Supplementary information for:

Sequence-defined peptoids via iterative exponential growth

Abigail M. Clapperton,^a Christine Hood,^a & Helen Tran^{a,b,c*}

^a Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada

^b Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada

^c Acceleration Consortium, University of Toronto, Toronto, Ontario M5G 1Z5, Canada

*Corresponding author: tran@utoronto.ca

Table of Contents

1. Materials and Methods	
1.1 Ultra-high-performance liquid chromatography	3
1.2 Mass spectrometry	4
1.3 Nuclear magnetic resonance spectrometry	4
1.4 Recycling preparative gel permeation chromatography	4
1.5 Circular dichroism spectroscopy	4
1.6 Gel permeation chromatography	4
1.7 Conditions for the self-assembly of peptoid nanosheets	5
1.8 Transmission electron microscopy	5
2. Synthetic and self-assembly protocols	5
Table S1. Summary of IEG cycle efficiencies for synthesized peptoids	5
2.1 General procedure for the synthesis of the tert-butyl ester protected peptoid monomers	6
2.2 General procedure for the Cbz protection of peptoid monomers	6
2.3 General procedure for the tert-butyl ester deprotection of peptoids	7
2.3 General procedure for the Cbz deprotection of peptoids	7
2.4 General procedure for the amide coupling of peptoids	7
2.5 Self-assembly and TEM imaging of Cbz-Ndc8-Nte8-tBu	7
3. Characterization of the synthesized peptoids	8
3.1 Peptoid homopolymers	
3.1.1 <i>tert</i> -butyl ester protection of peptoid monomers	8
3.1.2 Cbz protection of peptoid monomers	9
3.1.3 tert-butyl deprotection of peptoid monomers	10
3.1.4 Synthesis of dimers	11
3.1.5 Synthesis of tetramers	12
3.1.6 Synthesis of octamers	13
3.1.7 Synthesis of Cbz-Nme ₁₆ -tBu	14
3.1.8 Synthesis of Cbz-Nme ₃₂ -tBu	15
Table S2. Summary of GPC data for Nme peptoid series	10
3.2 Diblock peptoids	16
3.2.1 Synthesis of Cbz-Nme ₄ -Npe ₄ -tBu	16
3.2.2 Synthesis of Cbz-Nme ₄ -Npe ₁₂ -tBu	16
3.2.3 Synthesis of Cbz-Ndc ₈ -Nte ₈ -tBu	17
3.3 Sequence-defined periodic and aperiodic peptoids	
3.3.1 <i>tert</i> -butyl ester protection of Nhx monomer	
3.3.2 Cbz protection of Nhx-tBu	19
3.3.3 <i>tert</i> -butyl ester deprotection of Cbz-Nnx-tBu	20
3.3.4 Synthesis of Cbz-Nnx-Npe-IBu	20
2.2.6 Synthesis of Cbz-Nuc-Nine-tBu	
3.3.7 Synthesis of Cbz (Nby Npe Ndc Nme), tBu	
3 3 8 Synthesis of Cbz-(Nhx-Npe-Ndc-Nme) ₄ -tBu	22
3.3.9 Synthesis of Cbz-Nme ₄ -Npe ₄ -(Nhx-Npe-Ndc-Nme) ₂ -tBu	
3.4 Stereo-defined alternating peptoids	
3.4.1. <i>tert</i> -butyl ester protection of N(r/s)pe	
3.4.2 Synthesis of Cbz-Nme-N(r/s)pe-tBu	
3.4.3 Synthesis of Cbz-(Nme-N(r/s)pe) ₂ -tBu	27
3.4.4 Synthesis of Cbz-(Nme-N(r/s)pe) ₄ -tBu	
3.4.5 Synthesis of Cbz-(Nme-Nrpe)4-(Nme-Nspe)4-tBu	
3.5 Post-IEG modifications with thiol-ene and CuAAC click reactions	

3.5.1 <i>tert</i> -butyl ester protection of Nall	
3.5.2 Synthesis of Cbz-Npe ₄ -Nall-tBu	
3.5.3 Thiol-ene click reaction on Cbz-Npe4-Nall-tBu	
3.5.4 <i>tert</i> -butyl ester protection of Nalk	
3.5.5 Synthesis of Cbz-Npe4-Nalk-tBu	
3.5.6 CuAAC click reaction on Cbz-Npe4-Nalk-tBu	
3.5.7 Synthesis of Cbz-Npe ₄ -Nalk-Npe ₂ -tBu	
3.5.8 CuAAC click reaction on Cbz-Npe ₄ -Nalk-Npe ₂ -tBu	
4. TEM micrographs of peptoid nanosheets	
4.1 Additional TEM images of peptoid nanosheets	
5. UHPLC and MALDI/DART/ESI spectra	
5.1 Peptoid homopolymers	
5.2 Diblock peptoids	47
5.3 Sequence-defined periodic and aperiodic peptoids	
5.4 Stereo-defined alternating peptoids	54
5.5 Post-IEG modifications with thiol-ene and CuAAC click reactions	59
6. NMR spectra	
6.1 Peptoid homopolymers	65
6.2 Diblock peptoids	
6.3 Sequence-defined periodic and aperiodic peptoids	
6.4 Stereo-defined alternating peptoids	
6.5 Post-IEG modifications with thiol-ene and CuAAC click reactions	
7. Characterization of IEG intermediates (NMR and MALDI-MS)	
7.1 Peptoid homopolymers	
7.2 Diblock peptoids	
7.3 Sequence-defined periodic and aperiodic peptoids	
7.4 Stereo-defined alternating peptoids	

1. Materials and Methods

Unless otherwise stated, all starting materials were purchased from commercial sources and used without further purification. Reactions run at room temperature were performed at 25 °C.

1.1 Ultra-high-performance liquid chromatography

UHPLC analyses were performed on a PerkinElmer AltusTM A-30 UPLC system (equivalent to a Waters Acquity H-Class UHPLC instrument) with a C18 50 \times 2.1 mm i.d., 1.7 µm column and an ultra-violet (UV) detector. Peptoid samples were analyzed using a flow rate of 0.5 mL/min, UV detection at 214 nm, injection volume of 2.5 µL, and a concentration of 0.5 mg/mL. Solvent A: 95:5 (v/v) water:acetonitrile, solvent B: acetonitrile. Method: Linear gradient of 0%-100% B in 12 minutes followed by 100% B for 8 minutes. Data acquisition and processing were conducted using Waters Empower 3 software.

1.2 Mass spectrometry

MALDI-TOF analyses were performed on a Bruker AutoFlex Speed MALDI-TOF mass spectrometer. All samples were analyzed using the conventional dried droplet method with a ground steel target using a 1:1 (v/v) mixture of peptoid (5 mg/mL in 1:1 acetonitrile:water) and 2,5-dihydroxybenzoic acid (DHB) matrix dissolved in 1:1 acetonitrile:water at 10 mg/mL. Scan mode: linear; ionization mode: positive. Red phosphorous was used as the calibrant. DART-MS analyses were performed on a JEOL AccuTOF Plus 4G (JMS-T100LP-4G model) time-of-flight mass spectrometer equipped with a DART ion source with positive ion polarity. ESI-MS analyses were performed on an Agilent 6538 UHD in positive ion mode.

1.3 Nuclear magnetic resonance spectrometry

Nuclear magnetic resonance (NMR) spectra were acquired on a 400 MHz Bruker Avance III NMR Spectrometer or a 500 MHz Agilent DD2 NMR spectrometer. 1D ¹H spectra were acquired using a zg45 or s2pul pulse sequence at 25 °C, a 1-10 s recycle delay, and 16-32 transients. 1D ¹³C spectra were acquired using a zgpg35 or s2pul pulse sequence at 25 °C, a 0.2-1 s recycle delay, and 512-2000 transients. NMR Processing was carried out using MestreNova software (v 14. 3.0-30573). All ¹H-NMR spectra were Fourier transformed with 0.2222 Hz exponential line broadening (0.5000 Hz for ¹³C NMR), phased, and then baseline corrected (some ¹³C NMR were not baseline corrected to maintain the signal). Chemical shifts were referenced relative to residual solvent peaks (CDCl₃, $\delta(^{1}\text{H}) = 7.26$ ppm, $\delta(^{13}\text{C}) = 77.16$ ppm; CD₂Cl₂, $\delta(^{1}\text{H}) = 5.32$ ppm, $\delta(^{13}\text{C}) = 53.84$ ppm). Structural assignments were made as needed with gCOSY, gHSQC, and gHMBC experiments.

1.4 Recycling preparative gel permeation chromatography

Purification of peptoids was performed using a JAI LaboACE LC-7080 recycling preparative gel permeation chromatography (GPC) system equipped with JAIGEL-2.5HR and JAIGEL-3HR columns (20 mm i.d., 600 mm length) and dual UV and RI detectors using ACS reagent grade chloroform (contains 0.5-1.0% ethanol as stabilizer).

1.5 Circular dichroism spectroscopy

Circular dichroism spectroscopy was performed using a Jasco J-1100 circular dichroism spectropolarimeter with a range of 190-290 nm and equipped with a Peltier temperature-controlled cell holder and a PM-539 detector. The spectra were collected with 0.1 nm data intervals, continuous scanning mode, D.I.T. of 1 s, 4 accumulations, at 24.99 °C. Peptoids were dissolved in acetonitrile at a concentration of 60 μ mol/L and run in 10 mm cuvettes with baseline correction. Data acquisition and processing were conducted using Jasco software.

1.6 Gel permeation chromatography

Size exclusion chromatography (SEC) analysis was performed using a Tosoh EcoSEC Ambient (Room Temperature)-GPC equipped with two TSK gel GPC columns connected in series (G3000Hhr and

G4000Hhr; 7.8 mm I.D. x 30 cm) and calibrated with a conventional calibration curve using Sigma-Aldrich monodisperse polystyrene standards ranging from 1.0 MDa to 500 Da. Dimethylformamide (DMF) with 0.1 wt% of Lithium Bromide (40 °C) was used as a carrier solvent at the flow rate of 1.0 mL/min. Samples were prepared at a concentration of around 1 mg/mL in DMF with 0.1% LiBr with a sample injection volume of 50 μ L. Instrument equipped RI detector was used as the main source of peak detection, and peak analysis was conducted using EcoSEC Elite GPC System Workstation Software.

1.7 Conditions for the self-assembly of peptoid nanosheets

Cbz-Ndc₈-Nte₈-tBu peptoids were dissolved in 2:2:1:1 v/v tetrahydrofuran (THF)/water/acetonitrile (MeCN)/isopropyl alcohol (IPA) at a concentration of 1.3 mg/mL. The organic solvents were evaporated at room temperature over a period of 4 days, leaving behind the aqueous peptoid solution at a concentration of 4 mg/mL. The solutions turned opaque and cloudy, which is expected upon formation of nanosheets.

1.8 Transmission electron microscopy

TEM micrographs were obtained used a Hitachi HT7700 TEM with Dual-Mode objective lens, tungsten filament, and acceleration voltage of 60 kV. The nanosheet solution was diluted to 0.4 mg/mL and 0.2 mg/mL (diluted condition to image single nanosheets), deposited on commercially available "Carbon Film only on 400 mesh, copper" TEM grids (01844-F, Ted Pella) and "Ultrathin Carbon Type A, 400 mesh, copper" TEM grids (01822-F, TED Pella), and allowed to dry before imaging.

