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(1) Details of all reaction components

(1.1) Ligands 

Our initial dataset consists of previously reported experiments (refs. [1], [2], [3], [4]). There 

are 77 chiral ligands in this dataset, which can be classified into four categories: (a) mono-N-

protected amino acid (MPAA) [LA], (b) mono-N-protected α-amino-O-alkyl hydroxamic acid 

(MPAHA) [LB], (c) mono-N-protected amino-alkyl amine (MPAAM) [LC], and (d) N-acyl-

protected amino oxazoline (APAO) [LD].
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Fig. S1. Notations used for the 77 chiral ligands in our manually curated dataset.

(1.2) Coupling partners
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Fig. S2. Notations used for the 51 coupling partners in our manually curated dataset.

(1.3) Substrates
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Fig. S3. Notations used for the 5 cyclopropyl and cyclobutyl substrates in our manually 

curated dataset.

(1.4) Bases

NaTFA, Na2CO3, NaHCO3, K2HPO4, Li3PO4, Na3PO4, K3PO4, LiH2PO4, Li2CO3, K2CO3, 

Cs2CO3, LiOAc, NaOAc, KOAc, CsOAc, NaH2PO4, Na2HPO4, KHCO3, KH2PO4, 

K2HPO4.3H2O

(1.5) Pd catalyst precursors

Pd(MeCN)2Cl2, Pd(TFA)2, Pd(C3H5)Cl2, Pd(PhCN)2Cl2, Pd(OTf)2(MeCN)4, Pd(OAc)2, 

Pd(BF4)2(MeCN)4, Pd(PPh3)2Cl2, Pd(OPiv)2

(1.6) Solvents

Toluene, CHCl3, HFIP, t-AmylOH + H2O, t-BuOH + H2O, i-PrOH + H2O, i-BuOH + H2O, 

THF + H2O, HFIP + H2O, t-AmylOH, DCE, DCM, DMF, C6F6, TBME, MeCN, THF, 

Dioxane, Et2O, CCl4

(1.7) Additives

Ag2CO3, AgOAc, Ag2O

2. Overview of ULMFiT

Our approach leverages the Universal Language Model Fine-Tuning (ULMFiT) strategy, 

developed by Howard and Ruder, which can enable efficient and effective transfer learning 

(TL) for various NLP tasks, including text classification, sentiment analysis, and language 

modelling.[5] This approach achieves high performance across a range of tasks with minimal 

labeled data. Inspired by the success of language models,[6] we adapted the ULMFiT for the 

molecular domain by utilizing SMILES (Simplified Molecular Input Line Entry System) 
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strings.[7,8,9,10] Our approach consists of two stages: (a) pre-training, the model is pre-

trained on general-domain data to learn universal representations, and (b) fine-tuning, the pre-

trained model is fine-tuned for a specific task in the molecular domain, enabling the model to 

learn task-specific patterns and relationships.

(2.1) General-domain CLM pre-training

The Chemical Language Model (CLM) is trained on a large dataset of ~1M unlabeled 

molecules from the ChEMBL dataset represented first in the form of the corresponding 

SMILES strings. SMILES is a one-line textual representation of a molecule, using atomic 

symbols (e.g., C for carbon and O for oxygen) to denote atoms and implying bonds between 

them based on their order. Additionally, SMILES notation indicates branching with 

parentheses and ring structures with numbers, showing bond connections between atoms. To 

input molecules in the form of the SMILES strings, we first divide the SMILES into 

individual characters or tokens, each representing a single atom or specific chemical 

environment (e.g., [OH-] and stereochemical information). Each token is then converted into 

a unique integer using a string-to-integer dictionary, which contains N entries, including the 

beginning of string (BOS) and the end of string (EOS) tokens to indicate the start and end of 

each SMILES string, respectively.

This pre-training step enables the model to learn molecular structure and connections, 

as well as SMILES grammar and meaning, by predicting the next character. We used AWD-

LSTM (Long-Short Term Memory) as the core architecture, which is a type of recurrent 

neural network (RNN) capable of handling sequential data and learning both the short- and 

long-term dependencies within a sequence. This architecture consists of an embedding layer, 

an encoder with three LSTM layers, and a decoder layer. The embedding layer converts 

numerical tokens into 400-dimensional real-valued vectors, representing each character in the 

SMILES string in a 400-dimensional space (see Fig. S4). These vectors capture the semantic 
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relationships among the characters. The output from the embedding layer is fed into the first 

of the three LSTM layers in the encoder, each with 1152 hidden units. The output of the final 

LSTM layer is decoded by a fully connected linear layer, followed by a softmax function, 

which assigns the probability for every token in the vocabulary to be the next token.

The pre-training dataset typically encompasses a broad range of the chemical space, 

but the target task may exhibit a distinct distribution. To leverage the knowledge acquired 

during pre-training, the pre-trained weights are used to fine-tune the target task by adopting a 

TL approach. This enables the pre-trained model to adapt to the new task while retaining the 

valuable information learned during pre-training. This pre-trained model is then used for the 

following two different downstream tasks.

(2.2) Fine-tuning of target task regressors

Our target task involves predicting the %ee of asymmetric β-C(sp3)  H bond activation 

reactions, which is a regression problem. In this phase, we utilize the embedding layer of the 

pre-trained model and three LSTM layers while modifying the decoder with the removal of 

softmax layers for the regression tasks (shown in Fig. S4). To generate a feature vector for 

the decoder unit, we employ concat pooling by concatenating the last hidden state with max-

pooled and mean-pooled representations of all the hidden states in the third LSTM layer, 

resulting in a 1200-dimensional vector for each character. This vector is then passed to a 

feed-forward neural network serving as the linear decoder, comprising two linear layers with 

50 activations and a final output dimension of 1 for regression. The two linear layers of the 

regressor are initialized with random weights and trained from scratch. Fine-tuning the 

regressor is crucial for effective TL. To achieve this, we implement a gradual unfreezing 

protocol, allowing the model to adapt to the target task while retaining the knowledge gained 

during pre-training. 
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Fig. S4. Overview the ULMFiT method for pre-training of general domain CLM and use 

of this model for fine tuning two downstream tasks, such as the building of a regression 

model to predict %ee and the generation of novel chemical entities (ligands) from a small 

subset of chiral ligands.

(2.3) Fine-tuning of CLM

Recognizing the significance of TL in low-data settings and the crucial role of chiral ligands 

in inducing chirality in products, we aim to explore the chemical space of a small dataset 

containing the SMILES strings of 77 chiral ligands using the TL method. Following the TL 

approach, we fine-tune the pre-trained CLM on this dataset to learn task-specific features. 

The primary objective is to adapt the model to generate SMILES strings that resemble the 
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ligands of interest, enabling the model to capture the unique characteristics of these chiral 

ligands.

Fig. S5. Effect of temperature sampling in the generation of new molecules from the fine-

tuned CLM

In LSTM-based chemical language models, random sampling methods are generally 

employed to introduce diversity in generated molecules.[11] The key parameter controlling 

this diversity is the temperature (τ), which regulates the randomness of the sampling process. 

The random sampling method involves selecting the next character in a sequence based on 

the learned probability distribution. The probability of selecting each possible next character 

(i) is computed using the softmax function as

𝑃𝑖 =  
𝑒

(𝑧𝑖)

∑
𝑗

𝑒
(𝑧𝑗)

 
  

where, zi is the output of the LSTM output layer, is the sampling probability of token i as 𝑃𝑖 

determined by the CLM, variable j represents all possible indices corresponding to the 

different characters in the vocabulary. To introduce randomness, a temperature parameter τ is 

applied to the logits zi before computing the softmax probabilities as,

𝑃𝑖 =  
𝑒

(𝑧𝑖/𝜏)

∑
𝑗

𝑒
(𝑧𝑗/𝜏)
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A higher τ flattens the probability distribution, increasing the likelihood of selecting less 

probable characters, while a lower temperature makes the distribution more peaked, favoring 

more probable characters (see Fig. S5). By adjusting τ, the model can generate more diverse 

or more deterministic sequences, allowing for control over the trade-off between novelty and 

accuracy in molecule generation tasks.

3. Hyperparameter optimization for the target task regressor

Optimizing hyperparameters is crucial for fine-tuning the target-task regressor. In this case, 

the data is divided into 70% for training, 10% for validation, and 20% for testing. 

Hyperparameter tuning is carried out using the validation set, and the models are assessed 

using the root mean squared error (RMSE) as the error metric.

Table S1. Train and Validation RMSEs Obtained by Varying Number of Augmented 

SMILES.i Shown in Bold Font is the Optimal Model

No. of augmented SMILES train validation
0 81.52 81.81
25 7.69 9.16
50 7.47 9.87
100 7.25 8.78
200 7.45 9.25
300 7.20 9.32

i seed =1234, σg = 0.0, batch size = 128, dropout ratio = 0.0, epoch = [6, 7, 7, 7], learning rate 
= [3e-2, slice(5e-4/(2.64),5e-3), slice(5e-4/(2.64),5e-3), (5e-6/(2.64),5e-5)]. The slice() 
function defines a range of values and is commonly used to assign distinct learning rates to 
different layers in a deep learning model. 

Table S2. Train and Validation RMSEs Obtained by Varying the Noise in the Experimental 

%ee (σg).i Shown in Bold Font is the Optimal Model 

σg train validation
0.0 7.25 8.78
0.1 7.27 8.61
0.3 7.20 7.89
0.5 7.23 8.08
0.7 7.29 8.87
0.9 7.36 8.19

i seed =1234, augmented SMILES = 100, batch size = 128, dropout ratio = 0.0, epoch = [6, 7, 
7, 7], learning rate = [3e-2, slice(5e-4/(2.64),5e-3), slice(5e-4/(2.64),5e-3),slice(5e-6/(2.64),5e-
5)]
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Table S3. Train and Validation RMSEs Obtained by Varying Dropout Rate.i Shown in Bold 

Font is the Optimal Model

dropout rate train validation
0.0 7.20 7.89
0.1 7.72 8.55
0.2 8.01 8.43
0.3 8.35 8.83
0.4 8.49 9.56
0.5 8.78 9.56
0.6 9.09 10.53
0.7 9.60 10.34
0.8 10.11 10.32
0.9 10.87 11.59

i seed =1234, σg = 0.3, augmented SMILES = 100, batch size = 128, epoch = [6, 7, 7, 7], 
learning rate = [3e-2, slice(5e-4/(2.64),5e-3), slice(5e-4/(2.64),5e-3), slice(5e-6/(2.64),5e-5)]

Table S4. Train and Validation RMSEs Obtained by Varying Number of Epochs.i Shown in 

Bold Font is the Optimal Model

epoch train validation
[2, 2, 2, 4] 8.42 10.67
[3, 3, 3, 4] 7.69 8.19
[3, 4, 5, 6] 7.43 8.07
[4, 4, 4, 5] 7.48 8.6
[5, 6, 6, 6] 7.07 7.93
[6, 6, 6, 6] 7.21 8.18
[6, 7, 7, 7] 7.20 7.89
[7, 8, 8, 8] 7.55 8.96
[8, 8, 8, 8] 7.12 8.22

[8, 9, 10, 10] 6.94 8.75
[9, 10, 10, 10] 6.75 8.17

i seed =1234, σg = 0.3, augmented SMILES = 100, batch size = 128, dropout ratio = 0.0, 
learning rate = [3e-2, slice(5e-4/(2.64),5e-3), slice(5e-4/(2.64),5e-3), slice(5e-6/(2.64),5e-5)]

Table S5. Train and Validation RMSEs Obtained by Varying Learning Rate.i Shown in Bold 

