Electronic Supplementary Information (ESI)

Insights into the halogen-induced p-band center regulation promising highperformance lithium-sulfur batteries

Hanzhang Fang,^a Wenshuo Hou, ^{*a} Chuanlong Li ^a Shuo Li,^a Fulu Chu,^a Xuting Li,^a Xianping Zhang, ^{*b} Linrui Hou,^a Changzhou Yuan, ^{*a} Yanwei Ma^b

^a School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R.

China

E-mail: mse_houws@ujn.edu.cn (Dr. W. S. Hou)

mse_yuancz@ujn.edu.cn; ayuancz@163.com (Prof. C. Z. Yuan)

^b Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology,

Qilu Zhongke, Jinan 250013, P. R. China

E-mail: zxp@mail.iee.ac.cn (Prof. X. P. Zhang)

Fig. S1. XRD patterns of (a) Cs_2SnI_6 , (b) Cs_2SnBr_6 , and (c) Cs_2SnCl_6 .

Fig. S2. Lattice parameters of (a) Cs_2SnI_{6} , (b) Cs_2SnBr_6 , and (c) Cs_2SnCl_6 .

Fig. S3. FESEM images of (a) Cs_2SnI_6 , (b) Cs_2SnBr_6 , and (c) Cs_2SnCl_6 before ballmilling.

Fig. S4. FESEM images of (a) Cs_2SnBr_6 and (b) Cs_2SnCl_6 after ball-milling, and corresponding particle size distribution diagrams (the insets).

Fig. S5. (a, b) HRTEM images and (c, d) SAED patterns of Cs₂SnBr₆ and Cs₂SnCl₆.

Fig. S6. EDS mapping images of Cs, Sn, and halogen elements for (a - d) Cs₂SnBr₆, and (e - h) Cs₂SnCl₆.

Fig. S7. Typical Sn 3d spectra of (a) Cs_2SnBr_6 and (b) Cs_2SnCl_6 . (c) Br 3d spectra of Cs_2SnBr_6 and (d) Cl 2p spectra of Cs_2SnCl_6 .

Fig. S8. S 2p spectra of (a) Cs_2SnBr_6 and (b) Cs_2SnCl_6 absorbed with $Li_2S_{6.}$

Fig. S9. Adsorption configurations of Li_2S_n $(1 \le n \le 8)$ on the surface of Cs_2SnX_6 .

Fig. S10. Cross-sectional FESEM images of (a) Cs_2SnI_6 , (b) Cs_2SnBr_6 , and (c) Cs_2SnCl_6 modified separators.

Fig. S11. Top-view FESEM images of (a) Cs_2SnI_6 , (b) Cs_2SnBr_6 , and (c) Cs_2SnCl_6 modified separators.

Fig. S12. Thermogravimetric analysis plot of KB/S.

Fig. S13. (a – c) Enlarged CV curves (0.1 mV s⁻¹) and (d – f) corresponding peak

current value of LSBs with Cs_2SnX_6 modified separators.

Fig. S14. Tafel slopes of (a) peak 1 and (b) peak 2 of LSBs with Cs_2SnX_6 modified separators.

Fig. S15. Charge-discharge curves of (a) Cs_2SnBr_6 and (b) Cs_2SnCl_6 batteries at different current rates.

S-16

Fig. S16. Charge-discharge curves of (a) Cs_2SnI_6 , (b) Cs_2SnBr_6 , and (c) Cs_2SnCl_6 batteries at different cycle times.

Fig. S17. FESEM images of the cathode of (a) Cs_2SnI_6 , (b) Cs_2SnBr_6 , and (c) Cs_2SnCl_6 batteries after 500 cycles at 1 C.

S-18

Fig. S18. FESEM images and digital photos (the insets) of lithium anodes of (a) Cs_2SnI_6 , (b) Cs_2SnBr_6 , and (c) Cs_2SnCl_6 batteries after 500 cycles at 1 C.

Fig. S19. FESEM images of Cs_2SnX_6 modified separators (a - c) before and (d - f) after 500 cycles at 1C.

Fig. S20. (a) The first charge-discharge curves of Cs_2SnI_6 batteries under high-load and low E/S ratio conditions. (b – d) Corresponding charge-discharge curves at different cycle times as indicated.

Fig. S21. The first Charge-discharge curves of Cs_2SnI_6 batteries in environments of 50°C (0.5 C) and -20 °C (0.1 C).

