Supplementary Information

Metal-Catalyzed Methylthiolation of Chloroarenes and Diverse Aryl Electrophiles

Sae Toyoda, Keiichiro Iizumi, and Junichiro Yamaguchi*

Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041 Japan.

E-mail: junyamaguchi@waseda.jp (JY)

Table of Contents

1.	General	S2–S3
2.	Preparation of 4-((Methylthio)methyl)morpholine 1	S4
3.	Preparation of Starting Materials 2	S4–S6
4.	Pd or Ni-Catalyzed Methylthiolation of Aryl Electrophiles	S7–S19
5.	Oxidation of Aryl Methyl Sulfides	S19–S20
6.	Synthesis and Reaction of Thioalkyl/arylating Agents	S21-S23
7.	Mechanistic Investigations	S24–S28
8.	Effect of Parameters	S29–S34
9.	References	S34–S36
10.	¹ H NMR, ¹³ C NMR, and ¹⁹ F NMR Spectra	S37–S138

1. General

Unless otherwise noted, all reactants or reagents including drying solvents were obtained from commercial suppliers and used as received. 2-Naphthoic acid (CO_2H-2c), toluene, diethyl ether (Et₂O) and acetonitrile (MeCN) were obtained from KANTO Chemical. Palladium(II) acetate (Pd(OAc)₂), Xantphos, 1,1'-bis(diphenylphosphino)ferrocene (dppf), zinc (powder), morpholine (S1), chloromethyl methyl sulfide (S2), 6-hydroxy-4-methylcoumarin, 1-bromonaphthalene (Br-2a), 1-chloronaphthalene (Cl-2a), 1-bromo-2-methylnaphthalene (2b), 1-naphthol, 2-bromonaphthalene (Br-2c), 2chloronaphthalene (Cl-2c), 2-naphthol, 2-naphthonitrile (CN-2c), 2-naphthoic acid, 2-chloroanthracene (2d), 9-bromoanthracene (2e), 4-bromopyrene (Br-2g), 1-(*tert*-butyl)-4-chlorobenzene (2h), 1-bromo-3,5-di-tert-butylbenzene (2i), 4-bromo-1,1'-biphenyl (Br-2j), 4-chloro-1,1'-biphenyl (Cl-2j), 4cyanobiphenyl (CN-2j), [1,1'-biphenyl]-4-ol, 3-bromo-1,1'-biphenyl (Br-2k), 2-bromo-1,1'-biphenyl (Br-2l), 1-chloro-3,5-dimethoxybenzene (2m), 1-(4'-bromo-[1,1'-biphenyl]-4-yl)ethan-1-one (2n), ethyl 3-chlorobenzoate (20), methyl 3-hydroxybenzoate, 1-chloro-4-nitronaphthalene (2r), chlorobenzhydrol (2s), 2-chloropyridine (3t), 5-acetyl-2-chloropyridine (2u), 2-chloroquinoline (Cl-2v), 2-quinolinecarbonitrile (CN-2v), 3-bromoquinoline (2w), 4-bromodibenzothiophene (2x), 2-(5bromothiophen-2-yl)pyridine (2y), 5-chloro-2-methylbenzoxazole (2z), 6-chloroflavone (2A), fenofibrate (2C), vanillin, eugenol, chlorpromazine hydrochloride (2F), estrone, ticlopidine hydrochloride, diphenyl disulfide, dimethyl disulfide, methyl mercaptan sodium salt (S7, ca. 15% in water), 4-methoxyphenol (S8) and p-toluenesulfonic acid monohydrate (PTSA) were obtained from Tokyo Chemical Industry (TCI). Na₂CO₃, 9-bromophenanthrene (2f) and N,N'-dimorpholinomethane (S6) were obtained from FUJIFILM Wako Chemicals. Cs₂CO₃ was obtained from Iwatani Corporation. Naphthalen-1-yl 4-methylbenzenesulfonate (OTs-2a), naphthalen-1-yl methanesulfonate (OMs-2a), naphthalen-2-yl pivalate (OPiv-2c), naphthalen-2-yl 4-methylbenzenesulfonate (OTs-2c), naphthalen-2-yl methanesulfonate (OMs-2c), pyrene-4-carbonitrile (CN-2g) and [1,1'-biphenyl]-4-yl 4obtained in our methylbenzenesulfonate (OTs-2j) were laboratory. Naphthalen-1-yl trifluoromethanesulfonate (OTf-2a),^[1,2] naphthalen-2-yl trifluoromethanesulfonate (OTf-2c),^[1,3] [1,1'biphenyl]-4-yl trifluoromethanesulfonate (OTf-2j),^[1,4] [1,1'-biphenyl]-4-yl pivalate (OPiv-2j),^[5] [1,1'biphenyl]-2-yl trifluoromethanesulfonate (OTf-2l),^[1,4] methyl 3-(((trifluoromethyl)sulfonyl)oxy)benzoate (2p),^[1,6] methyl 6-(((trifluoromethyl)sulfonyl)oxy)-2-(**OTf-3q**),^[1,7] naphthoate methyl 6-(pivaloyloxy)-2-naphthoate (**OPiv-3q**),^[5] 4-formyl-2methoxyphenyl trifluoromethanesulfonate (2D),^[1,3] 4-allyl-2-methoxyphenyl trifluoromethanesulfonate $(2E)^{[1,3]}$ and 2-bromo-5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (2J and 2K)^[8] were synthesized according to procedures and the spectra matched with those of compounds reported in the literatures. Unless otherwise noted, all reactions were performed with drying solvents under an atmosphere of N₂ in dried glassware using standard vacuum-line techniques. All coupling reactions were performed in 20-mL glass vessel tubes equipped with J. Young® O-ring tap and heated (IKA Plate RCT