Font is the Optimal Model

learning rate train validation
[0.01, 0.01, 0.01, 0.001] 6.80 9.94
[0.01, 0.01, 0.01, 0.0001] 6.89 9.97
[0.01, 0.01, 0.001, 1e-05] 6.93 10.55

[0.145, 0.01, 0.001, 0.0001] 7.02 9.84
[0.145, 0.001, 0.001, 0.001] 7.24 8.21
[0.01, 0.001, 0.0001, 1e-05] 7.55 8.63

[3e-2,slice(5e-3/(2.64),5e-3),slice(5e-4/(2.64),5e- 7.20 7.89
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4),slice(5e-5/(2.64),5e-5)]
[3e-2,slice(5e-3/(2.64),5e-3),slice(5e-3/(2.64),5e-

3),slice(5e-5/(2.64),5e-5)] 7.00 8.22
[3e-1,slice(5e-2/(2.64),5e-2),slice(5e-2/(2.64),5e-

2),slice(5e-4/(2.64),5e-4)] 6.78 9.36
[3e-2,slice(5e-4/(2.64),5e-3),slice(5e-4/(2.64),5e-

3),slice(5e-6/(2.64),5e-5)] 7.10 7.52
[3e-2,slice(5e-4/(2.64),5e-4),slice(5e-4/(2.64),5e-

4),slice(5e-6/(2.64),5e-6)] 7.95 8.11
i seed =1234, σg = 0.3, augmented SMILES = 100, batch size = 128, epoch = [6, 7, 7, 7], 
dropout ratio = 0.0

Table S6. Train, Validation and Test RMSEs Obtained by Varying Split.i Shown in Bold 

Font is the Optimal Model

split train validation test (canonical) test (TTA)
1 7.22 6.85 8.32 8.70
2 6.78 8.39 6.96 6.42
3 6.71 11.46 6.46 5.88
4 6.39 8.81 6.40 6.80
5 6.79 8.51 7.92 6.98
6 6.72 8.81 9.03 8.61
7 7.05 6.23 8.19 6.86
8 7.67 7.34 7.33 8.14
9 6.73 13.31 8.89 8.72
10 6.71 8.98 7.59 5.89
11 7.04 6.14 6.70 7.17
12 6.79 7.96 11.75 12.14
13 7.37 7.21 6.83 5.94
14 6.65 8.59 7.20 7.44
15 7.03 7.52 10.04 9.54
16 6.67 6.61 8.34 8.31
17 6.21 8.55 7.57 7.03
18 6.27 5.30 7.51 7.98
19 6.14 9.99 9.33 7.65
20 6.73 5.69 8.59 8.45
21 6.81 6.93 7.80 7.99
22 7.37 9.11 7.79 7.50
23 7.21 6.70 6.93 7.26
24 6.46 7.18 7.14 6.87
25 7.18 5.13 5.86 5.89
26 6.69 6.97 8.76 8.56
27 7.29 8.02 6.67 6.26
28 7.03 6.70 6.18 6.18
29 6.55 8.11 8.59 8.77
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30 7.01 5.74 7.29 7.13
avg. ± std. dev. 6.84±0.36 7.76±1.74 7.80±1.23 7.57±1.31

i σg = 0.3, augmented SMILES = 100, batch size = 128, dropout ratio = 0.0, learning rate = 
[3e-2,slice(5e-4/(2.64),5e-3),slice(5e-4/(2.64),5e-3),slice(5e-6/(2.64),5e-5)], epoch = [6, 7, 7, 
7]

4. Hyperparameter optimization for the target task-regressor without TL

Table S7. Train and Validation RMSEs Obtained by Varying Number of Augmented 

SMILES.i Shown in Bold Font is the Optimal Model

No. of augmented SMILES train validation
0 82.89 83.89
25 68.86 67.36
50 40.66 43.11
100 14.84 14.64
200 13.35 14.75
300 6.99 9.73

i seed =1234, σg = 0.0, batch size = 128, dropout ratio = 0.0, epoch = [25], learning rate = [1e-
3]

Table S8. Train and Validation RMSEs Obtained by Varying σg.i Shown in Bold Font is the 

Optimal Model

σg train validation
0.0 6.99 9.73
0.1 7.00 11.58
0.3 7.03 10.19
0.5 7.01 10.50
0.7 7.03 10.17
0.9 7.06 10.34

i seed =1234, augmented SMILES = 300, batch size = 128, dropout ratio = 0.0, epoch = [25], 
learning rate = [1e-3]

Table S9. Train and Validation RMSEs Obtained by Varying Dropout Rate.i Shown in Bold 

Font is the Optimal Model

dropout rate train validation
0.0 6.99 9.73
0.1 7.12 7.61
0.2 7.40 8.57
0.3 7.23 11.36
0.4 7.29 9.24
0.5 7.38 9.92
0.6 7.45 9.46
0.7 7.62 9.83
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0.8 13.30 16.14
0.9 12.73 16.90

i seed =1234, augmented SMILES = 300, σg = 0.0, batch size = 128, epoch = [25], learning 
rate = [1e-3]

Table S10. Train and Validation RMSEs Obtained by Varying Number of Epochs.i Shown in 

Bold Font is the Optimal Model

epoch train validation
15 7.87 9.90
25 7.12 7.61
35 6.97 8.57

i seed =1234, augmented SMILES = 300, σg = 0.0, dropout ratio = 0.1, batch size = 128, 
learning rate = [1e-3]

Table S11. Train and Validation RMSEs Obtained by Varying Learning Rate.i Shown in 
Bold Font is the Optimal Model

learning rate train validation
0.1 14.01 11.65
0.01 13.74 13.86
0.001 7.12 7.61
0.0001 69.32 69.51

i seed =1234, augmented SMILES = 300, σg = 0.0, dropout ratio = 0.1, batch size = 128, 
epoch = [25]

Table S12. Train, Validation, and Test RMSEs Obtained by Varying Split.i Shown in Bold 

Font is the Optimal Model

split train validation test (canonical) test (TTA)
1 7.25 6.69 8.59 8.26
2 8.67 11.22 15.83 12.91
3 7.72 11.56 7.68 6.55
4 7.14 12.62 6.92 7.52
5 6.82 10.45 6.97 7.84
6 6.41 7.17 10.34 10.42
7 6.75 6.32 7.82 7.47
8 8.25 7.95 12.25 12.75
9 6.72 14.25 10.03 9.37
10 7.14 8.62 8.10 6.96
11 6.80 11.14 7.44 7.28
12 6.99 6.85 13.21 12.65
13 7.22 7.14 6.33 6.40
14 7.13 7.84 8.44 8.81
15 8.07 6.15 12.87 12.73
16 6.48 7.71 8.17 8.08
17 5.93 9.80 5.63 5.82
18 6.62 6.00 8.47 8.66
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19 6.26 8.27 7.41 5.96
20 6.90 5.91 9.10 9.38
21 6.62 8.42 8.92 7.07
22 7.82 10.35 11.10 9.97
23 6.99 8.53 9.74 9.31
24 6.93 10.79 11.11 10.24
25 7.49 6.18 6.83 7.06
26 6.35 7.80 8.98 8.68
27 7.04 5.72 6.72 6.09
28 6.65 6.95 7.40 6.22
29 6.68 4.90 8.59 9.11
30 7.13 6.66 8.53 10.04

avg. ± std. dev. 7.03±0.59 8.33±2.26 8.98±2.25 8.65±2.08
i augmented SMILES = 300, σg = 0.0, dropout ratio = 0.1, batch size = 128, learning rate = 
[1e-3], epoch = [25]

5. Analysis of the encoder output of the fine-tuned regressor

We have analyzed the final hidden state of the encoder to understand the features learned by 

the fine-tuned regressor. The encoder processes the input data and condenses it into a 400 

dimensional fixed-length vector, capturing essential information such as contextual 

relationships and temporal dependencies. To visualize this high-dimensional data, we applied 

Uniform Manifold Approximation and Projection (UMAP) for dimensionality reduction,[12] 

and the k-means clustering of the first two principal components.

To determine the optimal number of clusters (k), we used the Silhouette score, a 

valuable metric for evaluating the quality and separation of clusters produced by the k-means 

clustering. The Silhouette score ranges from -1 to 1, (a) high scores (closer to 1) indicate 

well-separated and cohesive clusters, (b) low scores indicate overlapping or poorly defined 

clusters, and (c) scores around 0 indicate uncertain or noisy clusters. Fig. S6 illustrates the 

effect of different k values on clustering performance. We note that the highest Silhouette 

score belongs to when k was set to 7, revealing seven distinct groups of reactions in the 

training set. Further details on how various samples(reactions) are distributed among the 

seven clusters can be found in Table S13.
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Fig. S6. k-means clustering of the encoder output for different values of k 

Table S13. Identities of Samples in Different Clusters (see Fig. S1-S3 for the details of 

sample nomenclature) 