2. Synthetic and self-assembly protocols

Peptoid	Deprotection of Cbz	Deprotection of tBu	Coupling	Cycle Total	Cumulative Yield
Cbz-Ndc ₂ -tBu	-	-	90%	90.0%	90.0%
Cbz-Npe ₂ -tBu	-	-	90%	90.0%	90.0%
Cbz-Nte ₂ -tBu	-	-	81%	81.0%	81.0%
Cbz-Nme ₂ -tBu	-	-	96%	96.0%	96.0%
Cbz-Ndc ₄ -tBu	100%	93%	77%	72.0%	64.8%
Cbz-Npe ₄ -tBu	91%	88%	93%	74.5%	67.0%
Cbz-Nte ₄ -tBu	94%	74%	75%	52.2%	42.3%
Cbz-Nme ₄ -tBu	100%	76%	100%	76.0%	73.0%
Cbz-Ndc ₈ -tBu	94%	95%	98%	87.5%	56.7%
Cbz-Npe ₈ -tBu	92%	76%	57%	39.9%	26.7%
Cbz-Nte ₈ -tBu	98%	64%	45%	28.2%	11.9%
Cbz-Nme ₈ -tBu	93%	94%	88%	76.9%	56.1%
Cbz-Nme ₁₆ -tBu	99%	87%	62%	53.4%	30.0%
Cbz-Nme ₃₂ -tBu	15%	95%	7%	1.0%	0.3%
Cbz-Nme ₄ -Npe ₄ -tBu	92%	94%	47%	40.6%	19.9%
Cbz-Nme ₄ -Npe ₁₂ -tBu	96%	89%	26%	22.2%	4.4%

Table S1. Summary of IEG cycle efficiencies for synthesized peptoids

Cbz-Ndc8-Nte8-tBu	45%	94%	16%	6.8%	0.5%	
Cbz-Nhx-Npe-tBu	-	-	89%	89.0%	89.0%	
Cbz-Ndc-Nme-tBu	-	-	89%	89.0%	89.0%	
Cbz-Nhx-Npe-Ndc-	079/	71%	88%	60.6%	48.0%	
Nme-tBu	9770					
Cbz-(Nhx-Npe-Ndc-	790/	81%	Q10/ QQ0/	55.6%	26.7%	
Nme) ₂ -tBu	/ 8 / 0	0170	8870			
Cbz-(Nhx-Npe-Ndc-	019/	840%	67%	51 20/	12 70/	
Nme) ₄ -tBu	9170	0470	0770	51.270	13.770	
Cbz-Nme ₄ -Npe ₄ -(Nhx-	010/	80%	670/	54.3%	2.9%	
Npe-Ndc-Nme) ₂ -tBu	91/0	8970	0770			
Cbz-Nme-Nrpe-tBu	-	-	74%	74.0%	74.0%	
Cbz-Nme-Nspe-tBu	-	-	80%	80.0%	80.0%	
Cbz-(Nme-Nrpe) ₂ -tBu	90%	98%	62%	54.7%	40.5%	
Cbz-(Nme-Nspe) ₂ -tBu	93%	71%	51%	33.7%	26.9%	
Cbz-(Nme-Nrpe) ₄ -tBu	95%	92%	47%	41.1%	16.6%	
Cbz-(Nme-Nspe) ₄ -tBu	85%	70%	15%	8.9%	2.4%	
Cbz-(Nme-Nrpe) ₄ -	05%	800/	2004	25 404	0.19/	
(Nme-Nspe) ₄ -tBu	9370	0970	3070	23.470	0.170	
Cbz-Npe ₄ -Nall-tBu	-	76%	64%	48.6%	32.6%	
Cbz-Npe ₄ -Nalk-tBu	-	76%	53%	40.3%	27.0%	
Cbz-Npe ₄ -Nalk-Npe ₂ -	01%	100%	50%	53 7%	14 5%	
tBu	71/0	10070	3770	33.170	17.370	

(Note: yield calculations do not include the steps to obtain the singly protected monomers).

2.1 General procedure for the synthesis of the tert-butyl ester protected peptoid monomers

A solution of the amine in tetrahydrofuran (THF; 0.6-0.7 M) was prepared in a round-bottomed flask and 1.9 equiv. of triethylamine was added. The reaction mixture was stirred on an ice bath. 1.0 equiv. of *tert*-butyl bromoacetate was added dropwise and the reaction was allowed to slowly warm to room temperature. Once TLC analysis indicated full consumption of the starting amine (4 hours to overnight), the reaction was filtered (if salt was present), concentrated, and purified by column chromatography.

2.2 General procedure for the Cbz protection of peptoid monomers

Under an atmosphere of N_2 , a round-bottomed flask containing a solution of the tert-butyl ester peptoid in dry dichloromethane (DCM; 0.2-0.3 M) and 2 equiv. of triethylamine was placed in an ice bath. The benzyl chloroformate (1.2 equiv.) was added to the reaction vessel slowly. The ice bath was removed, and the mixture was stirred at room temperature overnight. Once TLC analysis indicated full consumption of the starting peptoid (ninhydrin stain for the secondary amine), the reaction mixture was quenched with water and extracted with DCM. The organic layer was separated, washed with 0.1M NaHCO₃ solution and brine, dried with MgSO₄, concentrated, and purified by column chromatography.

2.3 General procedure for the tert-butyl ester deprotection of peptoids

A solution of the *tert*-butyl ester protected peptoid in dichloromethane (DCM; 0.4-0.5M) was cooled in an ice bath and an equal volume of trifluoroacetic acid was added slowly. The reaction mixture was stirred in an ice bath until TLC analysis indicated full consumption of the starting material. The reaction mixture was quenched with a 0.1M NaHCO₃ solution and diluted with DCM. The organic layer was separated and washed with 0.1M NaHCO₃ and brine. The aqueous layers were extracted with DCM and the organic layers combined, dried with MgSO₄, concentrated, and purified by column chromatography.

2.3 General procedure for the Cbz deprotection of peptoids

A solution of the Cbz protected peptoid in ethanol (EtOH; 0.1-0.2M) and 10% Pd/C ((8-10% by weight) was prepared and triethylsilane (4 equiv.) was added dropwise under N₂ atmosphere. The reaction mixture was stirred at room temperature overnight. Once TLC analysis indicated full conversion of the starting peptoid (ninhydrin stain for the secondary amine), the reaction mixture was filtered through a celite plug, concentrated, and purified by a short silica plug to remove excess triethylsilane.

2.4 General procedure for the amide coupling of peptoids

To a solution of 1 equiv. of the Cbz protected peptoid and 1 equiv. of the tert-butyl ester protected peptoid in DCM or N,N-dimethylformamide (DMF) (0.08-0.1M) was added 1 equiv. of PyBop (benzotriazol-1yloxytripyrrolidinophosphonium hexafluorophosphate) and 1 equiv. of DIEA (N,Ndiisopropylethylamine). The reaction mixture was stirred at room temperature or at 45 °C until TLC analysis indicated completion (1-3 days). The reaction mixture was then quenched by the addition of water, extracted with DCM, dried with MgSO₄, concentrated, and purified by column chromatography or recycling preparative gel permeation chromatography.

2.5 Self-assembly and TEM imaging of Cbz-Ndc8-Nte8-tBu

Cbz-Ndc₈-Nte₈-tBu peptoids were dissolved in 2:2:1:1 v/v tetrahydrofuran (THF) /water/acetonitrile (MeCN) /isopropyl alcohol (IPA) at a concentration of 1.3 mg/mL. The organic solvents were evaporated at room temperature, over a period of 4 days, leaving behind the aqueous peptoid solution at a concentration of 4 mg/mL. The solutions turned opaque and cloudy, which is expected upon formation of nanosheets. TEM micrographs were obtained used a Hitachi HT7700 TEM with Dual-Mode objective lens, tungsten filament, and acceleration voltage of 60 kV. The nanosheet solution was diluted to 0.4 mg/mL and 0.2 mg/mL (diluted condition to image single nanosheets), deposited on commercially available "Carbon Film only on 400 mesh, copper" TEM grids (01844-F, Ted Pella) and "Ultrathin Carbon Type A, 400 mesh, copper" TEM grids (01822-F, TED Pella), and allowed to dry before imaging.

3. Characterization of the synthesized peptoids

3.1 Peptoid homopolymers

3.1.1 *tert*-butyl ester protection of peptoid monomers

Scheme 1

Ndc-tBu (1a): Synthesized from N-decylamine using the general procedure for the synthesis of tert-butyl ester protected peptoid monomers, purified by column chromatography (5% EtOAc in hexanes and then increased to 100% EtOAc), pale yellow oil, 11.265 g, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.26 (s, 2H), 2.59 -2.51 (m, 2H), 1.57 (s, 1H), 1.44 (s, 11H), 1.34 – 1.19 (m, 14H), 0.90 – 0.80 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 81.1, 52.0, 49.7, 32.0, 30.3, 29.7 – 29.6 (m), 29.4, 28.2, 27.4, 22.8, 14.2. ESI-MS $[M+H]^+$ calculated m/z = 272.3; observed m/z = 272.3.

Npe-tBu (1b): Synthesized from phenethylamine using the general procedure for the synthesis of tert-butyl ester protected peptoid monomers, purified by column chromatography (5% EtOAc in hexanes and then increased to 100% EtOAc), yellow oil, 11.521 g, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.16 (m, 5H), 3.31 (s, 2H), 2.92 – 2.84 (m, 2H), 2.83 – 2.78 (m, 2H), 1.66 (s, 1H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 139.9, 126.3, 81.2, 51.9, 50.9, 36.7, 28.2. DART-MS $[M+H]^+$ calculated m/z = 236.2; observed m/z = 236.2.

Nte-tBu (1c): Synthesized from 2-(2-(2-methoxyethoxy)ethoxy)ethanamine using the general procedure for the synthesis of tert-butyl ester protected peptoid monomers, purified by column chromatography (100% EtOAc and then increased to 10% MeOH in EtOAc), pale yellow oil, 2.205 g, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.66 – 3.48 (m, 10H), 3.34 (s, 3H), 3.29 (s, 2H), 2.76 (dd, J = 5.7, 4.9 Hz, 2H), 2.03 (s, 1H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 81.3, 72.0, 70.7, 70.7, 70.6, 70.4, 59.1, 51.7, 48.8, 28.2. DART-MS $[M+H]^+$ calculated m/z = 278.2; observed m/z = 278.2.

Nme-tBu (1d): Synthesized from 2-methoxyethylamine using the general procedure for the synthesis of tert-butyl ester protected peptoid monomers, purified by column chromatography (10% EtOAc in hexanes and then increased to 100% EtOAc), pale yellow oil, 4.257 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.44 – 3.37 (m, 2H), 3.28 (s, 3H), 3.24 (s, 2H), 2.74 – 2.66 (m, 2H), 1.83 (s, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 81.0, 72.1, 58.7, 51.7, 48.7, 28.1. DART-MS $[M+H]^+$ calculated m/z = 190.1; observed m/z = 190.1

3.1.2 Cbz protection of peptoid monomers

Scheme 2

Cbz-Ndc-tBu (2a): Synthesized from Ndc-tBu (1a) using the general procedure for the Cbz protection of peptoid monomers, purified by column chromatography (100% hexanes and then increased to 10% EtOAc in hexanes), pale yellow oil, 11.5617 g, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.25 (m, 5H), 5.14 (d, *J* = 15.6 Hz, 2H), 3.87 (d, *J* = 26.9 Hz, 2H), 3.31 (dt, *J* = 12.4, 7.3 Hz, 2H), 1.59 – 1.48 (m, 2H), 1.42 (d, *J* = 27.0 Hz, 9H), 1.34 – 1.19 (m, 14H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.01, 156.63, 156.07, 136.90,

136.82, 128.51, 128.46, 127.97, 127.95, 127.86, 81.68, 67.34, 67.21, 49.92, 49.80, 49.13, 48.30, 31.98, 29.67, 29.64, 29.50, 29.41, 29.40, 28.47, 28.17, 28.15, 28.06, 26.88, 26.83, 22.77, 14.20. Note: unusual splitting patterns observed due to rotamers from the two end groups. DART-MS $[M+Na]^+$ calculated m/z = 428.3; observed m/z = 428.3

Cbz-Npe-tBu (2b): Synthesized from Npe-tBu (1b) using the general procedure for the Cbz protection of peptoid monomers, purified by column chromatography (100% hexanes and then increased to 10% EtOAc in hexanes), pale yellow oil, 13.6804 g, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.07 (m, 10H), 5.16 (d, *J* = 1.3 Hz, 2H), 3.80 (d, *J* = 29.9 Hz, 2H), 3.62 – 3.51 (m, 2H), 2.87 (dt, *J* =

23.2, 7.8 Hz, 2H), 1.43 (d, J = 27.5 Hz, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.92, 156.46, 155.94, 139.07, 138.94, 136.70, 128.92, 128.86, 128.63, 128.58, 128.50, 128.10, 128.03, 127.96, 127.87, 126.51, 126.45, 81.84, 67.53, 67.32, 51.11, 50.54, 50.47, 50.24, 35.21, 34.69, 28.17, 28.06. Note: unusual splitting patterns observed due to rotamers from the two end groups.