digital) in a nine-well aluminum reaction block (IKA H 135.103 Block 9×16 mL) unless otherwise noted. All work-up and purification procedures were carried out with reagent-grade solvents in air.

Analytical thin-layer chromatography (TLC) was performed using Silica-gel 70 TLC Plate-Wako (0.25 mm). The developed chromatogram was analyzed by UV lamp (254 nm). Flash column chromatography was performed with a Biotage Isolera® instrument equipped with Biotage Sfär Cartridge Silica (HD) D Duo columns. Preparative thin-layer chromatography (PTLC) was performed using Wakogel B5-F silica coated plates (0.75 mm) prepared in our laboratory. Preparative recycling gel permeation chromatography (GPC) was performed with a JAI LaboACE LC-5060 instrument equipped with JAIGEL-2HR columns using CHCl₃ as an eluent. High-resolution mass spectra were conducted on Bruker Compact QTOF (ESI and APCI). Nuclear magnetic resonance (NMR) spectra were recorded on a JEOL JNM-ECS-400 and a JNM-ECZ-400S (1H 400 MHz, 13C 101 MHz, 19F 376 MHz) spectrometer. Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to tetramethylsilane ($\delta 0.00$ ppm). Chemical shifts for ¹³C NMR are expressed in ppm relative to CDCl₃ (δ 77.0 ppm). Chemical shifts for ¹⁹F NMR are expressed in ppm relative to PhF (δ –113.15 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, ddd = doublet of doublets, dt = doublet of triplets, tt = triplet of triplets, td = triplet of doublets, q = quartet, ddt = doublet of doublets of triplets, m = multiplet), coupling constant (Hz), and integration.

2. Preparation of 4-((Methylthio)methyl)morpholine 1

To a round-bottom flask containing a magnetic stirring bar and sodium carbonate (20.8 g, 200 mmol, 2.0 equiv) in acetonitrile (MeCN, 250 mL, 0.40 M) were added morpholine (**S1**: 8.8 mL, 100 mmol, 1.0 equiv) and chloromethyl methyl sulfide (**S2**: 9.9 mL, 120 mmol, 1.2 equiv). After stirring the mixture at room temperature overnight, the reaction was quenched with water. The mixture was extracted three times with EtOAc. The combined organic layer was dried over Na₂SO₄ and then filtered. The filtrate was distilled (45 Torr, 160 °C). to provide **1** as a colorless liquid (10.6 g, 72% yield). Compound **1**: ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 2H), 3.75–3.67 (m, 4H), 2.63–2.57 (m, 4H), 2.18 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 66.7, 65.0, 51.1, 16.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd

3. Preparation of Starting Materials 2

for C₆H₁₄NOS 148.0791; Found 148.0788.