cluster label %ee description
0 92 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-NaOAc-Ag2CO3-CHCl3
0 92 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-KOAc-Ag2CO3-CHCl3
0 80 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-Cs2CO3-Ag2CO3-CHCl3
0 81 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-NaTFA-Ag2CO3-CHCl3
0 88 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-K3PO4-Ag2CO3-CHCl3
0 74 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-K2CO3-Ag2CO3-CHCl3
0 88 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-Na2HPO4-Ag2CO3-CHCl3
0 90 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-Li3PO4-Ag2CO3-CHCl3
0 90 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-KH2PO4-Ag2CO3-CHCl3
0 76 S4-LD-2-CP2-Pd(OTf)2(MeCN)4-NaH2PO4-Ag2CO3-CHCl3
0 82 S4-LD-2-CP2-Pd(PhCN)2(Cl)2-NaH2PO4-Ag2CO3-CHCl3
0 88 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-NaHCO3-Ag2CO3-CHCl3
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0 90 S4-LD-2-CP2-Pd(MeCN)2(Cl)2-NaH2PO4-Ag2CO3-CHCl3
1 82 S3-LC-15-CP23-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 72 S3-LC-1-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 90 S3-LC-15-CP6-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 70 S3-LC-14-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 70 S3-LC-19-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 86 S3-LC-15-CP15-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 84 S3-LC-15-CP22-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 90 S3-LC-15-CP17-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 90 S3-LC-15-CP8-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 84 S3-LC-15-CP42-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 84 S3-LC-18-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 64 S3-LC-7-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 72 S3-LC-15-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-THF_H2O
1 86 S3-LC-15-CP18-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 50 S3-LD-1-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 84 S3-LC-15-CP14-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 74 S3-LC-9-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 70 S3-LC-20-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 70 S3-LC-17-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 50 S3-LA-2-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
1 62 S3-LC-10-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
2 76 S5-LB-27-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 43 S5-LB-3-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 80 S5-LB-13-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 79 S5-LB-19-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 81 S5-LB-26-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 82 S5-LB-22-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 84 S5-LB-16-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 74 S5-LB-8-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 82 S5-LB-11-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 80 S5-LB-12-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 83 S5-LB-14-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 24 S5-LA-22-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 60 S5-LB-2-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 31 S5-LA-3-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 34 S5-LA-23-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 78 S5-LB-24-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 78 S5-LB-4-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 81 S5-LB-17-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 79 S5-LB-5-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 75 S5-LB-28-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 76 S5-LB-21-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 68 S5-LB-10-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
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2 78 S5-LB-20-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 29 S5-LA-25-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
2 79 S5-LB-1-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
3 56 S2-LC-11-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 90 S2-LC-1-CP40-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-8-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 82 S2-LC-16-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 80 S2-LC-1-CP25-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP33-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 94 S2-LC-1-CP26-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 68 S2-LA-2-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP35-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 90 S2-LC-2-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-14-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP37-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 82 S2-LC-12-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP29-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP24-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 90 S2-LC-17-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 90 S2-LC-1-CP43-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 88 S2-LC-1-CP30-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP31-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 12 S2-LC-4-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 90 S2-LC-15-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP28-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 96 S2-LC-1-CP41-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP27-Pd(OAc)2-NaHCO3-AgOAc-HFIP
3 94 S2-LC-1-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 92 S2-LC-1-CP44-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
3 86 S2-LC-1-CP34-Pd(OAc)2-NaHCO3-AgOAc-HFIP
3 88 S2-LC-9-CP1-Pd(OAc)2-Na2CO3-Ag2CO3-HFIP
4 88 S2-LA-19-CP3-Pd(MeCN)4(BF4)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 96 S2-LA-13-CP50-[Pd(allyl)Cl]2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 88 S2-LA-19-CP3-Pd(OAc)2-Na2CO3-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-13-CP46-[Pd(allyl)Cl]2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 96 S2-LA-19-CP15-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 96 S2-LA-13-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 86 S2-LA-12-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 98 S2-LA-19-CP21-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 88 S2-LA-19-CP3-Pd(OAc)2-KH2PO4-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-8-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 96 S2-LA-13-CP45-[Pd(allyl)Cl]2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-2-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 90 S2-LA-19-CP20-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
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4 92 S2-LA-17-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-19-CP16-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 88 S2-LA-19-CP3-Pd(PhCN)2(Cl)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 90 S2-LA-6-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 82 S2-LA-19-CP3-Pd(PPh3)2(Cl)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 96 S2-LA-19-CP4-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 92 S2-LC-1-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-19-CP7-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 92 S2-LA-19-CP3-Pd(OAc)2-K2HPO4-AgOAc-t-BuOH_H2O
4 78 S2-LA-19-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-HFIP_H2O
4 90 S2-LA-21-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 86 S2-LA-19-CP3-Pd(MeCN)2(Cl)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 88 S2-LA-4-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 92 S2-LA-1-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 84 S2-LA-19-CP19-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 88 S2-LA-19-CP3-Pd(OAc)2-KOAc-Ag2CO3-t-BuOH_H2O
4 98 S2-LA-19-CP5-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 80 S2-LA-3-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 84 S2-LA-18-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-10-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 98 S2-LA-19-CP23-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 90 S2-LA-5-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-19-CP18-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-20-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 90 S2-LA-11-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 90 S2-LA-13-CP49-[Pd(allyl)Cl]2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 94 S2-LA-7-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-BuOH_H2O
4 86 S2-LA-19-CP3-Pd(OAc)2-K2HPO4-Ag2O-t-BuOH_H2O
4 88 S2-LA-19-CP3-Pd(OAc)2-K2HPO4-Ag2CO3-t-AmylOH_H2O
5 88 S5-LB-18-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-THF_H2O
5 89 S5-LB-18-CP7-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 90 S5-LB-18-CP14-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 45 S5-LA-27-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 89 S5-LB-18-CP3-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 81 S5-LB-18-CP4-Pd(OPiv)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 77 S5-LB-18-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-i-PrOH_H2O
5 90 S5-LB-18-CP8-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 93 S5-LB-18-CP13-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 85 S1-LB-18-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 80 S5-LB-18-CP4-Pd(OAc)2-Li2CO3-Ag2CO3-t-AmylOH_H2O
5 89 S5-LB-18-CP10-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 92 S5-LB-18-CP5-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
5 88 S5-LB-18-CP4-Pd(OAc)2-Na2HPO4-Ag2CO3-t-AmylOH_H2O
5 88 S5-LB-18-CP4-Pd(OAc)2-Na2CO3-Ag2CO3-t-AmylOH_H2O
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5 88 S5-LB-18-CP4-Pd(OAc)2-KHCO3-Ag2CO3-t-AmylOH_H2O
5 69 S5-LB-18-CP4-Pd(OAc)2-KOAc-Ag2CO3-t-AmylOH_H2O
6 82 S4-LD-2-CP2-Pd(OAc)2-NaH2PO4-Ag2CO3-C6F6
6 92 S4-LD-2-CP2-Pd(OAc)2-NaH2PO4-Ag2CO3-t-AmylOH
6 88 S4-LD-2-CP2-Pd(OAc)2-NaH2PO4-Ag2CO3-DCE
6 88 S4-LD-2-CP2-Pd(OAc)2-NaH2PO4-Ag2CO3-THF
6 76 S4-LD-2-CP2-Pd(OAc)2-NaH2PO4-Ag2CO3-Et2O
6 80 S4-LD-2-CP2-Pd(OAc)2-NaH2PO4-Ag2CO3-CCl4
6 66 S4-LD-2-CP2-Pd(OAc)2-NaH2PO4-Ag2CO3-MeCN
6 89 S4-LD-2-CP2-Pd(OAc)2-NaH2PO4-Ag2CO3-DCM

6. Hyper-parameter tuning for the target task generator

We have evaluated the model training by measuring three key aspects; (1) validity - the 

percentage of generated SMILES strings that can be converted back into molecular 

structures, (2) uniqueness - the percentage of distinct SMILES strings without duplicates, and 

(3) novelty - the percentage of generated SMILES strings not found in the training data. High 

validity shows the model can generate chemically meaningful SMILES strings; high 

uniqueness means the generation is diverse, and high novelty indicates the model can create 

new molecules from scratch. In the context of the ULMFiT-based text generation, 

performance indicators such as train loss, validation loss, accuracy, and error rate are 

considered. Train loss indicates how well the model fits the training data, with lower values 

being better. Validation loss measures how well the model generalizes to unseen data. 

Accuracy reflects the proportion of correctly predicted tokens in the validation set, where 

higher values are better, while error rate represents the proportion of incorrectly predicted 

tokens, with lower values being desirable. These metrics provide insights into the model 

performance, helping to identify issues such as overfitting (high train accuracy but low valid 

accuracy) or underfitting (low train accuracy).

Table S14. Performance Obtained by Varying Number of Augmented SMILES.i Shown in 

Bold Font is the Optimal Model

augmentation
train 
loss

valid 
loss accuracy error rate validity uniqueness novelty
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0 0.675864 0.964036 0.728125 0.271875 0 0 0
25 0.225234 0.490671 0.846763 0.153237 0.96 0.96 0.96
50 0.227066 0.360535 0.869922 0.130078 0.98 0.97 0.96
100 0.226238 0.318261 0.876079 0.123921 0.99 0.99 0.99
200 0.224793 0.265236 0.885532 0.114468 1 1 0.99

iaugmented SMILES = 100, batch size = 128, dropout ratio = 0.0, learning rate = [1e-1, 1e-2, 
1e-3], epoch = [5,6,6]  

Table S15. Performance Obtained by Varying the Dropout Rate.i Shown in Bold Font is the 

Optimal Model

dropout 
rate train loss valid loss accuracy error rate validity uniqueness novelty
0.0 0.224793 0.265236 0.885532 0.114468 1 1 0.99
0.1 0.229315 0.264232 0.886607 0.113393 0.99 0.98 0.97
0.2 0.231952 0.26415 0.887054 0.112946 1 0.99 0.99
0.3 0.231593 0.263500 0.887094 0.112906 1 0.99 0.99
0.4 0.233399 0.263111 0.887378 0.112622 0.99 0.99 0.99
0.5 0.23423 0.263813 0.887297 0.112703 1 1 1
0.6 0.23289 0.26373 0.8874 0.112600 0.99 0.99 0.99
0.7 0.234257 0.263637 0.888129 0.111871 0.97 0.97 0.97
0.8 0.23761 0.26403 0.88823 0.11177 0.99 0.99 0.99
0.9 0.239185 0.264236 0.887886 0.112114 1 1 0.99

iaugmented SMILES = 200, batch size = 128, learning rate = [1e-1, 1e-2, 1e-3], epoch = 
[5,6,6]  

Table S16. Performance Obtained by Varying Number of Epochs.i Shown in Bold Font is the 

Optimal Model

epoch
train 
loss

valid 
loss accuracy error rate validity uniqueness novelty

[4,4,4] 0.24251 0.26811 0.88748 0.11252 0.99 0.99 0.97
[4,5,5] 0.23857 0.2654 0.88785 0.11216 1 1 1
[4,5,6] 0.23813 0.26321 0.88766 0.11234 0.98 0.98 0.98
[5,5,5] 0.23888 0.26699 0.88683 0.11317 1 1 0.98
[5,6,6] 0.23761 0.26403 0.88823 0.11177 0.99 0.99 0.99
[5,6,7] 0.23794 0.26231 0.8877 0.1123 0.99 0.99 0.99
[6,6,6] 0.23766 0.26636 0.88714 0.11287 0.98 0.97 0.97
[6,7,7] 0.23573 0.26513 0.8864 0.1136 0.99 0.99 0.98

iaugmented SMILES = 200, batch size = 128, learning rate = [1e-1, 1e-2, 1e-3], dropout ratio 
= 0.8
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Table S17. Performance Obtained by Varying Learning Rate.i Shown in Bold Font is the 

Optimal Model

learning rate train loss
valid 
loss accuracy error rate validity uniqueness novelty

[1e-1, 1e-2, 
1e-3] 0.23761 0.26403 0.88823 0.11177 0.99 0.99 0.99

[1e-2, 1e-2, 
1e-3] 0.25311 0.27486 0.88705 0.11295 1 1 1

[1e-2, 1e-2, 
1e-4] 0.2705 0.28852 0.8849 0.1151 0.93 0.93 0.93

[1e-2, 1e-2, 
1e-5] 0.244418 0.266653 0.887013 0.112987 0.9 0.9 0.9

[3e-
2,slice(5e-
3/(2.64),5e-
3),slice(5e-
4/(2.64),5e-

4)]

0.26393 0.28042 0.88618 0.11382 0.98 0.97 0.97

[3e-
1,slice(5e-
4/(2.64),5e-
4),slice(5e-
5/(2.64),5e-

5)]

0.30647 0.31227 0.87778 0.12222 0.95 0.95 0.95

Table S18.  The Effect of Different Sampling Temperatures on Validity, Uniqueness, and 

Novelty of the Generated Molecules

Validity
runs 0.2 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1 100 100 99.8 99.2 96.8 86.4 73 53.4 34.4
2 100 100 99.6 98.8 95.2 86.4 76.2 57.4 34.4
3 100 100 99.8 98.4 95 86.6 69.8 51.2 33.6

Uniqueness
0.2 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1 30.8 96 98.4 98.8 95.8 85.6 72 53.2 34.2
2 34 95.8 97.6 97.8 93.6 84.4 76 57.2 34.2
3 33.6 95.8 97.6 96 94.4 86.2 68.8 51 32.8

Novelty
0.2 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

1 30.8 95.6 98 98.6 95.4 85.6 72 52.8 34.2
2 34 95.4 97.2 97.6 93 83.8 75.8 57.2 34.2
3 33.6 95.6 97.4 95.8 94 86 68.4 51 32.4
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7. Details of the generated chiral ligands

We have used a temperature-based sampling procedure intending to generate 500 SMILES 

strings from the fine-tuned model, which exhibited a validity of 98%, uniqueness of 98%, and 

novelty of 97.8%. This resulted in 489 new SMILES strings. However, some of the generated 

ligands might not meet specific criteria, such as lacking a chiral center, having not more than 

2 chiral centers, or missing the desired functional groups such as the –NHCO fragment for 

binding with the transition metal to serve as a catalyst. Others might not even possess the key 

backbone that renders the molecule with a chelate binding to the transition metal, as shown in 

Fig. S7. To address this, we applied various filters that eventually offered 73 new chiral 

ligands that meet all the required criteria mandated by the reaction of interest. 
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Fig. S7. Important backbone required for a generated to act as a chiral ligand in our 

reaction of interest

The set of 73 generated novel chiral ligands with their chemical structure is shown in the 

following Table S19.

