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Section 1. Materials and synthesis

Materials 

Zirconium(Ⅳ) chloride (98%, ZrCl4, Acros/thermo Scientific), 

cerium(Ⅲ) chloride heptahydrate (99.5%, CeCl3·7H2O, Energy 

Chemical), 2-Aminoterephthalic acid (99%, Alfa Aesar/thermo 

Scientific), N, N-dimethylformamide (DMF, China National 

Medicines Corporation Ltd.), methanol (General-reagent), Dimethyl 

sulfoxide-d6 ((D, 99.8% and TMS, 0.03%), Energy Chemical), 

cesium fluoride (99.5%, 3A), deuterium oxide (99.8%, Energy 

Chemical), and deuterium chloride ((D, 99.5%) DCl 20 wt.% in D2O, 

Energy Chemical)

Synthesis of UiO-66(Ce/Zr)-NH2

UiO-66(Ce/Zr)-NH2 (short for UN-x, “x” represents the mole 

percentage of Ce, x = 0.17, 0.25, 0.28, 0.30, etc.) was synthesized 

according to a reported solvothermal route with some modifications.[1] 

Typically, total 6 mmol metal salts (ZrCl4 and CeCl3·7H2O) with 

different Ce/Zr mole ratio were mixed in 40 mL DMF and 1.086 g (6 

mmol) 2-Aminoterephthalic acid is dissolved in 20 mL DMF. Those 

solvents were separately stirring for one hour, followed by mixing up 

and stirring for another hour. After stirring, the mixed solvent was 

transferred to a 100 mL Teflon-lined stainless-steel autoclave for a 

solvothermal treatment at 120 C for 24 h. Then the autoclave was 
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cooled down naturally in air and milk white products were collected 

through centrifugation, washed with DMF and methanol for 4 times. 

Products were dried in oven at 80 C overnight. UiO-66(Zr)-NH2 

(short for UN(Zr)) was synthesized as mentioned above without 

adding CeCl37H2O. 

Synthesis of Defective UiO-66(Ce/Zr)-NH2

D-UN-x, short for defective UiO-66(Ce/Zr)-NH2, were prepared by 

heating-treat. About 2g UN-x was added to a porcelain boat covered 

by a perforated aluminized paper. Then it was placed in a tube furnace. 

The samples were heated with a constant ramp (5 °C·min−1) up to 

250℃ and kept at this temperature for 2h. During the period, the 

system was purged with Argon at temperature-rise process. At last, 

the system was allowed to cool down naturally.

Synthesis of modulator induced defective UiO-66-NH2 (D-UiO-66-

NH2-x)

Typically, 132.2mg (0.73mmol) amino terephthalate is dissolved in 

30mL mixture of DMF and x ml acetic acid (x = 2, 4, 6). Then 169mg 

(0.73mmol) ZrCl4 is poured into above solution and stir for 10 

minutes. Then the solution is transferred to a 50mL Teflon-lined 

stainless-steel autoclave for a solvothermal treatment at 120 C for 24 

h. All samples are washed with DMF and ethanol for 3 times. Products 
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were dried in oven at 80 C overnight. 

Synthesis of mixed linkers (ML) induced selective linker defect UiO-

66 (D-ML-UiO-66(y))

D-ML-UiO-66(y) was synthesized as previous report.[2] Typically, 

total 0.73mmol terephthalate and amino terephthalate are added into 

30mL DMF. The proportion of amino terephthalate is 10%, 30%, 

70%, 90%. Then 169mg (0.73mmol) ZrCl4 is poured into above 

solution and stir for 10 minutes. Then the solution is transferred to a 

50mL Teflon-lined stainless-steel autoclave for a solvothermal 

treatment at 120 C for 24 h. All samples are washed with DMF and 

ethanol for 3 times. Products were dried in oven at 80 C overnight. 

Finally, all products are heated to 300 °C with a constant ramp (10 

°C·min−1) in air and kept for 2hours. 