3-1. Preparation of Aryl Triflates OTf-2k, 2B, 2D, 2E and 2G'

To a solution of arenol (1.0 equiv) in CH₂Cl₂ (0.30 M) was added pyridine (1.2 equiv) at room temperature. Then, trifluoromethanesulfonic anhydride (Tf₂O: 1.5 equiv) was added dropwise at 0 °C. After stirring the mixture for several hours at room temperature while the reaction progress was being monitored the reaction progress by TLC, the reaction mixture was added saturated NaHCO₃ aq. and extracted three times with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, and then concentrated *in vacuo*. The residue was purified by Isolera[®] to afford aryl triflates **OTf-2k**, **2B**, **2D**, **2E** and **2G'**.

[1,1'-Biphenyl]-3-yl trifluoromethanesulfonate (OTf-2k)

[1,1'-Biphenyl]-3-ol (171.9 mg, 1.0 mmol) was used. Purification by Isolera[®] (hexane/EtOAc = 90:10 to 70:30) afforded **OTf-2k** as a colorless liquid (276.8 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.38 (m, 8H), 7.32–7.23 (m, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 150.0, 143.9, 138.9, 130.4,

129.0, 128.3 127.1, 127.0, 119.9, 119.7, 118.8 (q, J_{CF} = 323.0 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ –72.9 (s, 3F); HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₀F₃O₃S 303.0297; Found 303.0290.

4-Methyl-2-oxo-2H-chromen-6-yl trifluoromethanesulfonate (2B)

6-Hydroxy-4-methylcoumarin (486.0 mg, 1.0 mmol) was used. Purification by Isolera[®] (hexane/EtOAc = 90:10 to 70:30) afforded **2B** as a brown solid (275.4 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.49 (m, 1H), 7.45–7.42 (m, 2H), 6.41 (d, J = 1.2 Hz, 1H), 2.46 (d, J = 1.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.4, 152.5, 150.9, 145.1, 124.4, 121.2 119.0, 118.6 (q, $J_{CF} = 323.1$ Hz), 117.4, 116.7, 18.5; ¹⁹F NMR (377 MHz, CDCl₃) δ –72.7 (s, 3F); HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₁H₈F₃O₅S 309.0039; Found 309.0040.

(8R,9S,13S,14S)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-3-yl trifluoromethanesulfonate (2G')

Estrone (537.6 mg, 1.8 mmol) was used. Purification by Isolera[®] (hexane/EtOAc = 90:10 to 60:40) afforded **2G'** as a white solid (702.6 mg, 87% yield). The spectra are in accordance with those reported in the literature.^[9]

3-2. Preparation of Estrone Derivatives 2G and 2H

To a solution of **2G'** (198.5 mg, 0.50 mmol, 1.0 equiv) in CH₂Cl₂ (2.5 mL, 0.20 M) were added *p*-toluenesulfonic acid (PTSA: 22.2 mg, 0.13 mmol, 25 mol%), ethylene glycol (0.56 mL, 10 mmol, 20 equiv) and trimethyl orthoformate (0.50 mL, 5.0 mmol, 10 equiv). After stirring the mixture at room temperature for 1 hour, the reaction mixture was saturated added NaHCO₃ aq. and extracted three times with CH₂Cl₂. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 90:10 to 60:40) to afford (8*R*,9*S*,13*S*,14*S*)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydrospiro[cyclopenta[*a*]phenanthrene-17,2'-[1,3]dioxolan]-3-yl trifluoromethanesulfonate **2G** as a colorless liquid (189.4 mg, 84% yield).

Compound **2G**: ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 8.8 Hz, 1H), 7.01 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.96 (d, *J* = 2.8 Hz, 1H), 4.00–3.84 (m, 4H), 2.92–2.83 (m, 2H), 2.36–2.21 (m, 2H), 2.08–1.98 (m, 1H), 1.96–1.72 (m, 4H), 1.69–1.28 (m, 6H), 0.89 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.4, 140.9, 139.5, 127.1, 121.1, 119.2, 118.7 (q, *J*_{CF} = 322.1 Hz), 118.0, 65.2, 64.6, 49.3, 46.0, 43.7, 38.4, 34.1, 30.5, 29.5, 26.5, 25.9, 22.3, 14.2; ¹⁹F NMR (377 MHz, CDCl₃) δ –73.1 (s, 3F); HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₆F₃O₅S 447.1448; Found 447.1444.