	Coated materials	$R_{s}\left(\Omega ight)$	$R_{sf}(\Omega)$	$R_{ct}\left(\Omega ight)$
Before cycling	Cs_2SnCl_6	1.6	-	73.5
	Cs_2SnBr_6	1.8	-	72.6
	Cs_2SnI_6	2.9	-	60.7
After cycling	Cs_2SnCl_6	3.9	20.6	7.6
	$\mathrm{Cs}_2\mathrm{SnBr}_6$	3.5	17.7	6.2
	Cs_2SnI_6	4.5	13.8	2.9

Table S1 EIS fitting results of Cs_2SnX_6 batteries.

Coated materials	Current rate (C)	Cycle number	Capacity decay per cycle (%)
Cs ₂ SnI ₆ (This work)	2	500	0.068
VN@NG ¹	2	500	0.075
CQDs-PAN ²	0.5	500	0.075
H-CMP ³	1	500	0.066
Li-MOF/RGO ⁴	1	600	0.089
Zwitterionic COF ⁵	2	500	0.072
C ₃ N ₄ -CoSe ₂ ⁶	1	500	0.089
ZIF-8 ⁷	1	500	0.100
Ni/SiO2/G ⁸	1	300	0.086
Co/Mo ₂ C ⁹	1	600	0.072

 Table S2. Performance comparison of LSBs with various separators.

Coated materials	Sulfur loading (mg cm ⁻²)	E/S ratio (µl mg ⁻¹)	Initial specific capacity (mAh g^{-1}) @ C rates
Cs ₂ SnI ₆ (This work)	6.10	5.5	768.8@0.2 C
NbB ₂ /rGo ¹⁰	7.06	10	590.7@0.1 C
Co-MoS ₂ ¹¹	5.27	12	800.8@0.2 C
NS-MXene ¹²	7.20	7.0	730.6@0.2 C
Fe-ZIF-8 ¹³	5.00	5.0	517@0.05 C
TpPa-SO ₃ H ¹⁴	5.00	10	800.0@0.2 C
ZIF-67/SA- PAN ¹⁵	5.45	10	797.5@0.1 C
ZrO ₂ -SiO ₂ ¹⁶	4.00	10	757.0@0.2 C
GQDs-PAN ¹⁷	5.10	15	633.3@0.1 C
RPM ¹⁸	5.40	10	703.7@0.2 C

 Table S3 Performance comparison of LSBs with various separators under high-load

 and low-E/S-ratio conditions.

 Table S4. Performance comparison of LSBs with various separators under different

 operating temperatures

Coated materials	Temperature (°C)@Current rate (C)@Initial specific capacity (mAh g ⁻¹)		
Cs2SnI6 (This work)	-20 °C@0.1 C@ 912.7 mAh g ⁻¹		
	50 °C@0.5 C@1350 mAh g ⁻¹		
Go-CoNiP ¹⁹	-20 °C@0.5 C@810.9 mAh g ⁻¹		
	60 °C@0.5 C@1064.8 mAh g ⁻¹		
SAF-3 ²⁰	-20 °C@0.1 C@870.0 mAh g ⁻¹		
	60 °C@0.5 C@1064.8 mAh g ⁻¹		
NbB ₂ ²¹	-10 °C@0.1 C@802.0 mAh g ⁻¹		
TPE ²²	-20 °C@0.1 C@802.0 mAh g ⁻¹		
FeCoNi ²³	0 °C@0.2 C@931.0 mAh g ⁻¹		
Fe/Ni-N@NC ²⁴	0 °C@0.5 C@741.0 mAh g ⁻¹		