Cbz-Nte-tBu (2c): Synthesized from Nte-tBu (1c) using the general procedure for the Cbz protection of peptoid monomers, purified by column chromatography (100% hexanes and then increased to 100% EtOAc), pale yellow oil, 1.515 g, 88% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.39 – 7.25 (m, 5H), 5.11 (d, *J* = 17.3 Hz, 2H), 3.98 (d, *J* = 4.8 Hz, 2H), 3.64 – 3.45 (m, 12H), 3.33 (d, *J* = 0.9 Hz, 3H), 1.42 (d, *J* = 19.2 Hz, 9H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 169.41, 169.36, 156.36, 137.37, 137.29, 128.81, 128.72, 128.29, 128.20, 128.11, 127.98, 81.68,

72.31, 70.92, 70.85, 70.81, 70.37, 70.33, 67.55, 67.41, 59.01, 51.11, 50.99, 48.81, 48.17, 28.20, 28.14. Note: unusual splitting patterns observed due to rotamers from the two end groups.

Cbz-Nme-tBu (2d): Synthesized from Nme-tBu (1d) using the general procedure for the Cbz protection of peptoid monomers, purified by column chromatography (100% hexanes and then increased to 20% EtOAc), pale yellow oil, 18.003 g, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 5.14 (d, *J* = 15.6 Hz, 2H), 3.99 (d, *J* = 20.7 Hz, 2H), 3.54 (s, 2H), 3.52 – 3.46 (m, 2H), 3.30 (d, *J* = 10.0

Hz, 3H), 1.43 (d, J = 24.2 Hz, 10H). ¹³C NMR (101 MHz, CDCl₃-insert) δ 169.09, 128.60, 128.51, 128.02, 127.98, 127.88, 81.52, 71.94, 71.88, 67.55, 67.42, 58.95, 50.95, 48.76, 48.02, 28.23, 28.13. Note: unusual splitting patterns observed due to rotamers from the two end groups. DART-MS [M+H]⁺ calculated m/z =324.2; observed m/z =324.2.

3.1.3 tert-butyl deprotection of peptoid monomers

R O K	1:1 TFA/DCM	
-------	-------------	--

Cbz-Ndc (3a): Synthesized from Cbz-Ndc-tBu (2a) using the general procedure for *tert*-butyl ester deprotection of peptoids, pale yellow oil, 10.260 g, 84% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.69 – 7.50 (m, 2H), 7.42 – 7.27 (m, 5H), 5.16 (d, J = 19.8 Hz, 2H), 4.03 (d, J = 4.5 Hz, 2H), 3.38 – 3.31 (m, 2H), 1.55 (p, J = 7.1 Hz, 2H), 1.37 – 1.23 (m, 14H), 0.92 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 174.14, 173.83, 156.94, 156.05, 136.71, 136.60, 128.46, 128.43, 128.38, 128.34, 128.19, 127.97, 127.89, 127.86, 127.70, 127.65, 127.57, 67.56, 67.31, 48.99, 48.75,

48.40, 31.92, 29.63, 29.57, 29.41, 29.34, 29.31, 28.24, 27.85, 26.72, 26.68, 22.71, 13.92. Note: unusual splitting patterns observed due to rotamers from the two end groups. DART-MS $[M+H]^+$ calculated m/z = 372.2; observed m/z = 372.2.

Cbz-Npe (3b): Synthesized from Cbz-Npe-tBu (2b) using the general procedure for *tert*-butyl ester deprotection of peptoids, white solid, 10.170 g, 89% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.44 – 7.07 (m, 11H), 5.12 (s, 2H), 3.92 (d, *J* = 7.2 Hz, 2H), 3.55 (q, *J* = 7.6 Hz, 2H), 2.85 (dt, *J* = 14.9, 7.6 Hz, 2H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 175.06, 174.76, 157.07, 156.10, 139.32, 139.15, 137.08, 136.92, 129.19,

129.16, 128.89, 128.86, 128.79, 128.42, 128.30, 128.16, 127.96, 126.80, 126.74, 68.02, 67.69, 51.05, 50.67, 49.99, 49.47, 35.31, 34.71. Note: unusual splitting patterns observed due to rotamers from the two end groups. DART-MS $[M+H]^+$ calculated m/z =314.1; observed m/z =314.1.

Cbz-Nte (3c): Synthesized from Cbz-Nte-tBu (2c) using the general procedure for *tert*butyl ester deprotection of peptoids, clear oil, 0.935 g, 73% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.44 – 7.25 (m, 5H), 5.14 (d, *J* = 13.5 Hz, 2H), 4.08 (d, *J* = 8.2 Hz, 2H), 3.64 – 3.49 (m, 12H), 3.38 (d, *J* = 0.9 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 171.83, 137.28, 128.84, 128.75, 128.36, 128.21, 128.16, 127.93, 72.58, 72.49, 70.81, 70.69, 70.59, 70.52, 70.13, 69.99, 67.79, 67.59, 58.84, 51.09, 50.94, 49.59, 49.03. Note:

unusual splitting patterns observed due to rotamers from the two end groups.

Cbz-Nme (3d): Synthesized from Cbz-Nme-tBu (2d) using the general procedure for *tert*-butyl ester deprotection of peptoids, pale yellow oil, 9.674 g, 92% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 11.02 (s, 1H), 7.43 – 7.28 (m, 5H), 5.18 (d, *J* = 19.3 Hz, 2H), 4.17 (d, *J* = 9.3 Hz, 2H), 3.61 – 3.51 (m, 4H), 3.32 (d, *J* = 9.3 Hz, 3H). ¹³C

NMR (126 MHz, CD₂Cl₂) δ 174.39, 174.33, 156.89, 156.48, 136.88, 136.86, 129.21, 129.06, 128.86, 128.79, 128.58, 128.45, 128.35, 128.17, 127.98, 127.43, 72.44, 71.83, 71.74, 68.61, 68.08, 67.94, 67.28, 66.68, 58.84, 58.79, 54.24, 50.54, 50.45, 48.99, 48.42. Note: unusual splitting patterns observed due to rotamers from the two end groups. DART-MS [M+H]⁺ calculated m/z =268.1; observed m/z =268.1.

3.1.4 Synthesis of dimers

Scheme 4

Cbz-Ndc2-tBu (4a): Synthesized from Cbz-Ndc (3a) and Ndc-tBu (1a) using the general procedure for the amide coupling (DCM, rt, 8 hr), pale yellow oil, 1.415 g, 90% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.38 – 7.26 (m, 5H), 5.20 – 4.99 (m, 2H), 4.17 – 3.74 (m, 4H), 3.38 – 3.12 (m, 4H), 1.46 (d, *J* = 17.9 Hz, 13H), 1.36 – 1.18 (m, 27H), 0.89 (t, *J* = 6.8 Hz, 6H). ESI-MS [M+H]⁺ calculated m/z =603.5; observed m/z =603.5.

Cbz-Npe2-tBu (4b): Synthesized from Cbz-Npe (3b) and Npe-tBu (1b) using the general procedure for the amide coupling (DCM, rt, overnight), pale yellow oil, 1.415 g, 90% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.44 – 7.08 (m, 15H), 5.18 – 5.06 (m, 2H), 3.98 – 3.35 (m, 8H), 2.92 – 2.69 (m, 4H), 1.55 – 1.41 (m, 9H). ESI-MS [M+H]⁺ calculated m/z =531.3; observed m/z =531.2.

Cbz-Nte₂-tBu (4c): Synthesized from Cbz-Nte (3c) and Nte-tBu (1c) using the general procedure for the amide coupling (DMF, 45 °C, overnight), orange oil, 1.250 g, 81% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.32 – 7.16 (m, 5H), 5.07 – 4.97 (m, 2H), 4.29 – 3.87 (m, 4H), 3.56 – 3.30 (m, 25H), 3.24 (d, *J* = 1.7 Hz, 6H), 1.43 – 1.33 (m, 9H). MALDI-TOF MS [M+Na]⁺ calculated m/z =637.3; observed m/z =637.4.

Cbz-Nme₂-tBu (4d): Synthesized from Cbz-Nme (3dc) and Nme-tBu (1d) using the general procedure for the amide coupling (DCM, rt, overnight), pale yellow oil, 15.160 g, 96% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.40 – 7.27 (m, 5H), 5.17 – 5.04 (m, 2H), 4.34 – 3.92 (m, 4H), 3.58 – 3.18 (m, 14H), 1.52 – 1.39 (m, 9H).

DART-MS $[M+H]^+$ calculated m/z =439.2; observed m/z =439.3.

3.1.5 Synthesis of tetramers

Scheme 5

Scheme 7

Cbz-Ndc4-tBu (5a): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Ndc2 (93% yield). The general procedure for the Cbz deprotection was used to obtain Ndc2-tBu (quantitative yield). Synthesized using the general procedure for the amide coupling (DCM, rt, overnight), pale yellow oil, 8.879 g, 77% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.40 – 7.27 (m, 5H), 5.19 – 5.01 (m, 2H), 4.35 – 3.71 (m, 9H), 3.42 – 3.17 (m, 8H), 1.63 – 1.43 (m, 18H), 1.34 – 1.24 (m, 55H), 0.89 (td, *J* = 7.0, 1.7 Hz, 12H). MALDI-TOF MS [M+Na]⁺

calculated m/z = 1019.8; observed m/z = 1019.6.

Cbz-Npe4-tBu (5b): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Npe2 (88% yield). The general procedure for the Cbz deprotection was used to obtain Npe2-tBu (91% yield). Synthesized using the general procedure for the amide coupling (DCM, rt, overnight), pale yellow oil, 5.077 g, 93% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.42 – 7.04 (m, 25H), 5.15 –

 $5.05 (m, 2H), 4.18 - 3.24 (m, 16H), 2.93 - 2.57 (m, 8H), 1.55 - 1.38 (m, 9H). MALDI-TOF MS [M+Na]^+ calculated m/z = 875.4; observed m/z = 875.6.$

Cbz-Nte4-tBu (5c): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nte₂ (74% yield). The general procedure for the Cbz deprotection was used to obtain Nte₂-tBu (94% yield). Synthesized using the general procedure for the amide coupling (DMF, 45°C, overnight), yellow oil, 0.486 g, 75% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.39 – 7.25 (m, 5H), 5.16 – 5.03 (m, 2H), 4.51 – 3.94 (m, 8H), 3.67 – 3.40 (m, 49H), 3.35 – 3.27 (m, 12H), 1.52 – 1.39 (m, 9H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1043.6;

observed m/z =1043.1.