A 20-mL glass vessel containing a magnetic stirring bar was dried with a heat gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this vessel was added **2G'** (279.5 mL, 0.80 mmol, 1.0 equiv) and placed under vacuum and refilled three times with N₂ gas. After cooling the vessel to -78 °C, the vessel were added THF (5.0 mL, 0.10 M) and KHMDS (0.50 M in toluene, 1.9 mL, 0.96 mmol, 1.2 equiv). After stirring the mixture for 1 hour at -78 °C, the vessel was warmed to room temperature, added *N*-phenylbis(trifluoromethanesulfonimide) (PhNTf₂: 428.7 mg, 1.2 mmol, 1.5 equiv) and stirred for 1 hour while the reaction progress was being monitored the reaction progress by TLC. The reaction mixture was added saturated NaHCO₃ aq. and extracted three times with EtOAc. The combined organic layer was dried over Na₂SO₄, filtered, and then concentrated *in vacuo*. The residue was purified by Isolera[®] (hexane/EtOAc = 98:2 to 70:30) to afford **2H** as a colorless liquid (221.6 mg, 83% yield).

Compound **2H**: ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 8.4 Hz, 1H), 7.03 (dd, *J* = 8.4, 2.8 Hz, 1H), 6.99 (d, *J* = 2.8 Hz, 1H), 5.65–5.61 (m, 1H), 2.94 (dd, *J* = 8.8, 4.4 Hz, 2H), 2.43–2.29 (m, 3H), 2.11 (ddd, *J* = 14.8, 11.2, 2.0 Hz, 1H), 2.00–1.88 (m, 2H), 1.80 (td, *J* = 11.2, 6.4 Hz, 1H), 1.72–1.53 (m, 3H), 1.53–1.39 (m, 1H), 1.01 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.0, 147.6, 140.3, 139.2, 126.8, 121.2, 118.7 (q, *J*_{CF} = 322.1 Hz), 118.6 (q, *J*_{CF} = 322.1 Hz), 118.3, 114.5, 53.4, 44.9, 44.3, 36.1, 32.6, 29.1, 28.3, 26.3, 25.5, 15.3; ¹⁹F NMR (377 MHz, CDCl₃) δ –73.1 (s, 3F), –73.6 (s, 3F); HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₂₀H₂₁F₆O₆S₂ 535.0678; Found 535.0681.

4. Pd or Ni-Catalyzed Methylthiolation of Aryl Electrophiles

General Procedure 1 (GP-1)

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (130.3 mg, 0.40 mmol, 2.0 equiv) was dried with a heat gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this vessel were added haloarene or aryltriflate **2** (0.20 mmol, 1.0 equiv), 4-((methylthio)methyl)morpholine (**1** : 44.1 mg, 0.30 mmol, 1.5 equiv), Pd(OAc)₂ (2.3 mg, 0.010 mmol, 5.0 mol%), ligand (0.020 mmol, 10 mol%) and zinc (26.2 mg, 0.40 mmol, 2.0 equiv).^a The vessel was placed under vacuum and refilled three times with N₂ gas. To this was added toluene (1.0 mL). The vessel was sealed with the O-ring tap and then heated at 120 °C or 150 °C for 12 hours in a nine-well aluminum reaction block with stirring. After the reaction mixture had been cooled to room temperature, the mixture was passed through a pad of silica-gel with EtOAc as an eluent. The filtrate was concentrated *in vacuo*, and the residue was purified by PTLC or GPC to afford the corresponding aryl methyl sulfide **3**. The condition details are shown in Table S1.

^a When using aryl nitriles, NaO'Bu was used instead of Cs₂CO₃.

General Procedure 2 (GP-2)

Caution: scaling up reactions in diethyl ether at high temperatures should be avoided unless appropriate equipment is used.