Table S19. Identities and Notations of the Generated Chiral Ligands
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8. Comparison between the generated and experimental ligands

To compare the chemical space generated by the fine-tuned generator with experimental 

ligands, we used a TMAP plot enabled by the Faerun visualization library.[13] The TMAP 

algorithm is known its ability to generate a two-dimensional dendrogram-like representation 

that preserves local and global relationships, focusing on the local. In this technique, 

MinHashing permutation is set as 512 in order to estimate the similarity between data sets. 

Then, the MHFP (MinHash Fingerprint) encoder is initialized with these permutations to 

generate fingerprint vectors from the SMILES strings that capture chemical structure 

similarities. An LSH (Locality-Sensitive Hashing) forest is set up using the same 

permutations to facilitate efficient similarity searches and rapid nearest-neighbor 

identification. The process proceeds to create a Faerun plot (shown in Fig. 3 in the 

manuscript), adding scatter points colored by label values and a tree structure connecting the 

related points. The resulting plot revealed several key aspects; (a) four distinct leaf-like 
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structures globally corresponding to different ligand classes, (b) chemically or structurally 

similar molecules from both the generated and experimental sets are positioned close to each 

other, and (c) the alignment of the generated ligands near experimental ones suggests that the 

fine-tuned generator explores the nearby chemical space. Thus, this plot helps in identifying 

clusters and patterns and enables the recognition of areas where generated ligands align with, 

or differ, from the experimentally known ones.

We have utilized the encoder output obtained from the fine-tuned generator to 

visualize them using the t-SNE plots as well as using the corresponding 2048-bit Morgan 

fingerprint vector. This is done to compare the most informative features of the generated and 

experimentally known chiral ligands. Subsequent 3D plotting of the top three principal 

components revealed neighboring exploration (Shown in Fig. S8).

(a) (b)

Fig. S8. The training and generated chemical space occupied by the chiral ligands depicted 

using the t-SNE plots obtained from the (a) encoder output, and (b) fingerprint 

representation technique. The training set is represented by orange color dots, while the 

generated set is shown using the blue dots.

After comparing the generated and the experimentally reported ligands by using the 

TMAP and t-SNE methods, we conducted a more direct assessment of how the generated 
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ligands resemble the real ones in terms of various chemical properties. Properties, such as 

LogP (hydrophobic/hydrophilic nature), NP-likeness score (natural product likelihood), QED 

(drug-likeness), hydrogen bond acceptor count (molecular interactions), and polar surface 

area (solubility), are found to exhibit minimal variations. The generated chemical space 

exhibits slight deviations in physicochemical properties compared to the experimental set, 

indicating a localized exploration of chemical space (Fig. S9).

Fig. S9. Comparison of various physicochemical properties between the training and 

generated ligands. The key properties considered are LogP (hydrophobic/hydrophilic 

nature), NP-likeness score, QED, hydrogen bond acceptor count, and polar surface area 

(solubility).

9. Reactions space using the generated ligands 

Using a fine-tuned TL-based generator, we generated 73 new chiral ligands and utilized them 

to design novel reactions. From a pool of 220 experimentally reported reactions, we have 

selected one reaction and systematically substituted the original chiral ligand with each of the 

73 newly generated ligands, resulting in 73 reaction variants of the original reaction. Given 

that there are 135 unique combinations of all reacting components (excluding the ligand) for 

the 220 reactions, this substitution process was repeated across all the reactions, leading to 
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9855 novel reactions, which could potentially be carried out. These reactions feature diverse 

combinations of cycloalkane substrates, coupling partners, newly generated chiral ligands, 

bases, and solvents, none of which have been experimentally validated.

We employed our EnP model to predict the %ees of these newly generated reactions. 

The %ee predictions represent the average of the output values obtained from 30 different 

models. The distribution of the predicted %ee values for the 9855 reactions is shown using a 

heat map representation (Fig. 5c). A comprehensive detail of each reaction component and its 

corresponding %ee can be found in the CSV file available in the GitHub repository. A 

histogram depicting the %ee distribution, given in Fig. S10, highlights a substantial number 

of reactions in the high %ee range, mirroring the distribution as seen in the original 

experimental training set. 

Fig. S10. Number of newly designed reactions obtained from the generated chiral ligands 

for different class intervals of the predicted %ee.
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10. Performance comparison of different types of regressor

We compared the performance of various deep learning and tree-based models as baselines to 

evaluate how well the TL-based ensemble regressor performs in the ee prediction task. It was 

found that these regressors showed poorer performance compared to our EnP model. The 

details of these models and their performances are discussed below.

A deep neural network (DNN) consisting of multiple fully connected input layers, one 

or more hidden layers, and an output layer is developed. Key hyperparameters, such as the 

number of hidden layers, neurons per layer, learning rate, and dropout rate were found to 

significantly impact the model performance. We have used Optuna, a Python-based 

framework, to efficiently optimize these hyperparameters.[14] In this study, each reaction 

instance is represented by a comprehensive molecular fingerprint vector, created by 

concatenating several fingerprint types —Morgan, atom pair, RDKit, layered, topological 

torsion (TT), Avalon, and MACCS. This combined fingerprint vector serves as the input to 

the DNN, which is trained to predict the ee of the reaction.

Table S20. Performance of DNN Algorithm in terms of RMSE across Different Splits using 

Fingerprint Featurization Technique

split train validation test
hyperparameters

{n_layers, n_neurons, 
dropout_rate, learning_rate}

1 4.54 5.66 9.54 2,598,0.22,0.08298
2 4.01 5.32 7.82 2,131,0.14,0.02189
3 7.38 10.34 9.76 1,523,0.02,0.00171
4 8.73 8.25 7.56 4,264,0.14,0.02220
5 4.37 7.23 7.36 2,616,0.12,0.01896
6 9.61 11.26 12.13 5,255,0.17,0.00449
7 3.29 7.62 7.61 1,802,0.44,0.04972
8 5.71 7.05 8.83 3,321,0.42,0.03454
9 13.20 14.08 16.51 1,371,0.45,0.00156
10 4.83 5.25 10.32 3,591,0.12,0.00368
11 4.48 5.86 8.69 2,553,0.44,0.00467
12 4.62 5.70 12.32 1,867,0.43,0.00228
13 10.36 10.99 7.08 5,486,0.50,0.03069
14 3.63 7.98 7.88 1,184,0.21,0.00981
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15 4.71 4.83 18.77 3,382,0.22,0.00535
16 4.44 5.83 8.33 2,517,0.31,0.00421
17 4.50 6.45 12.31 3,157,0.20,0.01523
18 7.68 6.59 10.17 4,834,0.25,0.00353
19 11.76 15.86 15.67 5,533,0.12,0.00309
20 8.57 6.13 11.10 4,982,0.32,0.00265
21 4.04 4.89 6.66 2,576,0.31,0.00664
22 12.00 10.65 11.68 5,559,0.40,0.00256
23 10.25 11.09 11.98 1,812,0.29,0.00098
24 3.81 9.29 5.79 1,950,0.47,0.06155
25 8.26 6.88 6.81 4,685,0.31,0.00373
26 4.72 7.50 10.29 1,747,0.50,0.00170
27 4.33 9.38 6.72 1,331,0.34,0.00347
28 6.49 10.83 7.98 3,683,0.25,0.04698
29 4.15 5.23 8.48 2,909,0.39,0.00138
30 5.88 5.74 9.80 3,102,0.26,0.01448

avg.±s.d. 6.48±2.82 7.99±2.77 9.87±3.0

A Random Forest (RF) model, which comprises of an ensemble of decision trees, is 

developed to predict the ee of reactions using the same combined fingerprint vectors utilized 

in the DNN model. Key hyperparameters, including the number of trees (n_estimators), 

maximum tree depth, minimum samples per split, and maximum features considered for 

splitting, are the important parameters that can influence the performance of the RF model. 

We employed Optuna, a Python-based framework, to efficiently optimize these parameters. 

Table S21. Performance of RF Algorithm in terms of RMSE across Different Splits using 

Fingerprint Featurization Technique

split train validation test

parameters
{n_estimators, 

max_depth, 
min_samples_split, 
min_samples_leaf, 

max_features}
1 5.00 10.56 8.27 53,7,5,1,auto
2 4.71 5.88 7.12 31,7,3,1,auto
3 4.94 15.31 8.98 53,6,2,1,auto
4 4.99 9.65 8.60 184,5,2,1,auto
5 3.68 8.02 7.60 113,27,4,1,auto
6 4.15 7.84 9.00 32,15,4,1,auto
7 3.97 6.21 7.78 82,11,2,1,auto
8 4.88 6.66 9.37 57,27,6,1,auto
9 4.23 11.88 7.14 141,32,3,1,sqrt
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10 4.51 7.15 6.85 184,13,5,1,auto
11 3.95 5.70 7.63 161,23,3,1,auto
12 4.92 4.56 12.54 35,13,7,2,auto
13 4.27 11.05 6.67 91,7,3,1,auto
14 4.04 7.85 6.41 161,23,3,1,auto
15 5.02 5.47 9.96 83,7,6,1,auto
16 3.68 7.27 10.10 100,11,3,1,auto
17 7.69 11.37 8.34 28,5,5,5,auto
18 3.82 6.34 7.41 181,18,3,1,auto
19 4.17 11.04 9.11 121,8,2,1,auto
20 3.47 4.70 10.27 28,12,3,1,auto
21 4.52 5.48 6.59 199,19,5,1,auto
22 4.02 7.57 7.91 187,27,4,1,auto
23 5.32 8.65 6.91 187,5,3,1,auto
24 6.07 12.02 6.38 166,4,5,1,auto
25 5.14 7.86 6.59 22,7,6,1,auto
26 5.06 8.91 9.81 91,5,2,1,auto
27 4.11 7.23 7.00 199,12,4,1,auto
28 4.63 6.67 7.72 67,13,6,1,auto
29 4.53 7.10 7.76 23,7,2,1,sqrt
30 7.02 6.59 7.56 142,7,9,4,auto

avg.±s.d. 4.68±0.91 8.09±2.48 8.11±1.41

We employed the AttentiveFP architecture with convolutional layers for atomic 

feature extraction, a readout layer for molecular embeddings, and a fully connected layer to 

predict %ee values.[15] We used Optuna for automated hyperparameter optimization, tuning 

both general hyperparameters (e.g., learning rate) and model-specific parameters (e.g., 

number of layers, graph feature size, and dropout rate). The search space included the number 

of layers for node embedding {1 to 5}, graph feature size {100 to 500}, dropout rate {1 to 5}, 

learning rate {10-5 to 10-1}, and num timesteps for graph embedding {1 to 3}. 