Section 2. Instruments and characterization

Structure characterization

The XRD data of the as-synthesized product were obtained at a step 

of 0.02° in the range from 3°– 40° performed in Rigaku D/MAX-2550 

with Cu Kα radiation, accelerating voltage and applied current were 

40 kV and 30 mA, respectively. The morphologies of the as-obtained 

product were characterized via a JEOL JSM-6700 SEM with a low 

accelerating voltage of 5 kV. TEM and EDS mapping exams were 
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performed on a FEI Tecnai G2 S-Twin F20 and Talos F200s TEM at 

200 kV. XPS data were recorded via an Thermo Scientific ESCALAB 

250X with an excitation source of Mg Kα radiation, adventitious 

carbon was used as a reference. XPS data was fitting on the Thermo 

Avantage (auto fitting). UV–vis DRS were carried out through 

PerkinElmer Lambda 850, with the BaSO4 as reference. The range is 

200nm – 800nm, scan speed is 266.75 nm/min and lighter switch 

wavelength is 319.20 nm. Number of scan is 1. Fluorescence emission 

spectra and fluorescence lifetime of the as-prepared samples were 

detected with an Edinburgh Instruments FLS 1000. Emission spectra 

was gotten from 400 – 600 nm, excitation wavelength is 375 nm and 

step is 1. Number of scan is 1. FT-IR spectra and in situ FT-IR spectra 

were collected in IFS-66 V/S (Bruker). FT-IR spectra was gotten from 

400 – 4000 cm-1 and resolution is 4 cm-1.  In-situ FT-IR was gotten 

from 1000 – 2200 cm-1 and resolution is 4 cm-1. Baseline correction 

and steam compensation were conducted. The EPR spectra were 

obtained on a JES-FA 200 EPR spectrometer at room temperature and 

micro frequency is 9441.564 μFMHz. 13C labeling exam was carried 

on GC-MS, Agilent, 5977B GC/MSD. ICP-OES was carried on 

Agilent，Agilent 725. 10 mg samples and 2 mL HNO3 was added in a 

25 mL teflon autoclave and heated in a 100℃ oven. Then the clear 

liquid was diluted to 100 mL, so the concentration is 100ppm. TGA-
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DSC was carried on TA Q500, rate of temperature increase is 10℃/ 

min. Atmosphere is N2 and air, flow speed is 60 mL/min. 

XAS data was gotten from Shanghai Synchrotron Radiation Facility 

(SSRF) beamline BL13SSW, BL17B1 and BL11B.

The XAS data was analyzed with Demeter software package. [3]

Photocatalytic CO2 Reduction

As shown in Figure S1, the photocatalysis experiment was carried on 

Perfectlight Labsolar 6A system with a circulating water system to 

avoid the photothermal effect. Typically, 10 mg catalyst was pressed 

in nickel foam placed on an upholder and the whole was placed on the 

bottom of a sealed glass reactor. 3 mL water was also injected into the 

reactor as reactant. The system was vacuumized and purged with pure 

CO2. A 300 W Xe lamp with an AM 1.5G filter was used as the 

simulated sunlight. After every 5h of reaction, the products were 

quantified with SHIMADAZU GC 2014C online by the comparison 

of the peak areas with that of pure standards. In this work, the products 

were detected by a flame ionization detector (FID) (CO was 

transferred into CH4 by a methanation reactor before detected).

Electrochemical Characterization

Electrochemical measurements were carried out in a three standard 

electrode system (BioLogic, France). The working electrodes were 

obtained via spin-coating 2 mL slurry to the surface of fluoride–tin 
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oxide glass plate of which the effective area was ≈1 cm2. The slurry 

was prepared via mixing 2 mL ethanol with the 0.01g as-prepared 

samples and ultrasonicated for 10 min. Platinum mesh was used as 

counter electrode, and a saturated calomel electrode as a reference 

electrode. The experiment was performed in 0.1 M Na2SO4 as 

electrolyte at room temperature.

1H-NMR characterization

Method for digestion of MOFs is from a previous report.[4] 5-10mg 

samples were digested by mixture of 30mg CsF and 20μL 30% DCl 

plus 180μL D2O, then the digestive liquid was mixed with 500μL 

DMSO-d6.

Calibration was performed using external standard solutions of 

H2BDC-NH2. Typically, 2 – 10 mg H2BDC-NH2 is dissolved in the 

mixture of digestive liquid and DMSO-d6. And the concentration of 

four external standard solutions is 0.0158 mM, 0.0356mM, 

0.0573mM and 0.111mM. All measurements were carried on Bruker 

AVANCE III 400MHz. Gain and relaxation delay was set by software 

automatically. Number of scans is 16.

For D-UiO-66-NH2-x and D-ML-UiO-66-NH2(y), specially, 100μL 

CH3CN was added into digestive liquid as interior label.