Cbz-Nme4-tBu (5d): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nme₂ (76% yield). The general procedure for the Cbz deprotection was used to obtain Nme₂-tBu (quantitative yield). Synthesized using the general procedure for the amide coupling (DMF, 45°C, overnight), yellow oil,

10.419 g, quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.22 (m, 6H), 5.14 – 5.02 (m, 2H), 4.47 – 3.93 (m, 8H), 3.58 – 3.05 (m, 30H), 1.50 – 1.37 (m, 9H). DART-MS [M+H]⁺ calculated m/z =669.4; observed m/z =669.4.

3.1.6 Synthesis of octamers

Scheme 8

Scheme 9

Scheme 10

Cbz-Ndc₈-tBu (6a): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Ndc₄ (95% yield). The general procedure for the Cbz deprotection was used to obtain Ndc₄-tBu (94% yield). Synthesized using the general procedure for the amide coupling (DCM, rt, 1 day), yellow oil, 8.225 g, 98% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.43 – 7.25 (m, 5H), 5.18 – 5.01 (m, 2H), 4.35 – 3.82 (m, 17H), 3.43 – 3.20 (m, 16H), 1.65 – 1.41 (m, 32H), 1.38 –

1.19 (m, 137H), 0.91 - 0.83 (m, 29H). MALDI-TOF MS $[M+Na]^+$ calculated m/z =1808.5; observed m/z =1808.8.

Cbz-Npes-tBu (6b): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Npe₄ (76% yield). The general procedure for the Cbz deprotection was used to obtain Npe₄-tBu (92% yield). Synthesized using the general procedure for the amide coupling (DCM, rt, 1 day), off-white solid, 0.783 g, 57% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 73H), 5.17 – 5.02 (m, 2H),

Cbz-Ntes-tBu (6c): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nte₄ (64% yield). The general procedure for the Cbz deprotection was used to obtain Nte₄-tBu (98% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 2 days), pale yellow oil, 0.109 g, 45% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.42 – 7.25 (m, 5H), 5.10 (d, J = 18.3 Hz, 2H), 4.54 – 3.94 (m, 16H), 3.64 – 3.42 (m, 98H), 3.32 (p, J = 1.3 Hz, 25H), 1.53 – 1.41 (m, 9H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1856.0;

4.24 - 3.17 (m, 35H), 2.74 (d, J = 57.3 Hz, 17H), 1.56 - 1.33 (m, 10H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1519.8; observed m/z =1518.9

observed m/z =1855.0.

Cbz-Nme₈-tBu (6d): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nme₄ (94% yield). The general procedure for the Cbz deprotection was used to obtain Nme₄-tBu (93% yield). Synthesized from Cbz-Nme₄ (8d) and Nme₄-tBu (9d) using the general procedure for the amide coupling

(DMF, 45 °C, 1 day), pale yellow oil, 0.539 g, 88% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.43 – 7.23 (m, 6H), 5.19 – 5.02 (m, 2H), 4.47 – 3.91 (m, 15H), 3.60 – 3.03 (m, 61H), 1.49 – 1.41 (m, 10H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1151.6; observed m/z =1151.8.

3.1.7 Synthesis of Cbz-Nme₁₆-tBu

Scheme 12

Scheme 13

Cbz-Nme₁₆-tBu (7): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nme₈ (87% yield). The general procedure for the Cbz deprotection was used to obtain Nme₈-tBu (99% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 1 day), pale yellow solid,

1.582 g, 62% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.43 – 7.24 (m, 5H), 5.10 (m, 2H), 4.51 – 3.91 (m, 34H), 3.60 – 3.41 (m, 65H), 3.38 – 3.18 (m, 51H), 1.53 – 1.41 (m, 9H). MALDI-TOF MS [M+Na]⁺ calculated m/z =2072.1; observed m/z =2071.5.

3.1.8 Synthesis of Cbz-Nme32-tBu

Scheme 14

Scheme 15

Cbz-Nme₃₂-tBu (8): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nme₁₆ (95% yield). The general procedure for the Cbz deprotection was used to obtain Nme₁₆-tBu (15% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 3 days), pale yellow solid,

0.010 g, 7% yield. ¹H NMR (600 MHz, CD₂Cl₂) δ 7.38 - 7.28 (m, 5H), 5.13 - 5.06 (m, 2H), 4.62 - 3.84

(m, 64H), 3.72 - 3.10 (m, 224H), 1.52 - 1.42 (m, 9H).MALDI-TOF MS [M+Na]⁺ calculated m/z = 3913.1; observed m/z = 3913.7.

Peptoid	Mn	Mw	Mw/Mn
Cbz-Nme4-tBu	1.8 kDa	1.8 kDa	1.00
Cbz-Nme8-tBu	2.0 kDa	2.0 kDa	1.01
Cbz-Nme ₁₆ -tBu	3.0 kDa	3.0 kDa	1.02
Cbz-Nme ₃₂ -tBu	5.6 kDa	5.7 kDa	1.03

Table S2. Summary of GPC data for Nme peptoid series

Note: Broader dispersities than 1.00 are due to differences in peak start and end selection. The higher molecular weight peptoids experience some peak fronting.

3.2 Diblock peptoids

3.2.1 Synthesis of Cbz-Nme4-Npe4-tBu

Scheme 17

Cbz-Nme4-Npe4-tBu (9): Synthesized from Cbz-Nme4 and Npe4-tBu using the general procedure for the amide coupling (DCM, rt, 1 day), 0.6491 g, 47% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.35 – 7.15 (m, 28H), 5.22 – 4.88 (m, 2H), 4.48 – 3.06 (m, 62H), 2.89 – 2.60 (m, 10H), 1.53 – 1.36 (m, 12H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1335.7; observed m/z =1335.3.

3.2.2 Synthesis of Cbz-Nme₄-Npe₁₂-tBu

Scheme 18

Scheme 19

Cbz-Nme₄-Npe₁₂-tBu (10): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nme₄-Npe₄ (89% yield). The general procedure for the Cbz deprotection was used to obtain Npe₈-tBu (96% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 2 days), 0.249 g, 26% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 82H), 5.12 (d, *J* = 15.3 Hz, 2H), 4.55 – 3.13 (m, 96H), 2.71 (d, *J*

= 61.2 Hz, 28H), 1.52 - 1.31 (m, 11H). MALDI-TOF MS [M+Na]⁺ calculated m/z = 2624.3; observed m/z = 2623.8.

3.2.3 Synthesis of Cbz-Ndc8-Nte8-tBu

Scheme 21

Scheme 22

Cbz-Ndc₈-Nte₈-tBu (11): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Ndc₈ (94% yield). The general procedure for the Cbz deprotection was used to obtain Nte₈-tBu (45% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 2 days), 0.016 g, 16% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.31 (dd, *J* = 13.0, 4.4 Hz, 5H), 5.19 – 5.03 (m, 2H), 4.68 – 3.73 (m, 32H), 3.78 – 3.38 (m, 89H), 3.41 – 3.14 (m, 40H), 1.74 – 1.39 (m, 25H), 1.24 (d, *J* = 6.6 Hz, 135H), 0.86 (h, *J* = 4.2 Hz, 26H). MALDI-TOF MS [M+Na]⁺ calculated m/z =3433.5; observed m/z =3433.9.

3.3 Sequence-defined periodic and aperiodic peptoids

3.3.1 tert-butyl ester protection of Nhx monomer

Scheme 24

Nhx-tBu (12): Synthesized from hexylamine using the general procedure for the synthesis of *tert*-butyl ester protected peptoid monomers, purified by column chromatography (5% EtOAc in hexanes and then increased to 100% EtOAc), pale yellow oil, 5.296 g, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.25 (s, 2H), 2.58 – 2.49 (m, 2H), 1.53 (s, 1H), 1.43 (s, 11H), 1.35 – 1.18 (m, 6H), 0.91 – 0.79 (m, 3H). ¹³C NMR (101 MHz, CDCl₃)

(m, 2H), 1.53 (s, 1H), 1.43 (s, 11H), 1.55 – 1.18 (m, 6H), 0.91 – 0.79 (m, 3H). ¹⁵C NMR (101 MHz, CDC1₃) δ 171.97, 81.09, 77.48, 77.16, 76.84, 51.95, 49.72, 31.85, 30.20, 28.20, 27.04, 22.68, 14.11. DART-MS [M+H]⁺ calculated m/z =216.2; observed m/z =216.2.

3.3.2 Cbz protection of Nhx-tBu

Scheme 25

Cbz-Nhx-tBu (13): Synthesized from Nhx-tBu (12) using the general procedure for the Cbz protection of peptoid monomers, purified by column chromatography (100% hexanes and then increased to 20% EtOAc), pale yellow oil, 3.882 g, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.23 (m, 5H), 5.14 (d, *J* = 15.4 Hz, 2H), 3.87 (d, *J* = 26.7 Hz, 2H), 3.37 – 3.26 (m, 2H), 1.42 (d, *J* = 27.0 Hz, 11H),

1.35 - 1.21 (m, 6H), 0.92 - 0.82 (m, 3H).¹³C NMR (101 MHz, CDCl₃) δ 169.02, 128.53, 128.48, 127.97, 127.87, 81.70, 77.48, 77.16, 76.84, 67.36, 67.22, 49.93, 49.80, 49.12, 48.31, 31.70, 31.60, 28.42, 28.18, 28.09, 28.07, 26.54, 26.49, 22.68, 22.63, 14.12, 14.10. DART-MS [M+H]⁺ calculated m/z =350.2; observed m/z =350.2.

3.3.3 tert-butyl ester deprotection of Cbz-Nhx-tBu

Scheme 26

Cbz-Nhx (14): Synthesized from Cbz-Nhx-tBu (13) using the general procedure for *tert*-butyl ester deprotection of peptoids, yellow oil, 2.880 g, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 10.13 (s, 1H), 7.43 – 7.28 (m, 5H), 5.18 (d, *J* = 13.4 Hz, 2H), 4.05 (d, *J* = 15.2 Hz, 2H), 3.36 (dt, *J* = 11.0, 7.4 Hz, 2H), 1.55 (q, *J* = 6.9 Hz, 2H), 1.30 (d, *J* = 17.4 Hz, 6H), 0.89 (q, *J* = 5.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

157.04, 156.03, 128.60, 128.16, 128.07, 127.92, 127.85, 67.79, 67.55, 48.96, 48.50, 31.66, 31.56, 28.31, 27.94, 26.43, 22.64, 14.10. DART-MS [M+H]⁺ calculated m/z =294.2; observed m/z =294.2.

3.3.4 Synthesis of Cbz-Nhx-Npe-tBu

Cbz-Nhx-Npe-tBu (15): Synthesized from Cbz-Nhx (14) and Npe-tBu (1b) using the general procedure for the amide coupling (DCM, rt, overnight), yellow oil, 1.794 g, 89% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.41 – 7.10 (m, 9H), 5.18 – 5.01 (m, 2H), 4.02 – 3.70 (m, 4H), 3.61 – 3.11 (m, 4H), 2.93 – 2.72 (m, 2H), 1.58 – 1.15 (m, 18H), 0.89 (ddt, *J* = 10.4, 7.2, 4.7 Hz, 3H). ESI-MS [M+H]⁺ calculated m/z =511.3; observed m/z =511.3.