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs_2CO_3 (130.3 mg, 0.40 mmol, 2.0 equiv) was dried with a heat gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this vessel were added dppf (11.1 mg, 0.020 mmol, 10 mol%) and zinc (26.2 mg, 0.40 mmol, 2.0 equiv). The vessel was introduced inside an Ar atmosphere glovebox. In the glovebox, the vessel was added Ni(cod)₂ (2.8 mg, 0.010 mmol, 5.0 mol%), which was then capped with the O-ring tap and taken out of the glovebox. The vessel was placed under vacuum and refilled three times with N₂ gas. To this was added Et₂O (1.0 mL, 0.20 M), aryl tosylate, aryl mesylate or aryl pivalate **2** (0.20 mmol, 1.0 equiv), and 4-((methylthio)methyl)morpholine (**1** : 44.1 mg, 0.30 mmol, 1.5

equiv), The vessel was sealed with the O-ring tap and then heated at 150 °C for 12 hours in a nine-well aluminum reaction block with stirring. After the reaction mixture had been cooled to room temperature, the mixture was passed through a pad of silica-gel with EtOAc as an eluent. The filtrate was concentrated *in vacuo*, and the residue was purified by PTLC or GPC to afford the corresponding aryl methyl sulfide **3**. The condition details are shown in Table S1.

х	metal	ligand	base	reductant	solvent	temperature, time
Br Cl, OTf CN OTs OMs OPiv CO ₂ H	5.0 mol% Pd(OAc) ₂ 5.0 mol% Pd(OAc) ₂ 5.0 mol% Pd(OAc) ₂ 5.0 mol% Ni(cod) ₂ 10 mol% Ni(cod) ₂ 10 mol% Ni(cod) ₂ 10 mol% Ni(cod) ₂	10 mol% Xantphos 10 mol% dppf 10 mol% dcype 10 mol% dppf 20 mol% dcypt 20 mol% dcypt 20 mol% dcypt	Cs ₂ CO ₃ Cs ₂ CO ₃ NaO'Bu Cs ₂ CO ₃ Cs ₂ CO ₃ Cs ₂ CO ₃ Cs ₂ CO ₃	– Zn Zn Zn Zn Zn	$\begin{array}{c} \text{toluene} \\ \text{toluene} \\ \text{toluene} \\ \text{Et}_2\text{O} \\ \text{Et}_2\text{O} \\ \text{toluene} \\ \text{toluene} \end{array}$	120 °C, 12 h 150 °C, 12 h 150 °C, 24 h 80 °C, 24 h 80 °C, 24 h 150 °C, 24 h 150 °C, 12 h

Table S1. Reaction Conditions on each Aryl electrophiles

Methyl(naphthalen-1-yl)sulfane (3a)

When 1-bromonaphthalene, 1-chloronaphthalene or naphthalen-1-yl trifluoromethanesulfonate was used, compound **3a** was synthesized according to **GP-1**. When naphthalen-1-yl 4-methylbenzenesulfonate or naphthalen-1-yl methanesulfonate was used, compound **3a** was synthesized according to **GP-2**. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3a** as a yellow liquid (X = Br : 19.6 mg, 85% yield; Cl: 39.7 mg, 96% yield; OTf: 27.7 mg, 79% yield; OTs: 12.1 mg, 35% yield; OMs: 14.9 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.0 Hz, 1H), 7.85–7.82 (m, 1H), 7.67 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.57–7.48 (m, 2H), 7.45–7.37 (m, 2H), 2.58 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.8, 133.6, 131.6, 128.5, 126.2, 126.1, 125.8, 125.7, 124.2, 123.6, 16.2. HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₁S 175.0576; Found 175.0577. The spectra are in accordance with those reported in the literature.^[10]

Methyl(2-methylnaphthalen-1-yl)sulfane (3b)

Compound **3b** was synthesized according to **GP-1**. 1-Bromo-2-methylnaphthalene was used. The reaction was conducted using zinc (2.0 equiv) as an additive. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3b** as a colorless liquid (34.2 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.68 (dd, J = 8.4, 1.2 Hz, 1H), 7.86–7.79 (m, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.57 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 2.77 (s, 3H), 2.30 (s, 3H); ¹³C{¹H} NMR

(101 MHz, CDCl₃) δ 141.1, 135.0, 132.8, 131.8, 128.72, 128.69, 128.4, 126.8, 126.2, 125.1, 22.1, 19.0; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₃S 189.0732; Found 189.0737. The spectra are in accordance with those reported in the literature.^[10]