Table S22. Performance of AttentiveFP Algorithm in terms of RMSE across Different Splits

split train validation test
hyperparameters {num_layers, 
graph_feat_size, dropout_rate, 
learning_rate, num_timesteps }

1 7.85 5.72 9.97 1,242,0.26,0.00960
2 10.16 6.87 10.86 1,264,0.19,0.00053
3 4.88 8.11 6.86 4,438,0.28,0.00115
4 6.08 14.30 9.57 2,224,0.12,0.00378
5 7.53 9.38 10.04 3,425,0.34,0.00061
6 7.02 8.89 9.66 1,253,0.05,0.00595
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7 12.08 7.43 13.03 1,462,0.23,0.00015
8 4.05 10.40 9.97 3,290,0.10,0.00192
9 5.25 12.71 9.12 2,417,0.22,0.00129
10 9.36 7.59 8.30 1,139,0.34,0.00439
11 7.40 11.05 9.71 3,344,0.12,0.00412
12 5.89 7.51 13.53 2,379,0.32,0.00239
13 11.27 10.89 11.27 3,435,0.21,0.00667
14 4.71 7.90 7.69 4,317,0.30,0.00163
15 6.34 5.08 9.74 2,359,0.32,0.00257
16 4.87 7.68 10.05 3,499,0.08,0.00086
17 6.70 11.04 7.03 2,152,0.01,0.00422
18 6.99 7.01 8.35 2,349,0.16,0.00528
19 6.92 10.29 9.50 2,182,0.09,0.00525
20 6.60 6.54 8.76 2,338,0.07,0.00197
21 8.05 6.56 9.22 1,188,0.29,0.00892
22 5.76 12.70 8.50 2,410,0.37,0.00278
23 5.05 13.92 10.62 4,449,0.26,0.00108
24 5.62 11.74 8.12 3,314,0.02,0.00158
25 6.92 8.36 9.39 2,274,0.11,0.00219
26 8.48 11.30 12.81 2,449,0.26,0.00468
27 7.74 8.11 7.91 2,139,0.10,0.00894
28 7.80 9.02 8.81 3,233,0.12,0.00069
29 7.71 12.61 8.24 1,380,0.34,0.00480
30 5.73 6.64 11.61 2,318,0.29,0.00334

avg.±s.d. 7.03±1.86 9.25±2.47 9.61±1.62

In our study, we selected the state-of-the-art T5Chem model as a baseline for 

predicting ee.[16] T5Chem is based on the "Text-to-Text Transfer Transformer" (T5) 

framework, originally designed for natural language processing. This model has 

demonstrated success in various chemical reaction prediction tasks, including reaction type 

classification, forward reaction prediction, retrosynthesis, and reaction yield prediction, using 

open-source datasets like USPTO. The model was first pre-trained on a large pool of 

PubChem molecules. For our %ee prediction task, we fine-tuned T5Chem using a hidden 

dimension of 256, an intermediate feed-forward layer of 2048, an initial learning rate of 5e-4, 

a weight decay of 0.01, trained over 50 epochs with a batch size of 64. 

Table S23. Performance of T5Chem Algorithm in terms of RMSE across Different Splits

split train validation test
1 6.58 5.50 8.59
2 9.45 6.05 9.89
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3 9.31 12.95 10.21
4 10.25 15.51 7.89
5 8.28 9.90 8.31
6 7.85 11.76 11.47
7 7.82 7.69 11.18
8 8.51 7.72 13.48
9 10.26 15.31 8.84
10 10.42 5.57 12.57
11 9.31 10.57 9.45
12 5.56 11.46 12.87
13 9.07 5.47 7.20
14 8.76 10.29 10.91
15 7.81 5.38 13.36
16 8.87 12.35 8.73
17 9.56 10.88 10.97
18 10.33 10.48 8.40
19 9.29 16.39 11.34
20 10.22 6.20 9.46
21 9.42 7.12 7.55
22 8.70 8.74 9.61
23 9.51 11.11 9.46
24 9.02 6.19 6.97
25 10.01 10.01 8.94
26 9.91 10.41 12.68
27 9.61 12.29 10.52
28 8.57 7.70 7.89
29 8.92 9.47 9.19
30 8.72 7.24 10.00

avg.±s.d. 9.09±0.86 9.59±3.06 9.95±1.81

The trained ensemble models were subsequently employed to predict the %ee for the 

new unseen reactions featuring newly generated chiral (amino acid) ligands. The specifics of 

these reactions are provided in Table 1 and Fig. 6 in the main body the manuscript. The table 

below presents the mean predicted %ee values along with their standard deviations, derived 

from 30 independent models within each regressor category. Additionally, the root mean 

square error (RMSE) and R² values, calculated between the predicted and experimental %ee, 

are also reported. These findings highlight the superior performance of our TL-based EnP 

model as compared to the alternative models.

Table S24. Comparison of the Predicted %ee Obtained using Different Regressors with the 

Experimental %ee for Newly Generated Reactions 
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Entry EnP DNN RF AttentiveFP T5Chem Experimental 
%ee

1 94.32±2.77 88.87±3.44 84.52±3.84 103.61±9.72 92.37±1.46 94
2 94.19±2.72 88.49±3.18 84.46±4.00 104.49±9.91 92.26±1.51 94
3 92.66±3.36 86.35±5.27 83.08±3.61 89.43±6.68 90.18±1.57 86
4 92.57±3.49 85.99±5.38 83.01±3.56 91.03±7.03 91.92±1.49 85
5 90.55±3.04 88.68±3.42 84.86±3.24 90.02±8.46 91.95±1.55 86
6 90.29±3.43 88.41±3.21 84.67±3.43 90.69±8.33 92.01±1.57 85
7 89.84±3.41 88.73±3.25 85.45±3.56 89.77±8.04 91.90±1.55 86
8 85.50±2.33 83.13±4.12 77.96±5.72 88.64±6.78 87.84±2.02 80
9 84.43±2.61 83.13±4.13 78.21±5.78 88.64±6.78 87.62±2.06 81
10 45.79±5.68 46.29±12.42 49.08±9.39 42.26±11.56 54.09±9.23 30
11 35.31±5.93 39.33±11.73 44.16±8.36 44.77±10.71 46.85±9.07 23
12 89.64±3.92 89.34±3.27 87.89±4.35 86.11±3.09 91.13±2.77 90
13 89.87±2.82 90.11±3.63 87.47±4.23 87.55±3.33 90.83±2.59 91
14 86.94±3.01 87.04±5.92 85.25±3.61 86.84±3.46 90.76±2.83 87
15 86.07±3.00 87.38±3.17 87.21±3.01 86.21±2.47 87.43±3.10 89

RMSE 6.42 6.50 8.34 8.58 9.88
R2 0.93 0.90 0.84 0.88 0.83

11. Various benchmark models for the generative tasks

To emphasize the advantages of using a transfer learning-based model for generating chiral 

ligands suitable for the β-C–H activation reactions, we have undertaken thorough 

benchmarking studies by consiering different generative models. Each model produced 500 

molecules, which was then evaluated based on three criteria: validity, uniqueness, and 

novelty (see Table S24). We applied a series of filters to ensure that the generated ligands 

met essential standards for catalytic activity. These criteria included the presence of a chiral 

center (with no more than two chiral centers) and key functional groups, such as the –NHCO 

fragment, which aids in binding of the transition metal. During our evaluation, we noted that 

one baseline model (virtual screening) contained atom types of no interest for this class of 

reaction, including isotopes and elements like [SeH], [V], [D], and [C13]. To maintain 

chemical relevance, we implemented an additional elemental filter that restricted ligands to 

only the following atoms: C, H, O, N, S, F, Cl, Br, I, and P. This step ensured the likelihood 

of the generated ligands adhereding to similar reaction mechanisms as known in the case of 

experimentally reported catalysts. Such an approach would thereby improve the realism and 
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reliability of our predictions. Finally, we assessed the Fréchet ChemNet Distance (FCD) of 

the filtered molecules in comparison to experimentally known chiral ligands, providing a 

quantitative measure of their structural similarity.[17] The FCD is a commonly used metric 

for assessing the quality of generated molecules by comparing their distribution to that of real 

molecules. A lower FCD value indicates that the generated molecules closely resemble real 

molecules in terms of their chemical properties.

The first generative model considered as a baseline in our study is genetic algorithm 

(GA), designed to generate chiral ligands by optimizing a scoring function that primarily 

assesses the validity of the generated molecules.[18] Valid molecules receive a score of 1, 

while invalid ones 0. In this framework, the GA simulates natural evolution, beginning with 

an initial population of molecules represented as SMILES strings. The algorithm evaluates 

the fitness of each molecule based on its validity. High-fitness molecules are selected for 

reproduction, during which crossover combines substructures while mutations help introduce 

random changes. This iterative process refines the population, efficiently exploring chemical 

spaces to discover novel and valid compounds.

The second baseline model is a data-efficient, graph-based generative model (DEG) 

introduced by Guo et al.[19] It can be trained on much smaller datasets than those typically 

used in benchmark studies. Central to this model is a learnable graph grammar that 

automatically generates production rules from the training data, without human input. 

Optimization of the grammar also allows for integrating additional chemical knowledge into 

the model.

The third baseline model focuses on virtual screening (VS), in which we used the 

PubChem database to find possible chiral ligands. Initially, we gathered data that contained 

the MPAA ligands or structurally similar compounds. After applying the previously 
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mentioned criteria to filter these molecules, we evaluated their performance shown in the 

following table.

Table S24. Comparison of the Performance of each Individual Generative Model 

model validity(%) uniqueness(%) novelty(%)

number of 
practical 

chiral ligands FCD
GA 100±0.0 100±0.0 87.3±0.4 57.0±7.0 18.6±2.3

DEG 100±0.0 100±0.0 100±0.0 43.3±18.8 18.7±3.8
FnG (our model) 99.3±0.5 97.7±0.5 97.5±0.7 68.3±15.4 4.1±0.4

VS 100.0 100.0 100.0 83.0 32.3

This performance comparison demonstrates that TL-based methods outperform other 

generative models in generating ligands similar to the experimental chiral ligands in the 

training set, as indicated by a low FCD score.

12. Choice of %ee vs. ΔΔG‡ in modeling enantioselectivity

In regression settings, we have used enantiomeric excess (%ee) as the primary target variable 

instead of the free energy difference between transition states (ΔΔG‡), due to its direct 

relevance for synthetic chemistry.[20] While ΔΔG‡ offers a kinetic basis for selectivity, %ee 

serves as the practical measure used in synthesis, as it clearly reflects the ratio of major to 

minor enantiomers. To ensure a comprehensive evaluation, we report model performance for 

both %ee and ΔΔG‡ in Table S25. The results indicate that the EnP model captures 

enantioselectivity trends more effectively when trained on %ee rather than ΔΔG‡. Although 

we recognize the theoretical importance of ΔΔG‡, %ee remains the more interpretable and 

practically actionable metric for guiding reaction optimization.

Table S25. Performance of EnP Regressor in terms of RMSE and R2 across Different Splits

output train 
RMSE

validation 
RMSE

test 
(canonical) 

RMSE

test 
(TTA) 
RMSE

test 
(canonical) 

R2

test (TTA) 
R2

%ee 6.84±0.36 7.76±1.74 7.80±1.23 7.57±1.31 0.64±0.13 0.65±0.15
ΔΔG‡ 0.28±0.01 0.37±0.05 0.36±0.04 0.36±0.04 0.53±0.11 0.53±0.12
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13. Experimental versus EnP Predicted %ee Parity Plot 

To evaluate the performance of the EnP regressor, we calculated the R² metric based on the 

parity plot that compares experimental and predicted %ee values from the test split, utilizing 

predictions from all 30 trained regressors (M1–M30). Our dataset consists of 220 unique 

reactions, but due to the randomized selection of training and test splits, each reaction may be 

predicted different number of times across these models.

For instance, a reaction (R1) might appear in the test set of six different models, 

leading to six distinct predictions. Another another reaction (R2) might appear in only one 

test set, leading to one prediction. Instead of using all the predictions available for a given 

reaction, we selected a representative prediction for each reaction to form a unique reaction 

set. The choice of the representative prediction is made on the basis of top-1, top-2, or  other 

ranking-based strategies.[21]

The top-1 R² metric is computed by selecting, for each unique reaction, the prediction 

with the smallest absolute error compared to the experimental %ee. In cases where only one 

prediction was available for a given reaction, it was automatically considered the ‘best’ entry. 