3.3.5 Synthesis of Cbz-Ndc-Nme-tBu

Cbz-Ndc-Nme-tBu (16): Synthesized from Cbz-Ndc (3a) and Nme-tBu (1d) using the general procedure for the amide coupling (DCM, rt, overnight), yellow oil, 1.684 g, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.20 (m, 5H), 5.10 (d, *J* = 19.0 Hz, 2H), 4.25 – 3.89 (m, 4H), 3.61 – 3.13 (m, 10H), 1.44 (d, *J* = 13.2 Hz, 11H), 1.24 (dd, *J* = 17.9, 6.9 Hz, 14H), 0.85 (t, *J* = 6.8 Hz, 3H). DART-MS [M+H]⁺ calculated m/z =521.4; observed m/z =521.4.

3.3.6 Synthesis of Cbz-Nhx-Npe-Ndc-Nme-tBu

Scheme 29

Scheme 30

Scheme 31

Cbz-Nhx-Npe-Ndc-Nme-tBu (17): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nhx-Npe (71% yield). The general procedure for the Cbz deprotection was used to obtain Ndc-Nme-tBu (97% yield). Synthesized using the general procedure for the amide coupling (DCM, rt, overnight), yellow oil, 1.672 g, 88% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.43 – 7.09 (m, 10H), 5.15 – 4.99 (m, 2H), 4.37 – 3.01 (m, 22H), 2.92 – 2.69 (m, 2H), 1.67 – 1.37 (m, 13H), 1.33 – 1.20 (m, 20H), 0.93 – 0.79 (m, 6H). MALDI-TOF MS

 $[M+Na]^+$ calculated m/z =845.5; observed m/z =845.2.

3.3.7 Synthesis of Cbz-(Nhx-Npe-Ndc-Nme)2-tBu

Scheme 32

Scheme 33

Cbz-(Nhx-Npe-Ndc-Nme)₂-tBu (18): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nhx-Npe-Ndc-Nme (81% yield). The general procedure for the Cbz deprotection was used to obtain Nhx-Npe-Ndc-Nme-tBu (78% yield). Synthesized using the general procedure for the amide coupling (DCM, rt, overnight), yellow oil, 0.7523 g, 88% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.40 – 7.08 (m, 16H), 5.17 – 5.00 (m, 2H), 4.42 – 2.99 (m, 43H), 2.96 – 2.70 (m, 4H), 1.66 – 1.40 (m, 16H), 1.35 – 1.18 (m, 41H), 0.97 – 0.80 (m,

12H). MALDI-TOF MS $[M+Na]^+$ calculated m/z =1460.0; observed m/z =1460.0.

3.3.8 Synthesis of Cbz-(Nhx-Npe-Ndc-Nme)4-tBu

Scheme 35

Scheme 36

Scheme 37

Cbz-(Nhx-Npe-Ndc-Nme)4-tBu (19): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-(Nhx-Npe-Ndc-Nme)₂ (84% yield). The general procedure for the Cbz deprotection was used to obtain (Nhx-Npe-Ndc-Nme)₂tBu (91% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 1 day), yellow oil, 0.170 g, 65% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.36 – 7.14 (m, 27H), 5.16 – 4.99 (m, 2H), 4.33 – 3.22 (m, 88H), 2.89 – 2.71 (m, 8H), 1.57 – 1.19 (m, 116H), 0.92 – 0.82 (m, 26H). MALDI-

TOF MS $[M+Na]^+$ calculated m/z =2688.9; observed m/z =2688.5.

3.3.9 Synthesis of Cbz-Nme4-Npe4-(Nhx-Npe-Ndc-Nme)2-tBu

Scheme 38

Cbz-Nme4-Npe4-(Nhx-Npe-Ndc-Nme)2-tBu (20): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nme4-Npe4 (89% yield). The general procedure for the Cbz deprotection was used to obtain (Nhx-Npe-Ndc-Nme)2-tBu (91% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 1 day), yellow oil, 0.141 g, 67% yield. ¹H NMR (500 MHz,

 CD_2Cl_2) δ 7.34 – 7.13 (m, 38H), 5.17 – 5.02 (m, 2H), 4.39 – 3.20 (m, 108H), 3.05 – 2.49 (m, 16H), 1.50 – 1.21 (m, 59H), 0.94 – 0.84 (m, 13H). MALDI-TOF MS [M+Na]⁺ calculated m/z =2564.6; observed m/z =2563.7.

3.4 Stereo-defined alternating peptoids

3.4.1. *tert*-butyl ester protection of N(r/s)pe

Scheme 39

Nrpe-tBu (21): Synthesized from (R)-methylbenzylamine using the general procedure for the synthesis of tert-butyl ester protected peptoid monomers, purified by column chromatography (5% EtOAc in hexanes and then increased to 20% EtOAc), pale yellow oil, 5.013 g, 79% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.37 – 7.17 (m, 5H), 3.77 (q, J = 6.6 Hz, 1H), 3.16 (d, J = 17.2 Hz, 1H), 3.08 (d, J = 17.2 Hz, 1H), 1.85 (s, 1H), 1.44 (s, 9H), 1.34 (d, J = 6.6 Hz, 3H).¹³C NMR (126 MHz, CD₂Cl₂) δ 172.18, 145.73, 128.78, 127.35, 127.19, 81.11, 58.07, 50.14, 28.24, 24.63. DART MS $[M+H]^+$ calculated m/z =236.2; observed m/z =236.2.

Nspe-tBu (22): Synthesized from (S)-methylbenzylamine using the general procedure for the synthesis of *tert*-butyl ester protected peptoid monomers, purified by column chromatography (5% EtOAc in hexanes and then increased to 20% EtOAc), pale yellow oil, 5.9147 g, 95% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.40 – 7.21 (m, 5H), 3.80 (q, J = 6.6 Hz, 1H), 3.19 (d, J = 17.3 Hz, 1H), 3.11 (d, J = 17.2 Hz, 1H), 1.89 (s, 1H), 1.47 (s, 8H), 1.37 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 172.19, 145.78, 128.82, 127.39, 127.22, 81.07, 58.11, 50.16, 28.29, 24.72. DART MS $[M+H]^+$ calculated m/z =236.2; observed m/z =236.2.

3.4.2 Synthesis of Cbz-Nme-N(r/s)pe-tBu

Scheme 40

Cbz-Nme-Nrpe-tBu (23): Synthesized from Cbz-Nme (3d) and Nrpe-tBu (21) using the general procedure for the amide coupling (DMF, 45 °C, 2 days), yellow oil, 1.544 g, 74% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.44 -7.18 (m, 10H), 5.21 - 5.12 (m, 2H), 4.51 - 3.26 (m, 11H), 1.70 - 1.34 (m, 12H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 171.17, 169.61, 169.54, 169.01,

168.89, 168.84, 168.59, 168.54, 156.85, 156.76, 156.72, 156.68, 140.52, 140.48, 140.44, 140.37, 137.45, 137.41, 129.05, 129.04, 128.82, 128.80, 128.77, 128.75, 128.24, 128.18, 128.13, 128.08, 128.04, 128.03, 128.02, 127.96, 127.85, 127.30, 127.10, 82.64, 81.38, 81.34, 71.92, 71.82, 71.80, 67.58, 67.55, 67.53, 67.40, 60.61, 58.92, 54.82, 54.67, 54.27, 54.24, 54.06, 53.84, 53.62, 53.41, 51.84, 50.08, 50.01, 49.99, 49.97, 48.78, 48.68, 48.05, 47.82, 45.63, 45.49, 28.08, 28.06, 28.04, 27.94, 27.93, 21.17, 18.33, 16.32, 16.20, 14.40. DART MS [M+H]⁺ calculated m/z =485.3; observed m/z =485.3.

Cbz-Nme-Nspe-tBu (24): Synthesized from Cbz-Nme (3d) and Nrpe-tBu (21) using the general procedure for the amide coupling (DMF, 45 °C, 2 days), yellow oil, 2.708 g, 80% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.43 – 7.17 (m, 10H), 5.19 – 5.10 (m, 2H), 4.50 – 3.21 (m, 11H), 1.61 – 1.28 (m, 12H). ¹³C NMR (126 MHz, CD₂Cl₂) δ 171.16, 169.61, 169.54, 169.01,

168.89, 168.84, 168.59, 168.54, 156.84, 156.75, 156.72, 156.68, 140.52, 140.48, 140.44, 140.37, 137.45, 137.42, 129.05, 129.03, 128.82, 128.80, 128.76, 128.75, 128.24, 128.18, 128.13, 128.08, 128.04, 128.03, 128.01, 127.96, 127.85, 127.30, 127.10, 82.63, 81.37, 81.33, 71.91, 71.82, 71.80, 67.58, 67.55, 67.52, 67.39, 60.60, 58.92, 54.81, 54.67, 54.27, 54.24, 54.06, 53.84, 53.62, 53.41, 51.84, 50.08, 50.01, 49.99, 49.97, 48.78, 48.68, 48.05, 47.82, 45.63, 45.49, 28.08, 28.06, 27.94, 27.93, 21.17, 18.32, 16.32, 16.20, 14.40. DART MS $[M+H]^+$ calculated m/z =485.3; observed m/z =485.3.

3.4.3 Synthesis of Cbz-(Nme-N(r/s)pe)2-tBu

Scheme 41

Scheme 42

Cbz-(Nme-Nrpe)₂**-tBu (25):** The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nme-Nrpe (98% yield). The general procedure for the Cbz deprotection was used to obtain Nme-Nrpe-tBu (90% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 2 days), yellow oil, 0.479 g, 62% yield. ¹H NMR (500 MHz,

 CD_2Cl_2) δ 7.44 – 7.23 (m, 15H), 5.19 – 5.07 (m, 2H), 4.57 – 3.19 (m, 20H), 1.67 – 1.25 (m, 16H). MALDI-TOF MS [M+Na]⁺ calculated m/z =783.4; observed m/z =783.2.

Cbz-(Nme-Nspe)₂-**tBu (26):** The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Nme-Nspe (71% yield). The general procedure for the Cbz deprotection was used to obtain Nme-Nspe-tBu (93% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 2 days), yellow oil, 0.780 g, 51% yield. ¹H NMR (500 MHz,

CD₂Cl₂) δ 7.47 – 7.06 (m, 17H), 5.12 (tdd, *J* = 17.9, 14.1, 8.8 Hz, 2H), 4.68 – 3.16 (m, 19H), 1.65 – 1.25 (m, 14H). MALDI-TOF MS [M+Na]⁺ calculated m/z =783.4; observed m/z =783.5.

3.4.4 Synthesis of Cbz-(Nme-N(r/s)pe)4-tBu

Scheme 44

Scheme 45

Scheme 46

Cbz-(Nme-Nrpe)₄-t**Bu (27):** The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-(Nme-Nrpe)₂ (92% yield). The general procedure for the Cbz deprotection was used to obtain (Nme-Nrpe)₂-tBu (95% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 2 days), yellow oil, 0.153 g, 47% yield. ¹H NMR (500 MHz,

 CD_2Cl_2) δ 7.34 – 7.18 (m, 26H), 6.03 – 5.89 (m, 4H), 5.20 – 5.10 (m, 2H), 4.64 – 3.09 (m, 50H), 1.63 – 1.32 (m, 24H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1335.7; observed m/z =1335.9.