Fs-TAS Characterization

In the ultrafast transient absorption spectroscopy system (Ultrafast 
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System LLC, Helios Fire), a titanium-sapphire laser amplifier 

(Coherent Inc., Astrella) was utilized to emit femtosecond pulses at a 

central wavelength of 800 nm, a pulse width of 100 fs, and a repetition 

rate of 1 kHz. The oscillator (Coherent Inc., Vitara-S) and the 

amplifier pump source (Coherent Inc., REVOLUTION 38 SYSTEM) 

are integrated components of the system. The tunable optical 

parametric amplifier (Coherent Inc., TOPAS Prime) provided output 

light serving as the pump light (350 nm/380 nm), while the 

femtosecond beam at 800 nm generated by the sapphire crystal 

produced a supercontinuum white light for use as the probe light (420 

- 760 nm). The time delay between the pump and probe pulses was 

precisely controlled using a motorized optical delay line. Both 

spectral and kinetic analyses were performed using Surface Xplore.

Ex-situ XPS

Ex-situ XPS was carried out on Thermo SCIENTIFIC ESCALAB 

250Xi with an excitation source of Al Kα radiation. Typically, the 

sample was swept with N2 to removed impurity on the surface in 

darkness and the test before illumination was conducted. Then the 

300W Xe lamp was turned on for 10 minutes to excite the sample and 

the test after illumination was conducted. Data was fit in Thermo 

Avantage.
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Computational details

The first-principles calculations are performed in the framework of 

the density functional theory with the projector augmented plane-

wave method, as implemented in the Vienna ab initio simulation 

package.[5] The generalized gradient approximation of Perdew, Burke, 

and Ernzerhof (PBE) functional is employed for the exchange-

correlation potential.[6] The long range van der Waals interaction is 

described by the DFT-D3 approach.[7] The plane-wave basis with a 

kinetic energy cutoff of 450 eV and the Monkhorst-Pack[8] scheme 

with a k-point grid spacing of 2π×0.04 Å-1, were employed to ensure 

convergence of the total energy. The converged conditions for ionic 

and electronic optimizations were chosen as 0.02 eV/Å and 1×10−5 

eV, respectively. The adsorption energy E_ads is defined as: E_ads = 

E_ad/sub – (E_ad + E_sub), where E_ad/sub, E_ad, and E_sub are the 

total energies of the adsorbate/substrate system, the adsorbate in the 

structure, and the clean substrate, respectively. The free energy was 

calculated by G = E_ads + ZPE – TS, where G, E_ads, ZPE, and TS 

are the free energy, total energy from DFT calculations, zero-point 

energy, and entropic contributions, respectively. The entropic 

contribution to the free energy was conducted by using the VASPKIT 

package.[9]
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Section 3. Figures

Figure S1.Scheme of photocatalytic reaction process
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Figure S7. SEM and TEM pictures of (a, c) UN-0.25 and (b, d) D-UN-0.25
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Figure S8. 1H NMR patterns of standard NH2-H2BDC (The mass of NH2-H2BDC increase from 
(a) to (d))

Figure S9. 1H NMR patterns of digested (a) UN(Zr), (b) UN-0.25, (c) D-UN-0.167，(d) D-UN-
0.25, (e) D-UN-0.28 and (f) D-UN-0.3
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Figure S14. 3D contour WTEXAFS maps with 2D projection of Ce L3-edge of D-UN-0.25
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Figure S15. 3D contour WTEXAFS maps with 2D projection of Zr K-edge of D-UN-0.25
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Figure S16. 3D contour WTEXAFS maps with 2D projection of Zr K-edge of UN(Zr)
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Figure S20. Structure of (a) pristine and (b) optimized D-ZrCe-oxo-clusters

Figure S21. Structure of optimized ZrCe-oxo-clusters, a ligand is removed for charge 
compensation. This model was only applied for COHP calculation
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Figure S22. Structure of optimized Zr-oxo-clusters
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Figure S24. 1H NMR patterns water after 10 hours’ photocatalysis (Pyridine as internal standard)
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Figure S25. 1H NMR patterns of digested (a) D-UiO-66-NH2-2, (b) D-UiO-66-NH2-4, (c) D-UiO-
66-NH2-6，(d) D-ML-UiO-66-NH2(0.1), (e) D-ML-UiO-66-NH2(0.3), (f) D-ML-UiO-66-