Using this approach, we obtained a top-1 R² value of 0.89, indicating a strong correlation 

between predicted and actual %ee values. For additional insights, we also provide top-2 to 

top-5 R² values, which ranged from 0.81 to 0.60 (see Table S26). Instead of top-k, if the mean 

value of predicted %ee for every unique reaction is used, the resulting R² is 0.75. These 

correlations suggest that our EnP offers good confidence in predicting %ee.

Table S26. Performance of EnP Regressor in terms of R2 

top-k R2

top-1 0.89
top-2 0.81
top-3 0.75
top-4 0.67
top-5 0.60
mean 0.75
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14. Distribution of %yield/%ee 

The distribution of %yield/%ee in three data sets (a) NiCOlit, [22] (b) ELN, [23] and (c) our 

β-C(sp³)–H are provided in Fig. S11. The histogram plots bearing the mean and standard 

deviation markers provide a clear visualization of the data spread. Notably, our β-C(sp³)–H 

data set exhibits a strong skewness towards high %ee. 

 (a)

(b)

(c)
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Fig. S11. Distribution of %yield/%ee in different data sets (a) NiCOlit, (b) ELN, and (c) our 

β-C(sp³)–H.
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1. General Information

Carboxylic acids were obtained from the commercial sources or synthesized following 

literature procedures. Alkyl iodides were obtained from the commercial sources. Solvents 

were obtained from Sigma-Aldrich, Oakwood, and Acros and used directly without further 

purification. 

Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. 

Visualization was carried out with UV light and Bromocresol Green Stain. 

1H NMR was recorded on Bruker DRX-600 instrument (600 MHz). Chemical shifts were 

quoted in parts per million (ppm) referenced to the peak of tetramethylsilane at 0 ppm. The 

following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = 

triplet, q = quartet, p = pentet, m = multiplet, br = broad. Coupling constants J were reported 

in Hertz unit (Hz).

13C NMR spectra were recorded on Bruker DRX-600 instrument (150 MHz) and were fully 

decoupled by broad band proton decoupling. Chemical shifts were reported in ppm 

referenced to center line of a triplet at 77.0 ppm of chloroform-d. 

Enantiomeric ratios (er) were determined on an Agilent SFC system or Waters SFC system 

using commercially available chiral columns.

2. Ligand Structures
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3. Experimental Section

3.1 Synthesis of Ligands 

3.1.1 Preparation of N-Ac MPAHA Ligands

General Procedure

+H3N
O

O
NsCl, TEA

DCM
NsHN

O

O

Pd(OAc)2, ArBpin
L-Ac-Val-OH, Ag2CO3

Na2CO3, BQ, DMSO
tAmOH, H2O

N2, 80 °C, 24 h

NsHN
O

O
PMP-SH, K2CO3

MeCN, DMSO

S1 S2
Cl−

Ar Ar

H2N
O

O
Ac2O, TEA

DCM

S3

Ar Ar

AcHN
O

O
LiOH

THF, H2O

S4

Ar Ar

AcHN
O

OH

S5

Ar Ar MeONH3Cl
HOBt, EDC

DIPEA, DCM AcHN
O

H
N

L1-3

Ar Ar

OMe

4-Nitrobenzenesulfonyl chloride (NsCl, 50 mmol, 1.0 equiv) was added to a cooled (0 °C) 

solution of L-phenylalanine methyl ester hydrochloride (L-Phe-OMe·HCl, 50 mmol, 1.0 

equiv) and triethylamine (TEA, 150 mmol, 3.0 equiv) in DCM (150 mL). After being stirred 

at room temperature for 12 h, the reaction mixture was poured into H2O. The organic layer 

was separated, dried over anhydrous Na2SO4, filtered and concentrated under vacuum. The 

residue was purified by trituration with a mixture of 50% DCM/hexane to give S1.

S47



S1 (8.0 mmol, 1.0 equiv), Pd(OAc)2 (0.075 equiv), Ar-BPin (2.0 equiv), L-Ac-Val-OH (0.2 

equiv), Ag2CO3 (2.0 equiv), Na2CO3 (2.0 equiv), BQ (0.5 equiv), H2O (5.0 equiv), and 

DMSO (0.4 equiv) were weighed in air and placed in a Schlenk tube with a magnetic stir bar. 

t-AmylOH (50 mL) was added, and the reaction vessel was evacuated and backfilled with 

nitrogen for three times. The reaction mixture was heated to 80 °C for 24 h under vigorous 

stirring. After being cooled to room temperature, the reaction mixture was diluted with 

EtOAc and filtered through a pad of Celite eluting with EtOAc. The filtrate was concentrated 

under vacuum and the resulting residue was purified by flash chromatography on silica gel 

(eluent: EtOAc/hexane = 1:3) to give S2.

4-Methoxybenzenethiol (PMP–SH, 20.0 mmol, 4.0 equiv) and potassium carbonate (20.0 

mmol, 4.0 equiv) were added to a solution of S2 (5.0 mmol, 1.0 equiv) in MeCN (40 mL) and 

DMSO (1.5 mL). After being stirred at room temperature for 12 h, the reaction mixture was 

diluted with EtOAc, washed with H2O and brine, dried over anhydrous Na2SO4, filtered, and 

concentrated under vacuum. The residue was purified by column chromatography on silica 

gel (eluent: EtOAc/hexane = 1:1) to give S3.

Ac2O (12.0 mmol, 3.0 equiv) was added to a solution of S3 (4.0 mmol, 1.0 equiv) and 

triethylamine (12.0 mmol, 3.0 equiv) in DCM (20 mL). After being stirred at room 

temperature for 3 h, the reaction mixture was quenched with saturated NH4Cl solution and 

extracted with DCM. The combined organic layers were dried over anhydrous Na2SO4, 

filtered and concentrated to give S4, which could be used directly in the next step without 

further purification.

LiOH (8.0 mmol) was added to a suspension of S4 in THF (8 mL), and H2O (4 mL) at 0 °C. 

The reaction mixture was allowed to warm to room temperature and stirred for 8 h. The 

reaction mixture was quenched with 10% aqueous citric acid solution and extracted EtOAc (3 

× 20 mL). The combined organic layers were washed with brine, dried over anhydrous 
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Na2SO4, filtered and concentrated to give S5, further purification could be conducted by 

recrystallization or reversed phase flash column.

O-Alkylhydroxylamine hydrochloride salt (1.5 equiv) and N,N-diisopropylethylamine 

(DIPEA, 1.5 equiv) were added to a cooled (0 °C) solution of S5 (1.0 equiv), HOBt (1.1 

equiv) and EDC (1.1 equiv) in DCM (0.25 M). After being stirred at room temperature for 8 

h, the reaction mixture was poured into H2O. The organic layer was separated, dried over 

anhydrous Na2SO4, filtered and concentrated under vacuum. The residue was purified by 

column chromatography on silica gel (eluent: MeOH/DCM = 1:20) to give the corresponding 

ligands L1-3.

(S)-2-acetamido-3-(3,3''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)-N-methoxypropanamide 

(L1)

AcHN
O

H
N

Ar Ar

OMe

Ar = 3-Me-C6H4

L1 was synthesized following the standard procedure as a white solid and purified by reverse 

phase column.

1H NMR (600 MHz, CDCl3): δ 7.48 (s, 1H), 7.32 – 7.25 (m, 10H), 7.20 (d, J = 7.6 Hz, 2H), 

5.15 (d, J = 8.0 Hz, 1H), 3.86 – 3.79 (m, 1H), 3.49 (s, 3H), 3.09 (s, 1H), 3.08 (s, 1H), 2.43 (s, 

6H), 1.73 (s, 3H).

HRMS (ESI-TOF): m/z Calcd for C26H29N2O3
+ [M+H]+ 417.2178, found 417.2188.

(S)-2-acetamido-3-(4,4''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)-N-methoxypropanamide 

(L2)
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 4-Me-C6H4

AcHN
O

H
N

Ar Ar

OMe

Ar =

L2 was synthesized following the standard procedure as a white solid and purified by reverse 

phase column.

1H NMR (600 MHz, CDCl3): δ 7.48 (s, 1H), 7.32 – 7.25 (m, 10H), 7.20 (d, J = 7.6 Hz, 2H), 

5.15 (d, J = 8.0 Hz, 1H), 3.86 – 3.79 (m, 1H), 3.49 (s, 3H), 3.09 (s, 1H), 3.08 (s, 1H), 2.43 (s, 

6H), 1.73 (s, 3H).

13C NMR (151 MHz, CDCl3): δ 170.02, 168.60, 142.93, 138.85, 137.21, 132.50, 129.65, 

129.52, 129.33, 126.67, 64.09, 51.63, 31.08, 22.93, 21.13.

HRMS (ESI-TOF): m/z Calcd for C26H29N2O3
+ [M+H]+ 417.2178, found 417.2183.

(S)-2-acetamido-3-(4,4''-diphenyl-[1,1':3',1''-terphenyl]-2'-yl)-N-methoxypropanamide 

(L3)

4-Ph-C6H4

AcHN
O

H
N

Ar Ar

OMe

Ar =

L2 was synthesized following the standard procedure as a white solid and purified by reverse 

phase column.

1H NMR (600 MHz, CDCl3): δ 7.75 – 7.71 (m, 4H), 7.69 – 7.65 (m, 4H), 7.61 (d, J = 2.4 

Hz, 1H), 7.51 – 7.46 (m, 8H), 7.42 – 7.36 (m, 3H), 7.29 (d, J = 7.6 Hz, 2H), 5.24 (d, J = 8.2 

Hz, 1H), 3.93 (td, J = 8.7, 4.3 Hz, 1H), 3.38 (s, 3H), 3.20 (m, 2H), 1.74 (s, 3H).
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13C NMR (151 MHz, CDCl3) δ 170.07, 168.55, 142.73, 140.68, 140.47, 140.24, 132.42, 

130.12, 129.89, 128.93, 127.64, 127.36, 127.08, 126.91, 64.17, 51.56, 31.31, 23.00.

HRMS (ESI-TOF): m/z Calcd for C36H33N2O3
+ [M+H]+ 541.2491, found 541.2504.

3.1.2 Preparation of N-Ac MPAAM Ligand

General Procedure

H2N
O

Ar

O
Boc2O, TEA

DCM
BocHN

O

Ar

O
LiOH

THF, H2O
BocHN

O

Ar

OH

R2NH2
+Cl−

EDC, HOBt

DIPEA, DCM

BocHN
O

Ar

NR2
HCl

Dioxane
+H3N

O

Ar

NR2

Cl−

LiAlH4

THF
H2N

Ar

NR2
AcCl

DCM
AcHN

Ar

NR2

S3 S6 S7

S9 S10 L5S8

Boc2O (8.0 mmol, 2.0 equiv) was added to a solution of S3 (4.0 mmol, 1.0 equiv) and 

triethylamine (8.0 mmol, 2.0 equiv) in DCM (20 mL). After being stirred at room 

temperature for 3 h, the reaction mixture was quenched with saturated NH4Cl solution and 

extracted with DCM. The combined organic layers were dried over anhydrous Na2SO4, 

filtered and concentrated to give S6, which could be used directly in the next step without 

further purification.  

LiOH (8.0 mmol) was added to a suspension of S6 in THF (8 mL), and H2O (4 mL) at 0 °C. 

The reaction mixture was allowed to warm to room temperature and stirred for 8 h. The 

reaction mixture was quenched with 10% aqueous citric acid solution and extracted EtOAc (3 

× 20 mL). The combined organic layers were washed with brine, dried over anhydrous 

Na2SO4, filtered, and concentrated to give S7, further purification could be conducted by 

recrystallization or reversed phase flash column.

