	-0.61057	-4.41286	H141	0.28837	-5.00494	0.12064
C69	1.59037	0.65459	4.6158	H142	0.79573	-4.86068	-1.55733
C70	2.75235	-3.16553	3.8889	H143	5.00871	3.37752	-5.07798
C71	6.27694	1.00676	1.11757	H144	1.24872	-5.47405	1.91585
C72	5.43394	1.91642	-2.03465	H145	3.06904	5.93435	3.4422
	3.44119	3.03444	-3.63854	H146	3.93182	3.795	4.37435

Table S2. Cartesian coordinates for [3][OTf].
--

Atom Number	Coordinates X	Y	Z	Atom Number	Coordinates X	Y	Z
Rh1	1.73093	-0.5562	0.12461	C62	-1.62801	2.53395	-4.71933
Rh2	-1.73092	0.55619	0.12463	C63	-4.39958	-4.63613	-0.05897
Cl3	0.54828	1.45949	-0.15879	C64	-2.30619	3.04826	2.67031
Cl4	-0.54827	-1.45949	-0.15883	C65	-2.77417	-1.75051	4.47464
P5	3.5492	0.66826	0.62227	C66	-4.15359	-4.7604	-1.42416
P6	-3.54921	-0.66828	0.62226	C67	-2.64778	1.59295	-4.52672
N7	1.24694	-3.91514	-1.31061	C68	-4.85971	-0.47333	3.12977
N8	-1.2469	3.91515	-1.3105	C69	-6.93056	1.87246	-1.13822
C9	4.96241	-0.27297	-0.00543	H70	-1.14819	3.28469	-3.661
C10	2.65897	-2.11901	-2.15151	H71	-7.28863	0.69212	-0.48285
C11	1.55654	-3.62121	-0.01427	H72	-4.93051	-0.66575	4.50897
C12	6.30517	0.11399	0.07893	H73	6.5764	1.04753	0.56494
C13	1.67029	-3.11066	-2.36551	H74	0.21665	-5.05917	0.89628
C14	3.71718 0.9795	2.3169	-0.14113	H75	1.81628	1.89736	2.55374 -3.21749
C15		-4.31041 -1.8457	1.06472 -0.80995	H76	3.49739 5.32328	3.75714	
C16 C17	3.15348 4.59579	-1.43814	-0.6839	H77 H78	4.38978	-3.14951 3.32805	-1.78094 1.64733
C17 C18	2.52493	-2.58333	0.27099	H78 H79	3.0841	1.6007	-2.07963
C18 C19	3.74226	0.92235	2.4158	H80	0.65807	-5.8741	-0.86769
C19 C20	2.69317	1.55705	3.0996	H81	0.72552	-5.49552	-2.57462
C20 C21	3.68305	3.66496	-2.15075	H82	-0.62995	-4.86704	-1.59114
C22	5.59375	-2.24095	-1.24973	H83	3.93641	-0.66564	-3.08877
C22	4.18501	3.41776	0.58466	H84	3.76174	-1.72943	1.83995
C24	3.46102	2.44888	-1.51326	H85	3.9522	1.45581	6.25525
C25	0.44086	-5.09817	-1.60115	H86	0.86001	-4.56195	3.17755
C26	3.15001	-1.39518	-3.25707	H87	1.20775	-2.68648	-5.70904
C27	2.91403	-2.36914	1.63088	H88	4.77111	5.48467	0.50854
C28	3.8918	1.30451	5.18136	H89	2.60322	-2.85582	3.69542
C29	1.33802	-4.01218	2.3712	H90	1.96192	2.24628	4.99863
C30	1.62795	-2.53376	-4.7194	H91	4.33581	5.70731	-1.92463
C31	4.39952	4.63615	-0.05882	H92	3.03558	-1.02326	-5.36538
C32	2.30626	-3.04837	2.6702	H93	5.67835	-0.02517	2.61851
C33	2.77422	1.75033	4.47469	H94	7.69868	-2.5019	-1.57804
C34	4.15347	4.76049	-1.42399	H95	0.34814	-3.99053	-3.84537
C35	2.64772	-1.59277	-4.52677	H96	8.33228	-0.39885	-0.42029
C36	4.85973	0.47322	3.12975	H97	5.80302	0.31882	5.05518
C37	6.93056	-1.87237	-1.13837	H98	-6.57641	-1.04751	0.56497
C38	1.14815	-3.28456	-3.6611	H99	-0.21652	5.05905	0.89646
C39	7.28862	-0.69205	-0.48297	H100	-1.81626	-1.89745	2.55366
C40	4.93056	0.66557	4.50896	H101	-3.49759	-3.75698	-3.21764
C41	-4.96242	0.273	-0.00537	H102	-5.32328	3.14961	-1.78078
C42	-2.65899	2.11908	-2.15143	H103	-4.38976	-3.32811	1.64724
C43	-1.5565	3.62119	-0.01416	H104	-3.08423	-1.60059	-2.0797
C44	-6.30517	-0.11395	0.079	H105	-0.65803	5.87414	-0.8677
C45 C46	-1.67029	3.11072	-2.36541	H106	-0.72543	5.49544	-2.5746
C46 C47	-3.71723 -0.97941	-2.31688 4.31032	-0.1412 1.06486	H107 H108	0.63 -3.93645	4.86701 0.66575	-1.59103 -3.08873
C47 C48	-3.15348	1.84573	-0.80988	H108	-3.76171	1.72939	1.84002
C48 C49	-4.59579	1.43819	-0.68381	H110	-3.95213	-1.45606	6.25522
C50	-2.5249	2.58333	0.27108	H110 H111	-0.85987	4.56176	3.1777
C51	-3.74224	-0.92244	2.41579	H112	-1.20784	2.68672	-5.70897
C52	-2.69315	-1.55717	3.09955	H112 H113	-4.77116	-5.48467	0.50837
C52	-3.6832	-3.66485	-2.15088	H113	-2.60314	2.85568	3.69552
C54	-5.59375	2.24104	-1.24959	H115	-1.96187	-2.24648	4.99854
C55	-4.18504	-3.41777	0.58455	H116	-4.33597	-5.7072	-1.92483
C56	-3.46113	-2.44879	-1.51335	H117	-3.03567	1.02348	-5.36534
C57	-0.4408	5.09815	-1.60108	H118	-5.67833	0.02508	2.61856
C58	-3.15005	1.39529	-3.25701	H119	-7.69868	2.50202	-1.57785
C59	-2.91399	2.3691	1.63096	H120	-0.34819	3.99069	-3.84525
C60	-3.89174	-1.30471	5.18134	H121	-8.33228	0.39893	-0.42017
C61	-1.33792	4.01205	2.37133	H122	-5.80297	-0.31902	5.05522