NH2(0.7), (g) D-ML-UiO-66-NH2(0.9), (h) D-UiO-66-NH2 (Zr/Ce0.25) after 12 hours’ 
photocatalysis
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Figure S28. Photoreduction rates of UiO-66 with other defective engineering strategies 
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Figure S29. TEM photographs of D-UN-0.25 after 12 hours’ photocatalysis
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Figure S30. XRD patterns of D-UN-0.25 after 12 hours’ photocatalysis
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Figure S31. Mott-Schottky plots of UN-0.25
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Figure S32. Mott-Schottky plots of D-UN-0.25
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Figure S33. Mott-Schottky plots of UN(Zr)
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Figure S34. Density of state plots of D-CeZr-oxo clusters (upper) and Zr-oxo-clusters (under)
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Figure S36. XPS fine spectroscopy of Zr 3d get from UiO-66-NH2 (Zr/Ce0.25) and D-UiO-66-NH2 
(Zr/Ce0.25)



S47

920 910 900 890 880

Co
un

ts
UN-0.25

Binding Energy (eV)

D-UN-0.25
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Figure S39. In situ FTIR (2350-1000cm-1) of D-UN-0.25
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Figure S40. Mechanism scheme of photocatalytic CO2 reduction and H2O oxidation on ZrCe-oxo 
cluster
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Figure S41. Charge density difference plots of Zr-oxo cluster with adsorbed (a, b) CO2; (c, d) 
COOH; (e, f) CO
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Figure S42. Charge density difference plots of ZrCe-oxo cluster with absorbed (a, b) CO2; (c, d) 
COOH; (e, f) CO
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Section 4. Tables
Table S1. ICP-OES elements content analysis a

Sample Concentration (Zr)/ppm Concentration (Ce)/ppm Molar percentage of 
Ce (nCe/nCe+nZr)

D-UiO-66-NH2 
(Zr/Ce0.30)

17.2 1.385 4.97%

D-UiO-66-NH2 
(Zr/Ce0.28)

16.95 1.227 4.49%

D-UiO-66-NH2 
(Zr/Ce0.25)

17.82 0.795 2.82%

D-UiO-66-NH2 
(Zr/Ce0.167)

26.08 0.5708 1.4%

D-UiO-66-NH2-2 23.46
D-UiO-66-NH2-4 22.94
D-UiO-66-NH2-6 24.73
D-ML-UiO-66-
NH2(0.1)

25.19

D-ML-UiO-66-
NH2(0.3)

26.25

D-ML-UiO-66-
NH2(0.7)

24.86

D-ML-UiO-66-
NH2(0.9)

25.97

a Sample concentration is 100ppm
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Table S2. Ligands/clusters (L/C) ratio analysis

Sample Sample 
mass/mg Calculated formula 

Amount of 
clusters/m

ol a
Amount of 
ligands/mol

Ligands/clu
sters

D-UiO-66-
NH2 

(Zr/Ce0.30)
5.09 Ce0.298Zr5.702O6(NH

2- BDC) x
1.68733E-

6 4.75644E-6 2.82

D-UiO-66-
NH2 

(Zr/Ce0.28)
6.08 Ce0.269Zr5.731O6(NH

2-BDC) x

1.97628E-
6 5.66974e-6 2.87

D-UiO-66-
NH2 

(Zr/Ce0.25)
3.81 Ce0.169Zr5.831O6(NH

2-BDC) x

1.27951E-
6 5.72038e-6 4.47

D-UiO-66-
NH2 

(Zr/Ce0.167)
8.30 Ce0.084Zr5.916O6(NH

2-BDC) x

4.02093E-
6 1.91508E-5 4.76

UiO-66-NH2 6.74 Zr6O6(NH2-BDC) x
2.81944E-

6 1.641E-5 5.82

D-UiO-66-
NH2-2

5.04 Zr6O6(NH2-BDC) x
2.16554E-

6 9.55943E-6 4.41

D-UiO-66-
NH2-4

7.02 Zr6O6(NH2-BDC) x
2.94943E-

6 1.12449E-5 3.81

D-UiO-66-
NH2-6

7.17 Zr6O6(NH2-BDC) x
3.24751E-

6 1.16048E-5 3.57

D-ML-UiO-
66-NH2(0.1)

6.1 Zr6O6(NH2-BDC) 

x(BDC)y

2.81427E-
6 1.26691E-5 4.50

D-ML-UiO-
66-NH2(0.3)

7.6 Zr6O6(NH2-BDC) 

x(BDC)y

3.65385E-
6 1.23458E-5 3.38

D-ML-UiO-
66-NH2(0.7)

6.0
Zr6O6(NH2-BDC) 

x(BDC)y
2.73187E-

6 6.16083E-6 2.26

D-ML-UiO-
66-NH2(0.9)