The corresponding Boc-protected amino acid S7 (4 mmol), dialkylammonium chloride (8.8 

mmol, 2.2 equiv) and benzotriazol-1-ol hydrate (HOBt) (4 mmol, 1.0 equiv) were added to a 

round bottom flask equipped with a magnetic stir bar. The solid mixture was dissolved in 

S51



DCM (40 mL), and 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride (EDC) 

(4.8 mmol, 1.2 equiv) was added at 0 °C. The resulting solution was stirred at 0 °C as N-

ethyl-N,N-diisopropylamine (DIPEA) (9.6 mmol, 2.4 equiv) was added slowly. The reaction 

solution was allowed to warm to r.t. and stirred for about 3 h, after which the solution was 

poured into a separatory funnel, diluted to 150 mL with additional DCM, and washed with 

approximately 25 mL of 10% w/w aqueous citric acid. The organic layer was separated and 

subsequently washed with 25 mL each of saturated aqueous NaHCO3 and brine. The organics 

were dried over anhydrous Na2SO4, filtered, and concentrated in vacuo to provide 

corresponding amide S8 which could be directly used in the next step without further 

purification.  

To the Boc-protected amino amide S8 was added 4 N HCl/dioxane solution (4 mL). The 

resulting solution was stirred at room temperature for 2 h. Then, the volatile components 

were evaporated in vacuo, and the residue was subsequently used in the following reduction 

step.  

To a solution of S9 in THF (24 mL) was added a solution of LiAlH4 in THF (6.0 mmol, 1.5 

equiv) dropwise under N2 at 0 °C. Then, the mixture was heated to reflux for 12 h, before 

being cooled down and diluted with ether. The mixture was cooled to 0 °C, and 0.28 mL of 

water was added slowly followed by 15% w/w NaOH aqueous solution (0.28 mL) and water 

(0.84 mL). The resulting suspension was then warmed to room temperature and stirred for 15 

min before MgSO4 was added. The mixture was stirred for additional 15 min before filtration. 

The filtrate was collected, and the solvent was removed in vacuo to provide diamine 

compound S10 which could be used in the next step without purification.  

To a solution of the synthesized diamine compound S10 in DCM 8 mL was added acetyl 

chloride (8 mmol, 2.0 equiv) at 0 °C. Then the solution was stirred at room temperature for 2 

h. The volatile components were evaporated in vacuo, and the residue was dissolved in 8 ml 
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of water. The resulting solution was extracted with ether (10 mL × 3), then the aqueous phase 

was alkalized with 15% w/w NaOH aqueous solution until pH > 13. The alkalized mixture 

was extracted with ether (10 ml × 3), and the organic layers were concentrated to provide the 

desired MPAAM Ligand L5. Further purification could be conducted by recrystallization or 

reversed phase flash column.

(S)-N-(1-(4,4''-di-tert-butyl-[1,1':3',1''-terphenyl]-2'-yl)-3-(ethylmethylamino)propan-2-

yl)acetamide (L5)

AcHN
NMeEt

Ar Ar

Ar = 4-tBu-C6H4

L5 was synthesized following the standard procedure as a white solid and purified by reverse 

phase column.

1H NMR (600 MHz, CDCl3): δ 7.40 – 7.38 (m, 4H), 7.28 – 7.25 (m, 4H), 7.19 – 7.16 (m, 

1H), 7.09 (d, J = 7.5 Hz, 2H), 4.59 (m, 1H), 3.75 – 3.64 (m, 1H), 3.11 (dd, J = 14.3, 3.5 Hz, 

1H), 2.67 (dd, J = 14.3, 11.1 Hz, 1H), 1.95 (m, 3H), 1.67 – 1.60 (m, 7H), 1.30 (s, 18H), 0.70 

(t, J = 7.1 Hz, 3H).

HRMS (ESI-TOF): m/z Calcd for C34H47N2O+ [M+H]+ 499.3688, found 499.3685.

3.1.3 Preparation of N-Ac MPAO Ligand

General Procedure

To the solution of N-Fmoc-protected amino acid (10.0 mmol) in DCM (200 mL), amino 

alcohol (10.0 mmol), PPh3 (30.0 mmol) and N,N-diisopropylethylamine (DIPEA) (30.0 

mmol) were added at 0 °C. CCl4 (50.0 mmol) was added dropwise over three hours via a 

syringe pump. The ice bath was removed after the addition, and the reaction mixture was 

stirred at room temperature for 24 h. The solvents were then removed under reduced pressure. 
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The residue was purified by silica gel column chromatography to afford the oxazoline 

intermediate S11.

To the solution of N-Fmoc-protected oxazoline S11 (6.0 mmol) in MeOH (30 mL), piperidine 

(12.0 mmol) was added dropwise at 0 °C. The ice bath was removed after the addition, and 

the reaction was stirred at room temperature. The reaction progress was monitored by TLC 

within 2 hours. After completion, the solvents were removed under reduced pressure, and the 

residue was purified by silica gel column chromatography to afford the desired amine 

intermediate S12.

Triethylamine (4.5 mmol) was added to the solution of the amine S12 (3.0 mmol) in dry 

DCM (20 mL). Acetic anhydride (4.5 mmol) was added slowly in 10 minutes at 0 °C. The ice 

bath was removed after the addition, and the reaction was stirred at room temperature. The 

reaction progress was monitored by TLC. After completion, the reaction was quenched at 0 

°C with saturated NaHCO3 (aq). The layers were separated, and the aqueous layer was 

extracted with DCM. The combined organic layers were dried over anhydrous Na2SO4, 

filtered, and concentrated in vacuo. The crude reaction mixture was purified by silica gel 

column chromatography to afford the desired MPAO ligand L6.

N-((S)-1-((R)-4-benzyl-4,5-dihydrooxazol-2-yl)-2,2-dimethylpropyl)acetamide (L6)

AcHN

tBu

N

O

Ph

1H NMR (600 MHz, MeOD) δ 7.34 (t, J = 7.6 Hz, 2H), 7.29 – 7.25 (m, 3H), 4.17 (s, 1H), 

3.67 (dd, J = 11.6, 3.5 Hz, 1H), 3.50 (dd, J = 11.6, 6.3 Hz, 1H), 3.40 (qd, J = 6.7, 3.6 Hz, 1H), 

2.94 – 2.87 (m, 2H), 1.99 (s, 3H), 0.99 (s, 9H).

HRMS (ESI-TOF): m/z Calcd for C17H25N2O2
+ [M+H]+ 289.1911, found 289.1915.

3.2 General Procedure for C–H Activation Reactions

3.2.1 Enantioselective arylation of cyclopropanecarboxylic acid by ArI
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General Procedure

A 2-dram vial equipped with a magnetic stir bar was charged with Pd(OAc)2 (4.4 mg, 10 

mol%) and ligand (20 mol%) in HFIP (0.25 mL). The appropriate cyclopropanecarboxylic 

acid substrate (0.20 mmol), Ag2CO3 (82.7 mg, 0.30 mmol), Na2CO3 (31.8 mg, 0.30 mmol) 

and aryl iodide (0.40 mmol) were then added. Subsequently, the vial was capped and closed 

tightly. The reaction mixture was then stirred at the rate of 300 rpm at 80 °C for 16 h. 

After being allowed to cool to room temperature, the mixture was diluted with ethyl acetate, 

and 0.1 ml of acetic acid was then added. The mixture was passed through a pad of Celite 

with ethyl acetate as the eluent to remove any insoluble precipitate. The resulting solution 

was concentrated, and the residual mixture was dissolved with a minimal amount of acetone 

and loaded onto a preparative TLC plate. The pure product was then isolated using 

preparative TLC with ethyl acetate and hexanes as the eluent and 2% v/v of acetic acid as the 

additive.

(1R,2S)-2-(3-chlorophenyl)cyclopropane-1-carboxylic acid (S13a)

OH

O

Cl

The reaction was completed following the general procedure with the ligand L5 (eluent: 

hexanes/ethyl acetate = 5/1 with 2% v/v of acetic acid). The product was obtained as a 

slightly yellow oil (59% yield, 85% ee).

1H NMR (600 MHz, CDCl3): δ 7.20 (s, 1H), 7.16-7.11 (m, 2H), 7.09-7.06 (m, 1H), 2.57 (m, 

1H), 2.05 (m, 1H), 1.67 (dt, J = 7.9, 5.0 Hz, 1H), 1.40 (ddd, J = 8.3, 7.8, 4.7 Hz, 1H).

HRMS (ESI-TOF): m/z Calcd for C10H10ClO2
+ [M+H]+ 197.0364, found 197.0372.

(1R,2S)-2-(3-methoxyphenyl)cyclopropane-1-carboxylic acid (S13b)

OH

O

MeO
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The reaction was completed following the general procedure with the ligand L5 (eluent: 

hexanes/ethyl acetate = 5/1 with 2% v/v of acetic acid). The product was obtained as a 

slightly yellow oil (57% yield, 86% ee).

1H NMR (600 MHz, CDCl3) δ 7.16 (t, J = 7.9 Hz, 1H), 6.86 – 6.81 (m, 1H), 6.80 (t, J = 2.0 

Hz, 1H), 6.75 (dd, J = 8.2, 2.6 Hz, 1H), 3.77 (s, 3H), 2.60 (q, J = 8.6 Hz, 1H), 2.08 – 2.00 (m, 

1H), 1.65 (dt, J = 7.6, 5.3 Hz, 1H), 1.36 (ddd, J = 8.7, 7.7, 5.1 Hz, 1H). 

HRMS (ESI-TOF): m/z Calcd for C11H13O3
+ [M+H]+ 193.0859, found 193.0865.

3.2.2 Enantioselective arylation of cyclopropanecarboxylic acid by ArBpin

General Procedure

OH

O

+ ArBpin

Pd(OAc)2 (10 mol%)
Ligand (20 mol%)

Ag2CO3, K2HPO4, BQ

H2O, tBuOH
80 °C, air, 12 h

OH

O
Ar

A 2-dram vial equipped with a magnetic stir bar was charged with Pd(OAc)2 (2.2 mg, 10 

mol%) and the ligand (9.4 mg, 20 mol%) in tBuOH (1.0 mL) and then stirred at the rate of 

300 rpm at room temperature for 5 min. The appropriate cyclopropanecarboxylic acid 

substrate (0.10 mmol), Ag2CO3 (41.4 mg, 0.15 mmol), K2HPO4 (26.0 mg, 0.15 mmol), 

ArBpin (0.15 mmol), BQ (5.4 mg, 0.05 mmol), H2O (18.0 mg, 1.0 mmol) were then added. 

Subsequently the vial was capped and closed tightly. The reaction mixture was then stirred at 

the rate of 300 rpm at 80 °C for 12 h. 

After being allowed to cool to room temperature, the mixture was diluted with ethyl acetate 

and 0.1 mL of acetic acid was then added. The mixture was passed through a pad of Celite 

with ethyl acetate as the eluent to remove any insoluble precipitate. The resulting solution 

was concentrated, and the residual mixture was dissolved with a minimal amount of acetone 

and loaded onto a preparative TLC plate. The pure product was then isolated using 
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preparative TLC with ethyl acetate and hexanes as the eluent and 2% v/v of acetic acid as 

additive.

(1R,2S)-2-phenylcyclopropane-1-carboxylic acid (S13c)

OH

O

The reaction was completed following the general procedure with L(Ac-Phe-OH) as the 

ligand (eluent: hexanes/ethyl acetate = 5/1 with 2% v/v of acetic acid). The product was 

obtained as a white solid (58% yield, 90% ee).

The reaction was also performed with ligand L1, resulted in no product.

1H NMR (600 MHz, CDCl3): δ 7.26 – 7.19 (m, 5H), 2.63 (q, J = 8.6 Hz, 1H), 2.05 (ddd, J = 

9.2, 7.7, 5.6 Hz, 1H), 1.66 (dt, J = 7.6, 5.4 Hz, 1H), 1.37 (td, J = 8.2, 5.0 Hz, 1H).