References

- 1 J. Xia, W. Hua, L. Wang, Y. Sun, C. Geng, C. Zhang, W. Wang, Y. Wan and Q.-H. Yang, *Adv. Funct. Mater.*, 2021, **31**, 2101980.
- 2 C. Fan, R. Yang, Y. Huang, L. Mao, Y. Yang, L. Gong, X. Dong, Y. Yan, Y. Zou, L.Zhong and Y. Xu, *J. Energy Chem.*, 2023, 85, 254-266.
- 3 T. Zhu, D. Chen, G. Liu, P. Qi, X. Gu, H. Li, J. Sun and S. Zhang, *Small*, 2022, **18**, 2203693.
- 4 M. Zhou, Y. Li, T. Lei, W. Chen, G. Rao, L. Xue, A. Hu, Y. Fan, J. Huang, Y. Hu,X. Wang and J. Xiong, *Small*, 2021, 17, 2104367.
- 5 Y. Cao, Y. Zhang, C. Han, S. Liu, S. Zhang, X. Liu, B. Zhang, F. Pan and J. Sun, *ACS Nano*, 2023, **17**, 22632-22641.
- 6 Z. Liang, C. Peng, J. Shen, J. Yuan, Y. Yang, D. Xue, M. Zhu and J. Liu, *Small*, 2024, 20, 2309717.
- 7 X. Kang, T. He, S. Niu, J. Zhang, R. Zou, F. Zhu and F. Ran, *Nano Lett.*, 2024, 24, 10007-10015.
- 8 C. Chen, Q. Jiang, H. Xu, Y. Zhang, B. Zhang, Z. Zhang, Z. Lin and S. Zhang, *Nano Energy*, 2020, **76**, 105033-105041.
- 9 W. Liu, M. Lei, X. Zhou and C. Li, Energy Storage Mater., 2023, 58, 74-84.
- 10 Y. Li, Z. Wang, H. Gu, H. Jia, Z. Long and X. Yan, ACS Nano 2024, 18, 8863-8875.
- 11 W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma, X. Wang, W. Liu, Z. Li, Q.-H. Yang and W. Lv, ACS Nano, 2021, 15, 7491-7499.
- 12 J. Feng, W. Liu, C. Shi, C. Zhang, X. Zhao, T. Wang, S. Chen, Q. Li and J. Song,

Energy Storage Mater., 2024, 67,103328-103338.

- 13 R. Razaq, M. M. U. Din, D. R. Smabraten, V. Eyupoglu, S. Janakiram, T. O. Sunde,
- N. Allahgoli, D. Rettenwander and L. Deng, Adv. Energy Mater., 2024, 14, 2302897.
- 14 J. Zhao, G. Yan, X. Zhang, Y. Feng, N. Li, J. Shi and X. Qu, *Chem. Eng. J.*, 2022,
 442, 136352-136362.
- 15 Z. Li, Y. Sun, X. Wu, H. Yuan, Y. Yu and Y. Tan, *ACS Energy Lett.*, 2022, 7, 4190-4197.
- 16 L. Li, B. Yue, Y. Bao, S. Jiang, H. Shao, Q. Ma, W. Yu, J. Wang and X. Dong, *Chem. Eng. J.*, 2024, **495**, 153619-153635.
- 17 C. Fan, R. Yang, Y. Huang, L. Mao, Y. Yang, L. Gong, X. Dong, Y. Yan, Y. Zou,
 L. Zhong and Y. Xu, *J. Energy Chem.*, 2023, 85, 254-266.
- 18 M. Shi, Z. Liu, S. Zhang, S. Liang, Y. Jiang, H. Bai, Z. Jiang, J. Chang, J. Feng, W.
- Chen, H. Yu, S. Liu, T. Wei and Z. Fan, Adv. Energy Mater., 2022, 12, 2103657.
- 19 J. Li, X. Wu, C. Jian, X. Qiao, F. Wan, Z. Wu, B. Zhong, Y. Chen and X. Guo, *Small*, 2024, **20**, 2307912.
- 20 J. Xu, H. Zhang, F. Yu, Y. Cao, M. Liao, X. Dong and Y. Wang, *Angew. Chem. Int. Ed.*, 2022, **61**, e202211933.
- 21 L. He, Y. Cheng, Q. Li, H. Zhao, M. Wang, X. Shi, X. Zou, Y. Wang and Y. Wei, *Chem. Eng. J.*, 2023, **453**, 139566-139574.
- 22 Z. Zhao, Y. Pan, H. Chen, X. Wang, Y. Huang, S. Yi, B. Niu, D. Long and Y. Zhang, *Adv. Funct. Mater.*, 2024, **34**, 2402182.
- 23 Y. Zuo, X. Jiao, Z. Huang, J. Lei, M. Liu, L. Dong, W. Yan and J. Zhang, Adv.

Funct. Mater., 2024, 34, 2405853.

24 Y. Xu, Y. Zhu, T. Nie, A. Zhu, J. Xu, Y. Cao, S. Hu, X. Zhang and D. Niu, *Chem. Eng. J.*, 2024, **484**, 149171-149179.