6.14
Zr6O6(NH2-BDC) 

x(BDC)y
2.92044E-

6 3.41656E-6 1.17

D-UiO-66-
NH2 

(Zr/Ce0.25) 
after 12hours’ 
photocatalysis

3.42 Ce0.169Zr5.831O6(NH
2-BDC) x

1.4914E-6 3.69085E-6 4.33

a According to ICP-OES, we got the mass percentages of metal elements and it’s assumed that every 
six Zr or Ce atoms form a cluster.
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Table S3. Curve-fit Parameters a for Ce L3-edge EXAFS for D-UiO-66-NH2 (Zr/Ce0.25)

Path N R/ Å σ2/ Å2 ΔR
Ce-O 2.63(±0.49) 2.55 0.015(±0.006) 0.16(±0.023)
Ce-Zr 4b 3.60 0.017(±0.006) 0.06(±0.039)

a S0
2 was fixed as 0.7 to reduce variable parameters. ΔE0 was refined as a global fit parameter, 

returning a value of (2.61±1.02) eV. Data ranges: 2.000≤k≤6.481 Å-1, 1.0≤R≤3.8 Å. The number of 
variable parameters is 6, out of a total of 7.734 independent data points. R factor for this fit is 1.0%. 
b The coordination number was constrained as N(Ce-Zr)-4 for the assumption that the CeZr5O 
clusters wouldn’t lose Zr.
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Table S4. Curve-fit Parameters a for Zr K-edge EXAFS for D-UiO-66-NH2 (Zr/Ce0.25)

Path N R/ Å σ2/ Å2 ΔR
Zr-OCOO 3.36(±0.41) 2.12 0.005(±0.001) -0.024(±0.015)
Zr-Oμ3 3.68(±0.38) 2.28 0.003(±0.002) -0.026(±0.015)
Zr-Zr 4 b 3.53 0.011(±0.001) 0.011(±0.012)

a S0
2 was fixed as 1.12, which was gotten from fitting Zr-K edge EXAFS of UiO-66-NH2 with fixed 

coordination number. ΔE0 was refined as a global fit parameter, returning a value of (0.070±1.123) 
eV. Data ranges: 3.000≤k≤12.327 Å-1, 1.0≤R≤3.6 Å. The number of variable parameters is 8, out of 
a total of 15.18 independent data points. R factor for this fit is 1.46%. b This coordination number 
was constrained as N(Zr-Zr)-4 based on the assumption that Zr-O cluster wouldn’t be broken in D-
UN-0.25.
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Table S5. Curve-fit Parameters a for Zr K-edge EXAFS for UiO-66-NH2 standard

Path N R/ Å σ2/ Å2 ΔR
Zr-OCOO 4 a 2.13 0.005(±0.002) -0.010(±0.012)
Zr-Oμ3 4 a 2.28 0.004(±0.002) -0.018(±0.013)
Zr-Zr 4a 3.52 0.006(±0.001) 0.010(±0.008)

a S0
2 was calculated as 1.12 when coordination number were constrained as N(Zr-OCOO)-4, N(Zr-

Oμ3)-4 and N(Zr-Zr)-4. ΔE0 was refined as a global fit parameter, returning a value of (0.58±1.11) 
eV. Data ranges: 3.000≤k≤12.327 Å-1, 1.0≤R≤3.5 Å. The number of variable parameters is 8, out of 
a total of 14.633 independent data points. R factor for this fit is 1.2%. 
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Table S6. Summary of defect containing MOFs-based photocatalytic performance

Defective 

MOFs

Defective 

type

Application Photocatalytic 

conditions

Performance References

Ni-MOF-

74

Ligand 

deficiency

CO2 to CO Photosensitizer 

and sacrificial 

agents,λ>400nm

1380μmol/g/h [10]

Cu-BTC Ligand 

deficiency

H2 evolution Photosensitizer 

and sacrificial 

agents,λ>420nm

15107μmol/g/h [11]

ZIF-67 Ligand 

deficiency

O2 evolution Photosensitizer 

and sacrificial 

agents,λ>420nm

TOF = 0.079s- [12]

NH2-MIL-

125(Ti)

Ligand 

deficiency

H2 evolution Sacrificial 

agents,λ>420nm 

500W Xe lamp

337μmol/g/h [13]

ZIF-67 Ligand 

deficiency

H2 evolution Photosensitizer 

and sacrificial 

agents,λ>420nm

6.14 mmol/g/h [14]