HRMS (ESI-TOF): m/z Calcd for C10H9O+ [M−OH]+ 145.0653, found 145.0655.

(1R,2S)-2-(4-fluorophenyl)cyclopropane-1-carboxylic acid (S13d)

OH

O
F

The reaction was completed following the general procedure with the ligand L(Ac-Phe-OH) 

(eluent: hexanes/ethyl acetate = 5/1 with 2% v/v of acetic acid). The product was obtained as 

a white solid (55% yield, 91% ee).

The reaction was also performed with ligand L1 or L2, resulted in no product.

The reaction was also performed with ligand L5 (28% yield, 94% ee).

1H NMR (600 MHz, CDCl3): δ 7.21 – 7.16 (m, 2H), 6.96 – 6.91 (m, 2H), 2.59 (q, J = 8.5 

Hz, 1H), 2.03 (ddd, J = 9.1, 7.7, 5.6 Hz, 1H), 1.62 (dt, J = 7.6, 5.4 Hz, 1H), 1.38 (ddd, J = 8.6, 

7.7, 5.2 Hz, 1H).

HRMS (ESI-TOF): m/z Calcd for C10H10FO2
+ [M+H]+ 181.0665, found 181.0671.

(1R,2S)-2-(3-trifluoromethylphenyl)cyclopropane-1-carboxylic acid (S13e)
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OH

O

F3C

The reaction was completed following the general procedure with the ligand L(Ac-Phe-OH) 

(eluent: hexanes/ethyl acetate = 5/1 with 2% v/v of acetic acid). The product was obtained as 

a white solid (62% yield, 87% ee).

The reaction was also performed with ligand L1, resulted in no product.

1H NMR (600 MHz, CDCl3): δ 7.49 (s, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 7.7 Hz, 

1H), 7.35 (t, J = 7.7 Hz, 1H), 2.64 (q, J = 8.5 Hz, 1H), 2.09 (ddd, J = 9.2, 7.8, 5.6 Hz, 1H), 

1.68 (dt, J = 7.7, 5.4 Hz, 1H), 1.44 (ddd, J = 8.6, 7.8, 5.2 Hz, 1H).

HRMS (ESI-TOF): m/z Calcd for C11H10F3O2
+ [M+H]+ 231.0633, found 231.0639.

(1R,2S)-2-(3-(methoxycarbonyl)phenyl) cyclopropane-1-carboxylic acid (S13f)

OH

O

OMe

O

The reaction was completed following the general procedure with the ligand L(Ac-Phe-OH) 

(eluent: hexanes/ethyl acetate = 3/1 with 2% v/v of acetic acid). The product was obtained as 

a white solid (58% yield, 89% ee).

The reaction was also performed with ligand L1, resulted in no product.

1H NMR (600 MHz, CDCl3): δ 7.93 (t, J = 1.8 Hz, 1H), 7.88 (dt, J = 7.6, 1.5 Hz, 1H), 7.40 

(ddd, J = 7.7, 2.0, 1.0 Hz, 1H), 7.31 (t, J = 7.7 Hz, 1H), 3.91 (s, 3H), 2.64 (q, J = 8.5 Hz, 1H), 

2.07 (ddd, J = 9.1, 7.8, 5.6 Hz, 1H), 1.70 (dt, J = 7.6, 5.4 Hz, 1H), 1.45 – 1.39 (m, 1H).

HRMS (ESI-TOF): m/z Calcd for C12H13O4
+ [M+Na]+ 243.0633, found 243.0639.

(1R,2S)-2-(4-chlorophenyl)cyclopropane-1-carboxylic acid (S13g)

OH

O
Cl
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The reaction was completed following the general procedure with the ligand L5 (eluent: 

hexanes/ethyl acetate = 5/1 with 2% v/v of acetic acid). The product was obtained as a white 

solid (33% yield, 94% ee).

The reaction was also performed with ligand L4 (45% yield, 85% ee).

1H NMR (600 MHz, CDCl3): δ 7.22 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 2.57 (q, J 

= 8.6 Hz, 1H), 2.09 – 2.04 (m, 1H), 1.63 (dt, J = 7.6, 5.4 Hz, 1H), 1.41 – 1.37 (m, 1H).

HRMS (ESI-TOF): m/z Calcd for C10H10ClO2
+ [M+H]+ 197.0369, found 197.0365. 

(1R,2S)-2-(4-trifluoromethoxy)cyclopropane-1-carboxylic acid (S13h)

OH

O
F3CO

The reaction was completed following the general procedure with the ligand L4 (eluent: 

hexanes/ethyl acetate = 4/1 with 2% v/v of acetic acid). The product was obtained as a white 

solid (39% yield, 86% ee).

1H NMR (600 MHz, CDCl3): δ 7.22 (d, J = 8.2 Hz, 1H), 7.08 (d, J = 8.2 Hz, 1H), 1.63 (dt, J 

= 7.5, 5.3 Hz, 1H), 1.39 (td, J = 8.1, 5.1 Hz, 1H).

HRMS (ESI-TOF): m/z Calcd for C11H10F3O3
+ [M+H]+ 247.0582, found 247.0587.

(1R,2S)-2-(4-methylphenyl)cyclopropane-1-carboxylic acid (S13i)

OH

O

The reaction was completed following the general procedure with the ligand L4 (eluent: 

hexanes/ethyl acetate = 5/1 with 2% v/v of acetic acid). The product was obtained as a white 

solid (47% yield, 86% ee).

1H NMR (600 MHz, CDCl3): δ 7.12 (d, J = 7.7 Hz, 2H), 7.05 (d, J = 7.7 Hz, 2H), 2.58 (q, J 

= 8.6 Hz, 1H), 2.31 (s, 3H), 2.05 – 1.97 (m, 1H), 1.63 (dt, J = 7.6, 5.3 Hz, 1H), 1.38 – 1.32 

(m, 1H).

S59



HRMS (ESI-TOF): m/z Calcd for C11H13O2
+ [M+H]+ 177.0910. 159.0810\ 159.0815

3.2.3 Enantioselective arylation of cyclobutanecarboxamide by ArBpin

General Procedure

Pd(OAc)2 (10 mol%)
Ligand (11 mol%)

Ag2CO3, Na2CO3, BQ

H2O, tAmOH
70 °C, 24 h

+ Ar–Bpin
N
H

O
F

F

F

F

CN

Et
N
H

O
F

F

F

F

CN

Et Ar

Amide substrate (0.1 mmol, 1.0 equiv), Pd(OAc)2 (0.1 equiv), ArBPin (2.0 equiv), ligand 

(0.11 equiv), Ag2CO3 (2.5 equiv), Na2CO3 (2.0 equiv), BQ (0.5 equiv), H2O (5.0 equiv) and 

tAmylOH (0.5 mL) were added into a 10 mL sealed tube. The reaction vessel was evacuated 

and backfilled with nitrogen (×3). The reaction mixture was heated to 70 °C for 24 h under 

vigorous stirring. 

After being cooled to room temperature, the reaction mixture was diluted with EtOAc and 

filtered through a pad of Celite, eluting with EtOAc. The filtrate was concentrated under 

vacuum and the resulting residue was purified by preparative TLC using EtOAc/hexanes as 

the eluent to give the desired product.

(1R,2R)-N-(4-cyano-2,3,5,6-tetrafluorophenyl)-1-ethyl-2-phenylcyclobutane-1-

carboxamide (S13j)

N
H

O
F

F

F

F

CN

Et

The reaction was completed following the general procedure with the ligand L7. The product 

was obtained as a white solid (30% yield, 26% ee).

The product was also obtained with 23% yield and 31% ee with the ligand L8.

HRMS (ESI-TOF): m/z Calcd for C20H17F4N2O+ [M+H]+ 377.1272, found 377.1279.
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3.2.4 Enantioselective arylation of cyclobutanecarboxamide by ArI

General Procedure

Pd(MeCN)2Cl2 (10 mol%)
Ligand (20 mol%)

Ag2CO3, base

CHCl3, 80 °C, 24 h
+ Ar–I

N
H

O
F

F

F

F

CF3

N
H

O
F

F

F

F

CF3

Ar

A reaction tube (10 mL) with magnetic stir bar was charged with the amide substrate (0.1 

mmol), aryl iodide (0.30 mmol), Pd(MeCN)2Cl2 (0.01 mmol, 2.6 mg), ligand (0.015 mmol, 

3.6 mg), Ag2CO3 (0.20 mmol, 55.2 mg). Chloroform (0.5 mL) was added to the tube and the 

tube was sealed and heated to 80 °C for 24 hours. 

The crude reaction mixture was filtrated with celite and washed with EtOAc. The solvents 

were removed under reduced pressure and the residue was purified by preparative TLC to 

afford the desired product.

(1R,2S)-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-2-(p-tolyl)cyclobutane-1-

carboxamide (S13k)

N
H

O
F

F

F

F

CF3

The reaction was completed following the general procedure with the ligand L6, and the base 

Li3PO4 (eluent: hexanes/ethyl acetate = 10/1). The product was obtained as a white solid 

(37% yield, 80% ee).

The product was also obtained with 36% yield and 81% ee with the ligand L6 and the base 

Na3PO4.

1H NMR (600 MHz, CDCl3): δ 7.16 (d, J = 8.2 Hz, 2H), 7.14 – 7.10 (m, 2H), 6.39 (s, 1H), 

4.02 (q, J = 8.8 Hz, 1H), 3.65 – 3.59 (m, 1H), 2.64 – 2.57 (m, 1H), 2.57 – 2.51 (m, 1H), 2.39 

– 2.28 (m, 5H).
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HRMS (ESI-TOF): m/z Calcd for C19H15F7NO+ [M+H]+ 406.1042, found 406.1047.
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5. NMR Spectra

(S)-2-acetamido-3-(3,3''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)-Nmethoxypropanamide 
(L1)
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(S)-2-acetamido-3-(4,4''-dimethyl-[1,1':3',1''-terphenyl]-2'-yl)-Nmethoxypropanamide 
(L2)

(S)-2-acetamido-3-(4,4''-diphenyl-[1,1':3',1''-terphenyl]-2'-yl)-Nmethoxypropanamide 
(L3)
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(S)-N-(1-(4,4''-di-tert-butyl-[1,1':3',1''-terphenyl]-2'-yl)-3-(ethylmethylamino)propan-2-
yl)acetamide (L5)
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N-((S)-1-((R)-4-benzyl-4,5-dihydrooxazol-2-yl)-2,2-dimethylpropyl)acetamide (L6)

(1R,2S)-2-(3-chlorophenyl)cyclopropane-1-carboxylic acid (S13a)
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(1R,2S)-2-(3-methoxyphenyl)cyclopropane-1-carboxylic acid (S13b)
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(1R,2S)-2-phenylcyclopropane-1-carboxylic acid (S13c)
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(1R,2S)-2-(4-fluorophenyl)cyclopropane-1-carboxylic acid (S13d)

(1R,2S)-2-(3-trifluoromethylphenyl)cyclopropane-1-carboxylic acid (S13e)
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(1R,2S)-2-(3-(methoxycarbonyl)phenyl) cyclopropane-1-carboxylic acid (S13f)
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(1R,2S)-2-(4-chlorophenyl)cyclopropane-1-carboxylic acid (S13g)

(1R,2S)-2-(4-trifluoromethoxy)cyclopropane-1-carboxylic acid (S13h)
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(1R,2S)-2-(4-methylphenyl)cyclopropane-1-carboxylic acid (S13i)

(1R,2S)-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-2-(p-tolyl)cyclobutane-1 
carboxamide (S13k)
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