Methyl(naphthalen-2-yl)sulfane (3c)

When 1-bromonaphthalene, 1-chloronaphthalene or naphthalen-1-yl trifluoromethanesulfonate was used, compound **3c** was synthesized according to **GP-1**. When naphthalen-1-yl 4-methylbenzenesulfonate or naphthalen-1-yl methanesulfonate was used, compound **3b** was synthesized according to **GP-2**. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3c** as a white solid (X=Br : 26.6 mg, 86%; Cl:36.4 mg, >99% yield; OTf: 29.6 mg, 85%; OTs: 32.5 mg, 93%; OMs: 31.3 mg, 89% yield; OPiv: 25.5 mg, 73% yield; CN: 27.0 mg, 77% yield; CO₂H: 7.5 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.75–7.71 (m, 2H), 7.60 (d, *J* = 1.2 Hz, 1H), 7.50–7.35 (m, 3H), 2.58 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.1, 133.8, 131.2, 128.1, 127.7, 126.8, 126.5, 125.6, 125.2, 123.3, 15.7; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₁S 175.0576; Found 175.0580. The spectra are in accordance with those reported in the literature.^[11]

Anthracen-2-yl(methyl)sulfane (3d)

Compound **3d** was synthesized according to **GP-1**. 2-Chloroanthracene was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3d** as a yellow solid (43.5 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.29 (s, 1H), 8.02–7.93 (m, 2H), 7.89 (d, *J* = 8.8 Hz, 1H), 7.68 (s, 1H), 7.49–7.40 (m, 2H), 7.36–7.27 (m, 1H), 2.63 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.8, 132.2, 132.0, 131.3, 129.8, 128.4, 128.2, 128.0, 126.2, 125.6, 125.1, 124.6, 122.0, 15.4 (one peak is missing due to overlapping); HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₃S 225.0732; Found 225.0733.

Anthracen-9-yl(methyl)sulfane (3e)

Compound **3e** was synthesized according to **GP-1**. 9-Bromoanthracene was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3e** as a yellow liquid (43.9 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.95 (d, *J* = 8.4 Hz, 2H), 8.46 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 2H), 7.70–7.56 (m, 2H), 7.56–7.46

(m, 2H), 2.40 (s, 3H); ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 134.0, 131.8, 131.0, 129.0, 128.8, 126.9, 126.7, 125.3, 20.1; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₃S 225.0732; Found 225.0730.

Methyl(phenanthren-9-yl)sulfane (3f)

Compound **3f** was synthesized according to **GP-1**. 9-Bromophenanthrene was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3f** as a white solid (42.4 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.73–8.63 (m, 1H), 8.62–8.54 (m, 1H), 8.38–8.28 (m, 1H), 7.82–7.73 (m, 1H), 7.70–7.60 (m, 2H), 7.59–7.49 (m, 3H), 2.61 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 134.4, 131.9, 130.4, 130.3, 128.8, 127.5, 126.90, 126.88, 126.7, 126.0, 124.8, 123.1, 123.0, 122.5, 15.8; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₃S 225.0732; Found 225.0736. The spectra are in accordance with those reported in the literature.^[12]

Methyl(pyren-4-yl)sulfane (3g)

Compound **3g** was synthesized according to **GP-1**. 4-Bromopyrene was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3g** as a pink solid (X=Br : 41.0 mg, 82% yield, CN: 16.9 mg, 43% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (dd, *J* = 8.0, 0.8 Hz, 1H), 8.21 (dd, *J* = 7.6, 0.8 Hz, 1H), 8.11 (ddd, *J* = 9.2, 7.6, 1.2 Hz, 2H), 8.06–8.01 (m, 3H), 7.97 (t, *J* = 7.6 Hz, 1H), 7.89 (s, 1H), 2.75 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.3, 131.3, 131.0, 130.9, 129.6, 127.4, 127.2, 126.1, 125.7, 125.6, 124.55, 124.48, 124.0, 123.0, 122.9, 121.6, 15.7; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₇H₁₃S 249.0732; Found 249.0733.