Cbz-(Nme-Nspe)₄-t**Bu (28):** The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-(Nme-Nspe)₂ (70% yield). The general procedure for the Cbz deprotection was used to obtain (Nme-Nspe)₂-tBu (85% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 2 days), yellow oil, 0.074 g, 15% yield. ¹H NMR

 $(500 \text{ MHz}, \text{CD}_2\text{Cl}_2) \delta 7.40 - 7.21 \text{ (m, 34H)}, 6.02 - 5.88 \text{ (m, 4H)}, 5.16 - 5.09 \text{ (m, 2H)}, 4.65 - 3.05 \text{ (m, 56H)}, 1.67 - 1.33 \text{ (m, 26H)}. \text{MALDI-TOF MS } [M+Na]^+ \text{ calculated } m/z = 1335.7; \text{ observed } m/z = 1334.7.$

3.4.5 Synthesis of Cbz-(Nme-Nrpe)4-(Nme-Nspe)4-tBu

Scheme 47

Scheme 48

Scheme 49

Cbz-(Nme-Nrpe)₄-(**Nme-Nspe)**₄-t**Bu** (29): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-(Nme-Nrpe)₄ (89% yield). The general procedure for the Cbz deprotection was used to obtain (Nme-Nspe)₄-tBu (95% yield). Synthesized using the general procedure for the

amide coupling (DMF, 45 °C, 2 days), white solid, 0.035 g, 30% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.45 – 7.03 (m, 46H), 6.00 – 5.89 (m, 6H), 5.18 – 5.06 (m, 2H), 4.68 – 3.08 (m, 87H), 1.63 – 1.26 (m, 37H). MALDI-TOF MS [M+Na]⁺ calculated m/z =2440.3; observed m/z =2439.7.

3.5 Post-IEG modifications with thiol-ene and CuAAC click reactions

3.5.1 tert-butyl ester protection of Nall

Scheme 50

Nall-tBu (30): Synthesized from allylamine using the general procedure for the synthesis of *tert*-butyl ester protected peptoid monomers, purified by column chromatography (5% EtOAc in hexanes and then increased to 50% EtOAc), pale yellow oil, 2.292 g, 76% yield.

¹H NMR (500 MHz, CDCl₃) δ 5.84 (ddt, J = 17.2, 10.2, 6.0 Hz, 1H), 5.15 (dq, J = 17.2, 1.7 Hz, 1H), 5.10 – 5.04 (m, 1H), 3.26 (s, 2H), 3.22 (dt, J = 6.0, 1.4 Hz, 2H), 1.43 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.77, 136.33, 116.50, 116.49, 116.48, 81.21, 77.42, 77.16, 76.91, 51.90, 50.90, 28.19.

3.5.2 Synthesis of Cbz-Npe4-Nall-tBu

Scheme 51

Cbz-Npe4-Nall-tBu (31): Synthesized from Cbz-Npe4 and Nall-tBu (30) using the general procedure for the amide coupling (DCM, rt, 1 day), yellow oil, 0.06 g, 64% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.38 – 7.02 (m, 25H), 5.91 – 5.63 (m, 1H), 5.29 – 5.03 (m, 4H), 4.30 – 3.26 (m, 20H), 3.03 – 2.54 (m, 8H), 1.53 – 1.35 (m, 9H). MALDI-TOF MS [M+Na]⁺ calculated m/z =972.5; observed m/z =972.7.

3.5.3 Thiol-ene click reaction on Cbz-Npe4-Nall-tBu

Cbz-Npe4-Nthio-tBu (32): To a solution of Cbz-Npe4-Nall-tBu (31) in DMF (0.5 mL) was added benzyl mercaptan (1.2 equiv) and 2,2,-dimethoxy-2-phenylacetophenone (DMPA) (0.1 equiv). The vial was sealed with a rubber septum and sparged for 15 minutes with N₂. The vial was irradiated at room temperature for 45 minutes with stirring using 370 nm light. The reaction mixture was quenched with water and diluted with DCM. The organic layer was separated and washed with water and brine, dried with MgSO₄, concentrated, and purified by recycling

preparative GPC. Yellow oil, 0.012 g, 81% yield (90% conversion by UHPLC). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.08 (m, 34H), 5.20 – 5.00 (m, 2H), 4.28 – 3.08 (m, 25H), 2.94 – 2.64 (m, 8H), 2.49 – 2.23 (m, 3H), 1.72 (ddp, *J* = 43.6, 21.3, 6.9 Hz, 3H), 1.53 – 1.37 (m, 10H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1096.5; observed m/z =1096.7.

3.5.4 tert-butyl ester protection of Nalk

Scheme 53

HN COL

Nalk-tBu (33): Synthesized from allylamine using the general procedure for the synthesis of *tert*-butyl ester protected peptoid monomers, purified by column chromatography (5% EtOAc in hexanes and then increased to 50% EtOAc), pale yellow

oil, 1.950 g, 74% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 3.32 (d, J = 2.5 Hz, 2H), 3.23 (s, 2H), 2.15 (t, J = 2.4 Hz, 1H), 1.63 (s, 1H), 1.35 (s, 9H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 171.53, 82.06, 81.40, 71.69, 54.11, 53.84, 53.57, 50.47, 37.90, 28.21. DART MS [M+H]⁺ calculated m/z =170.1; observed m/z =170.1.

3.5.5 Synthesis of Cbz-Npe4-Nalk-tBu

Cbz-Npe4-Nalk-tBu (34): Synthesized from Cbz-Npe4 and Nalk-tBu (33) using the general procedure for the amide coupling (DCM, rt, 1 day), yellow oil, 0.120 g, 53% yield. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.42 – 7.02 (m, 26H), 5.15 – 5.03 (m, 2H), 4.40 – 3.26 (m, 20H), 2.93 – 2.56 (m, 8H), 2.46 – 2.23 (m, 1H), 1.56 – 1.38 (m, 9H). MALDI-TOF MS [M+Na]⁺ calculated m/z =970.5; observed m/z =970.8.

3.5.6 CuAAC click reaction on Cbz-Npe4-Nalk-tBu

Cbz-Npe4-Ntriazo-tBu (35): To a solution of Cbz-Npe4-Nalk-tBu in tBuOH/H₂O (2:1) was added CuSO4 (0.1 equiv) and sodium ascorbate (0.5 equiv). The mixture was stirred for 2 hours at 65 °C. The reaction mixture was quenched with water and diluted with DCM. The organic layer was separated and washed with water and brine, dried with MgSO4, concentrated, and purified by recycling preparative GPC. Yellow oil, 0.023 g, 99% yield. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.91 – 7.49 (m, 1H), 7.43 –

7.01 (m, 27H), 5.08 (dtd, J = 14.9, 8.6, 4.6 Hz, 2H), 4.71 – 3.25 (m, 26H), 2.97 – 2.60 (m, 8H), 1.97 (dddd, J = 22.5, 9.7, 6.3, 3.6 Hz, 2H), 1.49 – 1.37 (m, 9H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1071.5; observed m/z =1071.4.

3.5.7 Synthesis of Cbz-Npe4-Nalk-Npe2-tBu

Scheme 56

Cbz-Npe₄-Nalk-Npe₂-tBu (36): The general procedure for the *tert*-butyl ester deprotection was used to obtain Cbz-Npe₄-Nalk (quantitative yield). The general procedure for the Cbz deprotection was used to obtain Npe₂-tBu (91% yield). Synthesized using the general procedure for the amide coupling (DMF, 45 °C, 1 day), yellow oil, 0.120 g, 59% yield. ¹H NMR (500 MHz, CDCl3) δ 7.26 (s, 49H), 5.15 – 5.06 (m, 2H), 4.44 – 3.20 (m, 33H), 2.91 –

2.59 (m, 13H), 2.36 – 2.17 (m, 1H), 1.54 – 1.37 (m, 10H). MALDI-TOF MS $[M+Na]^+$ calculated m/z =1292.6; observed m/z =1292.3.

3.5.8 CuAAC click reaction on Cbz-Npe4-Nalk-Npe2-tBu

Scheme 58

Cbz-Npe4-Ntriazo-Npe2-tBu (37): To a solution of Cbz-Npe4-Nalk-Npe2-tBu in tBuOH/H₂O (2:1) was added CuSO4 (0.1 equiv) and sodium ascorbate (0.5 equiv). The mixture was stirred for 2 hours at 65 °C and overnight at room temperature. The reaction mixture was quenched with water and diluted with DCM. The organic layer was separated and washed with saturated ammonium chloride water and brine, dried with MgSO4, and concentrated. Yellow oil, 0.019 g, 88% yield. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (s, 49H), 5.15 – 5.06

(m, 2H), 4.44 - 3.20 (m, 33H), 2.91 - 2.59 (m, 13H), 2.36 - 2.17 (m, 1H), 1.54 - 1.37 (m, 10H). MALDI-TOF MS [M+Na]⁺ calculated m/z =1393.7; observed m/z =1393.7.

4. TEM micrographs of peptoid nanosheets

4.1 Additional TEM images of peptoid nanosheets

Fig. S1 TEM micrographs of (a-d) Cbz-Ndc₈-Nte₈-tBu nanosheets (scale bars are 2 μ m), (e) Ndc₈-Nte₈-tBu aggregates (scale bar is 1 μ m) and (f) Ndc₈-Nte₈ nanofibrils (scale bar is 600 nm).

5. UHPLC and MALDI/DART/ESI spectra

5.1 Peptoid homopolymers

Fig. S2 HRMS of Ndc-tBu.

Fig. S3 DART-MS of Npe-tBu.

Fig. S4 DART-MS of Nte-tBu.

Fig. S5 DART-MS of Nme-tBu.

Fig. S6 HRMS of Cbz-Ndc-tBu.

Fig. S7 DART-MS of Cbz-Nme-tBu.

Fig. S8 HRMS of Cbz-Ndc.

Fig. **S9** DART-MS of Cbz-Npe.

Fig. S10 DART-MS of Cbz-Nme.

Fig. S11 HRMS of Cbz-Ndc2-tBu.

Fig. S12 DART-MS of Cbz-Npe₂-tBu.

Fig. S13 UHPLC of Cbz-Npe₂-tBu.

Fig. S14 MALDI-TOF MS of Cbz-Nte2-tBu.

Fig. S15 UHPLC of Cbz-Nte₂-tBu.

Fig. S16 DART-MS of Cbz-Nme₂-tBu.

Fig. S17 UHPLC of Cbz-Nme₂-tBu.

Fig. S18 MALDI-TOF MS of Cbz-Ndc4-tBu.

Fig. S19 MALDI-TOF MS of Cbz-Npe4-tBu.

Fig. S20 UHPLC of Cbz-Npe4-tBu.

Fig. S21 MALDI-TOF MS of Cbz-Nte4-tBu.

Fig. S22 UHPLC of Cbz-Nte₄-tBu.

Fig. S23 DART-MS of Cbz-Nme4-tBu.

Fig. S24 UHPLC of Cbz-Nme4-tBu.

Fig. S25 MALDI-TOF MS of Cbz-Nme₈-tBu.

Fig. S26 UHPLC of Cbz-Nme₈-tBu.

Fig. S27 MALDI-TOF MS of Cbz-Ndc8-tBu.

Fig. S28 MALDI-TOF MS of Cbz-Npe₈-tBu.

Fig. S29 UHPLC of Cbz-Npe₈-tBu.

Fig. S30 MALDI-TOF MS of Cbz-Nte₈-tBu.

Fig. S31 UHPLC of Cbz-Nte₈-tBu.

Fig. S32 MALDI-TOF MS of Cbz-Nme₁₆-tBu.

Fig. S33 UHPLC of Cbz-Nme₁₆-tBu.

Fig. S34 MALDI-TOF MS of Cbz-Nme₃₂-tBu.

Fig. S35 UHPLC of Cbz-Nme₃₂-tBu.

5.2 Diblock peptoids

Fig. S36 MALDI-TOF MS of Cbz-Nme4-Npe4-tBu.

Fig. S37 UHPLC of Cbz-Nme4-Npe4-tBu.

Fig. S38 MALDI-TOF MS of Cbz-Nme4-Npe12-tBu.