4 X-ray diffraction analysis

4.1 Experimental details

The crystallographic measurements were performed at 110(2) K using a three circle (Quest; Mo K α radiation, λ = 0.71073 Å) and kappa (Venture; Cu K α radiation, λ = 1.54178 Å) Bruker-AXS with IµS source and a Photon III area detector diffractometer. In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop and cooled to 110(2) K in a cold nitrogen stream (OXFORD Crysosystems). The data was collected and reduced using Bruker AXS APEX 3 software³ and solved by direct methods. Semiempirical absorption corrections were applied using SADABS.⁴ Subsequent refinement using a difference map on F² using the SHELXTL/PC package (version 6.1 & OLEX²).⁵ Thermal parameters were refined anisotropically for all nonhydrogen atoms to convergence. H atoms were added at idealized positions using a riding model. The results of these X-ray measurements are provided as CIF files. CCDC 2421484-2421486 contain the supplementary crystallographic data for this paper.

4.2 Table showing the compounds characterized by X-ray diffraction and their corresponding CCDC numbers.

Compound	CCDC
[1][OTf]	2421484
[2][OTf]	2421485
[3][OTf]	2421486

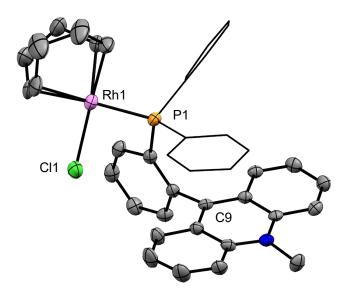


Figure S25. Solid-state structure of [1][OTf]. Crystallized by layering diethyl ether over a solution of [1][OTf] in dichloroethane. Hydrogen atoms and solvent molecules were omitted for clarity. Selelected bond length and angles: Rh1-P1 = 2.3191(12) Å, Rh1-Cl1 = 2.3752(14) Å, Rh1-C9 = 5.381(4) Å, Cl1-Rh1-P1 = $89.74(5)^{\circ}$.

5 References

- 1. L. C. Wilkins, Y. Kim, E. D. Litle and F. P. Gabbaï, *Angew. Chem. Int. Ed.*, 2019, **58**, 18266-18270.
- 2. a) M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *Journal of Cheminformatics*, 2012, **4**, 17; b) J. Pipek and P. G. Mezey, *J. Chem. Phys.*, 1989, **90**, 4916-4926.
- 3. Bruker, 2019, APEX3 (v2019.2011-2010), Bruker AXS Inc., Madison, Wisconsin, USA.
- 4. G. M. Sheldrick, *Journal*, 2016.
- 5. a) G. M. Sheldrick, *Acta Crystallographica Section A*, 2015, **71**, 3-8; b) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339-341.