(4-(tert-Butyl)phenyl)(methyl)sulfane (3h)

Compound **3h** was synthesized according to **GP-1**. 1-(*tert*-Butyl)-4-chlorobenzene was used. The reaction was conducted at 0.40 mmol scale. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3h** as a colorless liquid (46.0 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 2.47 (s, 3H), 1.30 (s, 9H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 148.4, 134.9, 127.0, 126.0, 34.5, 31.4, 16.4; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₇S 181.1045, Found 181.1041. The spectra are in accordance with those reported in the literature.^[11]

(3,5-Di-tert-butylphenyl)(methyl)sulfane (3i)

Compound **3i** was synthesized according to **GP-1**. 1,3-Di-*tert*-butyl-5-chlorobenzene was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3i** as a white solid (36.4 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 2.0 Hz, 1H), 7.13 (d, *J* = 2.0 Hz, 2H), 2.50 (s, 3H), 1.32 (s, 18H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.3, 137.0, 121.3, 119.8, 34.9, 31.4, 16.3; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₅H₂₅S 237.1671; Found 237.1680.

[1,1'-Biphenyl]-4-yl(methyl)sulfane (3j)

When 4-bromo-1,1'-biphenyl, 4-chloro-1,1'-biphenyl or [1,1'-biphenyl]-4-yl trifluoromethanesulfonate (**OTf-2j**) was used, compound **3j** was synthesized according to **GP-1**. When [1,1'-biphenyl]-4-yl 4-methylbenzenesulfonate or [1,1'-biphenyl]-4-yl methanesulfonate was used, compound **3j** was synthesized according to **GP-2**. All except **OTf-3j** was afforded by Purification by PTLC (hexane/EtOAc = 90:10) as a white solid. When using **OTf-2j** as a substrate, purification by GPC afforded **3j** as a white solid (X = Br: 30.1 mg, 91% yield; Cl: 35.4 mg, 88% yield; OTf: 32.2 mg, 80% yield; OTs: 7.4 mg, 18% yield; OPiv: 5.6 mg, 14% yield; CN: 20.3 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.54 (m, 2H), 7.54–7.50 (m, 2H), 7.45–7.39 (m, 2H), 7.35–7.30 (m, 3H), 2.52 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.5, 138.0, 137.6, 128.8, 127.5, 127.2, 126.9, 126.8, 15.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₃S 201.0732; Found 201.0735. The spectra are in accordance with those reported in the literature.^[11]

[1,1'-Biphenyl]-3-yl(methyl)sulfane (3k)

Compound **3k** was synthesized according to **GP-1**. 3-Bromo-1,1'-biphenyl was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3k** as a yellow liquid (X = Br: 33.2 mg, 82% yield; OTf: 19.1 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.55 (m, 2H), 7.48–7.47 (m, 1H), δ 7.47–7.41 (m, 2H), 7.39–7.33 (m, 3H), δ 7.26–7.21 (m, 1H), 2.54 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 141.9, 140.7, 138.9, 129.1, 128.7, 127.5, 127.1, 125.3, 124.0, 15.8 (One peak is missing due to overlapping.); HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₃S 201.0732; Found 201.0733.

[1,1'-Biphenyl]-2-yl(methyl)sulfane (3l)

Compound **31** was synthesized according to **GP-1**. When 2-Bromo-1,1'-biphenyl was used, the reaction was conducted using zinc (2.0 equiv) as an additive. Purification by PTLC (hexane/EtOAc = 90:10) afforded **31** as a yellow liquid (X = Br: 26.3 mg, 65% yield, OTf: 17.1 mg, 49% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.15 (m, 9H), 2.36 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.9, 140.5, 137.1, 129.9, 129.3, 128.1, 127.9, 127.5, 125.1, 124.7, 15.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₃S 201.0732; Found 201.0732. The spectra are in accordance with those reported in the literature.^[10]

(3,5-Dimethoxyphenyl)(methyl)sulfane (3m)

Compound **3m** was synthesized according to **GP-1**. 1-Chloro-3,5-dimethoxybenzene was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3m** as a yellow liquid (36.0 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.41 (d, *J* = 2.4 Hz, 2H), 6.24 (t, *J* = 2.4 Hz, 1H), 3.78 (s, 6H), 2.47 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.9, 140.6, 104.3, 97.3, 55.3, 15.5. HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₉H₁₃O₂S 185.0631; Found 185.0631. The spectra are in accordance with those reported in the literature.^[12]