UiO-67 Ligand 

deficiency

CO2 to 

HCOOH

Photosensitizer 

and sacrificial 

agents,λ>420nm

14.7μmol/g/h [15]

D-UiO-

66(Zr/Cex)-

NH2

Ligand 

deficiency

CO2 to CO No 

photosensitizer 

and sacrificial 

agents, AM 

1.5G

4.42μmol/g/h This work
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Table S7. Flat band potential (VFB) and band structure calculation a

Sample Band
gap 
(eV)

VFB vs 
SCE/V

VFB vs 
NHE/V

Fermi 
level/eV 
b

EVB/eV ECB/eV VVB vs 
NHE/V

VCB vs 
NHE/V

UiO-66-
NH2 
(Zr/Ce0.25)

2.831 -1.100 -0.856 -3.644 -6.275 -3.444 1.775 -1.056

D-UiO-66-
NH2 
(Zr/Ce0.25)

2.487 -1.267 -1.023 -3.477 -5.764 -3.277 1.264 -1.223 

UiO-66-
NH2

2.899 -1.177 -0.933 -3.567 -6.266 -3.367 1.766 -1.133

a Band gap energy was gotten from UV-vis DRS and Tauc-plot. According to the Mott-Schottky 
curves, flat band potential (VFB) was accessed. Then VFB plus 0.244V can get (VFB vs NHE). All 
samples are n-type semiconductor, the bottom of conduction band is 0.1-0.3 eV minus VFB. So VFB 
minus 0.2eV can get VCB. All statistics is listed at table S5. b Fermi level was calculated according 
to the following function: EF = -4.5eV + (-e) * Vf
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Table S8. TRPL lifetime of D-UN-0.25, UN-0.25 and UN(Zr)

sample τ1/ns τ2/ns A B1 B2 2 τ*/ns
UiO-66-
NH2 
(Zr/Ce0.25)

0.2117 2.189 0.8549 7967.9819 91.6532 1.0189 0.422

D-UiO-66-
NH2 
(Zr/Ce0.25)

0.1731 0.7086 4854.3901 1.0358 0.173

UiO-66-
NH2

0.2366 0.8552 3856.8665 1.2428 0.237
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Table S9. Assignment of the Ce 3d3/2, 3d5/2 components from XPS spectra collected for UN-0.25 
and D-UN-0.25

sample element Spin-orbit 
doublet

BE 
(eV)

sample element Spin-
orbit 
doublet

BE 
(eV)

Ce 3d5/2 881.88 Ce 3d5/2 882.46
Ce 3d5/2 886.20 Ce 3d5/2 886.74

Ce 3d3/2 900.60 Ce 3d3/2 901.10Ce(Ⅲ)

Ce 3d3/2 904.94

Ce(Ⅲ)

Ce 3d3/2 905.41

Zr 3d5/2 183.08 Zr 3d5/2 182.47

UiO-66-
NH2 

(Zr/Ce0.25) Zr(Ⅳ)
Zr 3d3/2 185.48

D-UiO-66-
NH2 

(Zr/Ce0.25) Zr(Ⅳ)
Zr 3d3/2 184.88
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Table S 10. Assignment of the Ce 3d3/2, 3d5/2 components from ex-situ XPS spectra collected for 
D-UiO-66-NH2(CeZr0.25)

element Spin-orbit 
doublet

BE 
(eV)

element Spin-
orbit 
doublet

BE 
(eV)

Ce 3d5/2 882.25 Ce 3d5/2 882.73
Ce 3d5/2 885.98 Ce 3d5/2 886.37

Ce 3d3/2 900.94 Ce 3d3/2 901.79Ce(Ⅲ)

Ce 3d3/2 904.79

Ce(Ⅲ)

Ce 3d3/2 905.30

Zr 3d5/2 182.96 Zr 3d5/2 182.87

Before
illumination

Zr(Ⅳ)
Zr 3d3/2 185.31

After
illumination

Zr(Ⅳ)
Zr 3d3/2 185.22
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Table S11. O species proportion from XPS spectra collected for D-UN-0.25 and UN-0.25

sample μ3-O M-O-C μ3-OH O-C=O
BE (eV) 530.55 532.02 532.77D-UiO-66-

NH2 
(Zr/Ce0.25)

% Area 18.1 58.5 23.4

BE (eV) 530.76 532.00 532.64 533.87UiO-66-NH2 
(Zr/Ce0.25) % Area 64.1 18.6 12.2 5.13
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