Fig. S39 UHPLC of Cbz-Nme4-Npe12-tBu.

Fig. S40 MALDI-TOF MS of Cbz-Ndc8-Nte8-tBu.

Fig. S41 MALDI-TOF MS of Nhx-tBu.

Fig. S42 DART-MS of Cbz-Nhx-tBu.

Fig. S43 DART-MS of Cbz-Nhx.

Fig. S44 HRMS of Cbz-Nhx-Npe-tBu.

Fig. S45 UHPLC of Cbz-Nhx-Npe-tBu.

Fig. S46 DART-MS of Cbz-Ndc-Nme-tBu.

Fig. S47 UHPLC of Cbz-Ndc-Nme-tBu.

Fig. S48 MALDI-TOF MS of Cbz-Nhx-Npe-Ndc-Nme-tBu.

Fig. S49 UHPLC of Cbz-Nhx-Npe-Ndc-Nme-tBu.

Fig. S50 MALDI-TOF MS of Cbz-(Nhx-Npe-Ndc-Nme)₂-tBu.

Fig. S51 UHPLC of Cbz-(Nhx-Npe-Ndc-Nme)₂-tBu.

Fig. S52 MALDI-TOF MS of Cbz-(Nhx-Npe-Ndc-Nme)₄-tBu.

Fig. S53 MALDI-TOF MS of Cbz-Nme4-Npe4-(Nhx-Npe-Ndc-Nme)2-tBu.

Fig. S54 UHPLC of Cbz-Nme₄-Npe₄-(Nhx-Npe-Ndc-Nme)₂-tBu.

5.4 Stereo-defined alternating peptoids

Fig. S55 DART-MS of Nrpe-tBu.

Fig. S56 DART-MS of Nspe-tBu.

Fig. S57 DART-MS of Cbz-Nme-Nrpe-tBu.

Fig. S58 UHPLC of Cbz-Nme-Nrpe-tBu.

Fig. S59 DART-MS of Cbz-Nme-Nspe-tBu.

Fig. S60 UHPLC of Cbz-Nme-Nspe-tBu.

Fig. S61 MALDI-TOF MS of Cbz-(Nme-Nrpe)2-tBu.

Fig. S62 UHPLC of Cbz-(Nme-Nrpe)₂-tBu.

Fig. S63 MALDI-TOF MS of Cbz-(Nme-Nspe)₂-tBu.

Fig. S64 UHPLC of Cbz-(Nme-Nspe)₂-tBu.

Fig. S65 MALDI-TOF MS of Cbz-(Nme-Nrpe)4-tBu.

Fig. S66 UHPLC of Cbz-(Nme-Nrpe)₄-tBu.

Fig. S67 MALDI-TOF MS of Cbz-(Nme-Nspe)₄-tBu.

Fig. S68 UHPLC of Cbz-(Nme-Nspe)4-tBu.

Fig. S69 MALDI-TOF MS of Cbz-(Nme-Nrpe)4-(Nme-Nspe)4-tBu.

Fig. S70 UHPLC of Cbz-(Nme-Nrpe)4-(Nme-Nspe)4-tBu.

5.5 Post-IEG modifications with thiol-ene and CuAAC click reactions

Fig. S71 MALDI-TOF MS of Cbz-Npe4-Nall-tBu.

Fig. S72 UHPLC of Cbz-Npe4-Nall-tBu.

Fig. S73 MALDI-TOF MS of Cbz-Npe4-Nthio-tBu.

Fig. S74 UHPLC of Cbz-Npe4-Nthio-tBu.

Fig. S75 DART-MS of Nalk-tBu.

Fig. S76 MALDI-TOF MS of Cbz-Npe4-Nalk-tBu.

Fig. S77 UHPLC of Cbz-Npe₄-Nalk-tBu.

Fig. S78 MALDI-TOF MS of Cbz-Npe4-Ntriazo-tBu.

Fig. S79 UHPLC of Cbz-Npe4-Ntriazo-tBu.

Fig. S80 MALDI-TOF MS of Cbz-Npe4-Nalk-Npe2-tBu.

Fig. S81 UHPLC of Cbz-Npe₄-Nalk-Npe₂-tBu.

Fig. S82 MALDI-TOF MS of Cbz-Npe4-Ntriazo-Npe2-tBu.

Fig. S83 UHPLC of Cbz-Npe4-Ntriazo-Npe2-tBu.

6. NMR spectra

6.1 Peptoid homopolymers

Fig. S84 ¹H-NMR of Ndc dimer with Fmoc protecting group showing uncontrolled reaction after coupling.

Fig. S85 ¹H NMR of Ndc-tBu.

Fig. S86 ¹³C NMR of Ndc-tBu.

Fig. S87 ¹H NMR of Npe-tBu.

Fig. S88 ¹³C NMR of Npe-tBu.

Fig. S89 ¹H NMR of Nte-tBu.

Fig. S90 ¹³C NMR of Nte-tBu.

Fig. S91 ¹H NMR of Nme-tBu.

Fig. S92 ¹³C NMR of Nme-tBu.

Fig. S93 ¹H NMR of Cbz-Ndc-tBu.

Fig. S94 ¹³C NMR of Cbz-Ndc-tBu.

Fig. S95 ¹H NMR of Cbz-Npe-tBu.

Fig. S96 ¹³C NMR of Cbz-Npe-tBu.

Fig. S97 ¹H NMR of Cbz-Nte-tBu.

Fig. S98 ¹³C NMR of Cbz-Nte-tBu.

Fig. S99 ¹H NMR of Cbz-Nme-tBu.

Fig. S100 ¹³C NMR of Cbz-Nme-tBu.

Fig. S101 ¹H NMR of Cbz-Ndc.

Fig. S102 ¹³C NMR of Cbz-Ndc.

Fig. S103 ¹H NMR of Cbz-Npe.

Fig. S104 ¹³C NMR of Cbz-Npe.

Fig. S105 ¹H NMR of Cbz-Nme.

Fig. S106 ¹³C NMR of Cbz-Nme.

Fig. S107 ¹H NMR of Cbz-Ndc₂-tBu.

Fig. S108 ¹³C NMR of Cbz-Ndc₂-tBu.

Fig. S109 ¹H NMR of Cbz-Npe₂-tBu.

Fig. S110 ¹³C NMR of Cbz-Npe₂-tBu.

Fig. S111 ¹H NMR of Cbz-Nte₂-tBu.

Fig. S112 ¹³C NMR of Cbz-Nte₂-tBu.

Fig. S113 ¹H NMR of Cbz-Nme₂-tBu.

Fig. S114 ¹³C NMR of Cbz-Nme₂-tBu.

Fig. S115 ¹H NMR of Cbz-Ndc4-tBu.

Fig. S116¹³C NMR of Cbz-Ndc₄-tBu.

Fig. S117 ¹H NMR of Cbz-Npe4-tBu.

Fig. S118 ¹³C NMR of Cbz-Npe4-tBu.

Fig. S119 ¹H NMR of Cbz-Nte₄-tBu.

Fig. S120 ¹³C NMR of Cbz-Nte₄-tBu.

Fig. S121 ¹H-NMR of Cbz-Nme₄-tBu.

Fig. S122 ¹³C-NMR of Cbz-Nme₄-tBu.

Fig. S123 ¹H NMR of Cbz-Ndc₈-tBu.

Fig. S124 ¹³C NMR of Cbz-Ndc₈-tBu.

Fig. S125 ¹H NMR of Cbz-Npe₈-tBu.

Fig. S126¹³C NMR of Cbz-Npe₈-tBu.

Fig. S127 ¹H NMR of Cbz-Nte₈-tBu.

Fig. S128 ¹³C NMR of Cbz-Nte₈-tBu.

Fig. S129 ¹H NMR of Cbz-Nme₈-tBu.

Fig. S130 ¹³C NMR of Cbz-Nme₈-tBu.

Fig. S131 ¹H NMR of Cbz-Nme₁₆-tBu.

Fig. S132 ¹³C NMR of Cbz-Nme₁₆-tBu. Note: baseline not corrected to maintain signal.

Fig. S133 ¹H NMR of Cbz-Nme₃₂-tBu.

Fig. S134 ¹³C NMR of Cbz-Nme₃₂-tBu. Note: baseline not corrected to maintain signal.

Fig. S135 COSY of Cbz-Nme₃₂-tBu.

Fig. S136 HSQC of Cbz-Nme₃₂-tBu.

Fig. S137 HMBC of Cbz-Nme₃₂-tBu.

6.2 Diblock peptoids

Fig. S138 ¹H-NMR of Cbz-Nme₄-Npe₄-tBu.

Fig. S139 ¹³C-NMR of Cbz-Nme₄-Npe₄-tBu. Note: baseline not corrected to maintain signal.

Fig. S140 ¹H NMR of Cbz-Nme₄-Npe₁₂-tBu.

Fig. S141 ¹³C NMR of Cbz-Nme4-Npe12-tBu. Note: baseline not corrected to maintain signal.

Fig. S142 ¹H NMR of Cbz-Ndc₈-Nte₈-tBu.

Fig. S143 ¹³C NMR of Cbz-Ndc8-Nte8-tBu. Note: baseline not corrected to maintain signal.

6.3 Sequence-defined periodic and aperiodic peptoids

Fig. S144 ¹H NMR of Nhx-tBu.

Fig. S145 ¹³C NMR of Nhx-tBu.

Fig. S146 ¹H NMR of Cbz-Nhx-tBu.

Fig. S147 ¹³C NMR of Cbz-Nhx-tBu.

Fig. S148 ¹H NMR of Cbz-Nhx.

Fig. S149 ¹³C NMR of Cbz-Nhx.

Fig. S150 ¹H NMR of Cbz-Nhx-Npe-tBu.

Fig. S151 ¹³C NMR of Cbz-Nhx-Npe-tBu.

Fig. S152 ¹H NMR of Cbz-Ndc-Nme-tBu.

Fig. S153 ¹³C NMR of Cbz-Ndc-Nme-tBu.

Fig. S154 ¹H NMR of Cbz-Nhx-Npe-Ndc-Nme-tBu.

Fig. S155 ¹³C NMR of Cbz-Nhx-Npe-Ndc-Nme-tBu.

Fig. S156 ¹H NMR of Cbz-(Nhx-Npe-Ndc-Nme)₂-tBu.

Fig. S157 ¹³C NMR of Cbz-(Nhx-Npe-Ndc-Nme)₂-tBu.

Fig. S158 ¹H NMR of Cbz-(Nhx-Npe-Ndc-Nme)₄-tBu.

Fig. S159 ¹³C NMR of Cbz-(Nhx-Npe-Ndc-Nme)₄-tBu. Note: baseline not corrected to maintain signal.

Fig. S160 ¹H-NMR of Cbz-Nme4-Npe4-(Nhx-Npe-Ndc-Nme)₂-tBu.

Fig. S161 ¹³C-NMR of Cbz-Nme₄-Npe₄-(Nhx-Npe-Ndc-Nme)₂-tBu. Note: baseline not corrected to maintain signal.

6.4 Stereo-defined alternating peptoids

Fig. S162 ¹H-NMR of Nrpe-tBu.

Fig. S163 ¹³C-NMR of Nrpe-tBu.

Fig. S164 ¹H-NMR of Nspe-tBu.

Fig. S165 ¹³C-NMR of Nspe-tBu.

Fig. S166 ¹H NMR of Cbz-Nme-Nrpe-tBu.

Fig. S167 ¹³C NMR of Cbz-Nme-Nrpe-tBu.

Fig. S168 ¹H NMR of Cbz-Nme-Nspe-tBu.

Fig. S169 ¹³C NMR of Cbz-Nme-Nspe-tBu.

Fig. S170 ¹H NMR of Cbz-(Nme-Nrpe)₂-tBu.

Fig. S171 ¹³C NMR of Cbz-(Nme-Nrpe)₂-tBu.

Fig. S172 ¹H NMR of Cbz-(Nme-Nspe)₂-tBu.

Fig. S173 ¹³C NMR of Cbz-(Nme-Nspe)₂-tBu.

Fig. S174 ¹H NMR of Cbz-(Nme-Nrpe)₄-tBu.

Fig. S175 ¹³C NMR of Cbz-(Nme-Nrpe)₄-tBu.

Fig. S176 ¹H NMR of Cbz-(Nme-Nspe)4-tBu.

Fig. S177 ¹³C NMR of Cbz-(Nme-Nspe)₄-tBu. Note: baseline not corrected to maintain signal.

Fig. S178 ¹H NMR of Cbz-(Nme-Nrpe)4-(Nme-Nspe)4-tBu.

Fig. S179 ¹³C NMR of Cbz-(Nme-Nrpe)4-(Nme-Nspe)4-tBu. Note: baseline not corrected to maintain signal.

6.5 Post-IEG modifications with thiol-ene and CuAAC click reactions

Fig. S180 ¹H NMR of Nall-tBu.

Fig. S181 ¹³C NMR of Nall-tBu.

Fig. S182 ¹H NMR of Cbz-Npe₄-Nall-tBu.

Fig. S183 ¹³C NMR of Cbz-Npe4-Nall-tBu.

Fig. S184 ¹H NMR of Cbz-Npe₄-Nthio-tBu.

Fig. S185 ¹³C NMR of Cbz-Npe4-Nthio-tBu.

Fig. S186 ¹H NMR of Nalk-tBu.

Fig. S187 ¹³C NMR of Nalk-tBu.

Fig. S188 ¹H NMR of Cbz-Npe₄-Nalk-tBu.

Fig. S189 ¹³C NMR of Cbz-Npe4-Nalk-tBu.

Fig. S190 ¹H NMR of Cbz-Npe4-Ntriazo-tBu.

Fig. S191 ¹³C NMR of Cbz-Npe₄-Ntriazo-tBu.

Fig. S192 ¹H NMR of Cbz-Npe₄-Nalk-Npe₂-tBu.

Fig. S193 ¹H NMR of Cbz-Npe4-Ntriazo-Npe2-tBu.

Fig. S194 ¹³C NMR of Cbz-Npe4-Ntriazo-Npe2-tBu. Note: baseline not corrected to maintain signal.

7. Characterization of IEG intermediates (NMR and MALDI-MS)

7.1 Peptoid homopolymers

Fig. S195 ¹H NMR of Cbz-Ndc₂.

Fig. S196 ¹³C NMR of Cbz-Ndc₂.

Fig. S197 HRMS of Cbz-Ndc2.

Fig. S198 ¹H NMR of Cbz-Npe₂.

Fig. S199 ¹³C NMR of Cbz-Npe₂.

Fig. S200 DART-MS of Cbz-Npe₂.

Fig. S201 ¹H NMR of Cbz-Nte₂.

Fig. S202 ¹³C NMR of Cbz-Nte₂.

Fig. S203 MALDI-TOF MS of Cbz-Nte2.

Fig. S204 ¹H NMR of Cbz-Nme₂.

Fig. S205 ¹³C NMR of Cbz-Nme₂.

Fig. S206 DART-MS of Cbz-Nme₂.

Fig. S207 ¹H NMR of Ndc₂-tBu.

Fig. S208 ¹³C NMR of Ndc₂-tBu.

Fig. S209 HRMS of Ndc₂-tBu.

Fig. S210 ¹H NMR of Npe₂-tBu.

Fig. S211 ¹³C NMR of Npe₂-tBu.

Fig. S212 DART-MS of Npe₂-tBu.

Fig. S213 ¹H NMR of Nte₂-tBu.

Fig. S214 ¹³C NMR of Nte₂-tBu.

Fig. S215 MALDI-TOF MS of Nte₂-tBu.

Fig. S216 ¹H NMR of Nme₂-tBu.

Fig. S217 ¹³C NMR of Nme₂-tBu.

Fig. S218 DART-MS of Nme₂-tBu.

Fig. S219 ¹H NMR of Cbz-Ndc₄.

Fig. S220 ¹³C NMR of Cbz-Ndc4.

Fig. S221 MALDI-TOF MS of Cbz-Ndc4.

Fig. S222 ¹H NMR of Cbz-Npe4.

Fig. S223 ¹³C NMR of Cbz-Npe₄.

Fig. S224 MALDI-TOF MS of Cbz-Npe4.

Fig. S225 ¹H NMR of Cbz-Nte₄.

Fig. S226 ¹³C NMR of Cbz-Nte₄.

Fig. S227 MALDI-TOF MS of Cbz-Nte4.

Fig. S228 ¹H NMR of Cbz-Nme₄.

Fig. S229 ¹³C NMR of Cbz-Nme₄.

Fig. S230 DART-MS of Cbz-Nme4.

Fig. S231 ¹H NMR of Ndc4-tBu.

Fig. S232 ¹³C NMR of Ndc4-tBu.

Fig. S233 MALDI-TOF MS of Ndc4-tBu.

Fig. S234 ¹H NMR of Npe₄-tBu.

Fig. S235 ¹³C NMR of Npe4-tBu.

Fig. S236 MALDI-TOF MS of Npe4-tBu.

Fig. S237 ¹H NMR of Nte₄-tBu.

Fig. S238 ¹³C NMR of Nte₄-tBu.

Fig. S239 MALDI-TOF MS of Nte₄-tBu.

Fig. S240 ¹H NMR of Nme₄-tBu.

Fig. S241 ¹³C NMR of Nme₄-tBu.

Fig. S242 DART-MS of Nme₄-tBu.

Fig. S243 ¹H NMR of Cbz-Nme₈.

Fig. S244 ¹³C NMR of Cbz-Nme₈.

Fig. S245 MALDI-TOF MS of Cbz-Nme8.

Fig. S246 ¹H NMR of Nme₈-tBu.

Fig. S247 ¹³C NMR of Nme₈-tBu.

Fig. S248 MALDI-TOF MS of Nme₈-tBu.

Fig. S249 ¹H NMR of Cbz-Nme₁₆.

Fig. S250 ¹³C NMR of Cbz-Nme₁₆.

Fig. S251 MALDI-TOF MS of Cbz-Nme₁₆.

Fig. S252 ¹H NMR of Nme₁₆-tBu.

Fig. S253 ¹³C NMR of Nme₁₆-tBu.

Fig. S254 MALDI-TOF MS of Nme₁₆-tBu.

7.2 Diblock peptoids

Fig. S255 ¹H NMR of Cbz-Nme₄-Npe₄.

Fig. S256 MALDI-TOF MS of Cbz-Nme4-Npe4.

Fig. S257 ¹H NMR of Npe₈-tBu.

Fig. S258 ¹³C NMR of Npe₈-tBu.

Fig. S259 MALDI-TOF MS of Npe8-tBu.

Fig. S260 ¹H NMR of Cbz-Ndc8.

Fig. S261 ¹³C NMR of Cbz-Ndc8.

Fig. S262 MALDI-TOF MS of Cbz-Ndc8.

Fig. S263 ¹H NMR of Nte₈-tBu.

Fig. S264 ¹³C NMR of Nte₈-tBu.

Fig. S265 MALDI-TOF MS of Ntes-tBu.

7.3 Sequence-defined periodic and aperiodic peptoids

Fig. S266 ¹H NMR of Cbz-Nhx-Npe.

Fig. S267 ¹³C NMR of Cbz-Nhx-Npe.

Fig. S268 DART-MS of Cbz-Nhx-Npe.

Fig. S269 ¹H NMR of Ndc-Nme-tBu.

Fig. S270 ¹³C NMR of Ndc-Nme-tBu.

Fig. S271 DART-MS of Ndc-Nme-tBu.

Fig. S272 ¹H NMR of Cbz-Nhx-Npe-Ndc-Nme.

Fig. S273 ¹³C NMR of Cbz-Nhx-Npe-Ndc-Nme.

Fig. S274 DART-MS of Cbz-Nhx-Npe-Ndc-Nme.

Fig. S275 ¹H NMR of Nhx-Npe-Ndc-Nme-tBu.

Fig. S276 ¹³C NMR of Nhx-Npe-Ndc-Nme-tBu.

Fig. S277 DART-MS of Nhx-Npe-Ndc-Nme-tBu.

Fig. S278 ¹H NMR of Cbz-(Nhx-Npe-Ndc-Nme)₂.

Fig. S279 ¹³C NMR of Cbz-(Nhx-Npe-Ndc-Nme)₂.

Fig. S280 HRMS of Cbz-(Nhx-Npe-Ndc-Nme)₂.

Fig. S281 ¹H NMR of (Nhx-Npe-Ndc-Nme)₂-tBu.

Fig. S282 ¹³C NMR of (Nhx-Npe-Ndc-Nme)₂-tBu.

Fig. S283 HRMS of (Nhx-Npe-Ndc-Nme)2-tBu.

7.4 Stereo-defined alternating peptoids

Fig. S284 ¹H NMR of Cbz-Nme-Nrpe.

Fig. S285 ¹³C NMR of Cbz-Nme-Nrpe.

Fig. S286 DART-MS of Cbz-Nme-Nrpe.

Fig. S287 ¹H NMR of Cbz-Nme-Nspe.

Fig. S288 ¹³C NMR of Cbz-Nme-Nspe.

Fig. S289 DART-MS of Cbz-Nme-Nspe.

Fig. S290 ¹H NMR of Nme-Nrpe-tBu.

Fig. S291 ¹³C NMR of Nme-Nrpe-tBu.

Fig. S292 DART-MS of Nme-Nrpe-tBu.

Fig. S293 ¹H NMR of Nme-Nspe-tBu.

Fig. S294 ¹³C NMR of Nme-Nspe-tBu.

Fig. S295 DART-MS of Nme-Nspe-tBu.

Fig. S296 ¹H NMR of Cbz-(Nme-Nrpe)₂.

Fig. S297 ¹³C NMR of Cbz-(Nme-Nrpe)₂.

Fig. S298 MALDI-TOF MS of Cbz-(Nme-Nrpe)2.

Fig. S299 ¹H NMR of Cbz-(Nme-Nspe)₂.

Fig. S300 ¹³C NMR of Cbz-(Nme-Nspe)₂.

Fig. S301 MALDI-TOF MS of Cbz-(Nme-Nspe)2.

Fig. S302 ¹H NMR of (Nme-Nrpe)₂-tBu.

Fig. S303 ¹³C NMR of (Nme-Nrpe)₂-tBu.

Fig. S304 MALDI-TOF MS of (Nme-Nrpe)2-tBu.

Fig. S305 ¹H NMR of (Nme-Nspe)₂-tBu.

Fig. S306 ¹³C NMR of (Nme-Nspe)₂-tBu.

Fig. S307 MALDI-TOF MS of (Nme-Nspe)₂-tBu.

Fig. S308 ¹H NMR of Cbz-(Nme-Nrpe)₄.

Fig. S309 ¹³C NMR of Cbz-(Nme-Nrpe)₄.

Fig. S310 MALDI-TOF MS of Cbz-(Nme-Nrpe)4.

Fig. S311 ¹H NMR of (Nme-Nspe)₄-tBu.

Fig. S312 ¹³C NMR of (Nme-Nspe)4-tBu.

Fig. S313 MALDI-TOF MS of (Nme-Nspe)₄-tBu.