1-(4'-(Methylthio)-[1,1'-biphenyl]-4-yl)ethan-1-one (3n)

Compound **3n** was synthesized according to **GP-1**. 1-(4'-Bromo-[1,1'-biphenyl]-4-yl)ethan-1-one was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3n** as a white solid (32.1 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d *J* = 8.8 Hz, 2H), 7.67 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 2.64 (s, 3H), 2.54 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 197.7, 145.1, 139.1, 136.4, 135.7, 129.0, 127.5, 126.8, 126.7, 26.6, 15.6; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₅OS 243.0838; Found 243.0841. The spectra are in accordance with those reported in the literature.^[13]

Ethyl 3-(methylthio)benzoate (30)

Compound **30** was synthesized according to **GP-1**. Ethyl 3-chlorobenzoate was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **30** as a colorless liquid (23.8 mg, 61% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.90 (m, 1H), 7.80 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.43 (ddd, *J* = 8.0, 2.0, 1.2 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 2.52 (s, 3H), 1.40 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.2, 139.2, 131.1, 130.7, 128.7, 127.1, 126.0, 61.1, 15.6, 14.3; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₀H₁₃O₂S 197.0631; Found 197.0639.

Methyl 4-(methylthio)benzoate (3p)

Compound **3p** was synthesized according to **GP-1**. Methyl 4-(((trifluoromethyl)sulfonyl)oxy)benzoate was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3p** as a brown liquid (22.0 mg, 60% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (t, *J* = 1.6 Hz, 1H), 7.80 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.46–7.41 (m, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 3.92 (s, 3H), 2.52 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 166.7, 139.3, 130.7, 128.7, 127.0, 126.0, 52.2, 15.6; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₉H₁₁O₂S 183.0474; Found 183.0475. The spectra are in accordance with those reported in the literature.^[14]

Methyl 6-(methylthio)-2-naphthoate (3q)

When methyl 6-(((trifluoromethyl)sulfonyl)oxy)-2-naphthoate was used, compound **3q** was synthesized according to **GP-1**. When methyl 6-(pivaloyloxy)-2-naphthoate was used, **3q** was synthesized according to **GP-2**. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3q** as a brown solid (X = OTf: 38.0 mg, 82% yield, OPiv: 13.3 mg, 29% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.04 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.58–7.55 (m, 1H), 7.40 (dd, *J* = 8.4, 1.6 Hz, 1H), 3.97 (s, 3H), 2.59 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 167.2, 139.8, 135.9, 130.8, 130.1, 129.4, 126.8, 126.5, 126.1, 125.9, 122.0, 52.2, 15.2; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₃O₂S 233.0631; Found 233.0628.

Methyl(4-nitrophenyl)sulfane (3r)

Compound **3r** was synthesized according to **GP-1**. 1-Chloro-4-nitronaphthalene was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3r** as a yellow solid (20.8 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 8.8 Hz, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 8.25 (d, *J* = 8.4 Hz, 1H), 7.75 (ddd, *J* = 8.8, 6.8, 1.2 Hz, 1H), 7.65 (ddd, *J* = 8.4, 6.8, 1.2 Hz, 1H), 7.26 (d, *J* = 8.4 Hz, 1H), 2.68 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 146.5, 143.3, 131.0, 129.7, 127.2, 125.1, 124.3, 124.2, 124.0, 118.2, 15.0; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₀NO₂S 220.0427; Found 220.0430.

(4-(Methylthio)phenyl)(phenyl)methanol (3s)

Compound **3s** was synthesized according to **GP-1**. (4-Chlorophenyl)(phenyl)methanol was used. Purification by PTLC (hexane/chloroform = 90:10) afforded **3s** as a yellow solid (27.1 mg, 59% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.30 (m, 4H), 7.30–7.21 (m, 3H), 7.22–7.16 (m, 2H), 5.75 (s, 1H), 2.44 (s, 3H), 2.39 (s, 1H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 143.6, 140.7, 137.6, 128.5, 127.6, 127.0, 126.6, 126.4, 75.7, 15.8; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₅OS 231.0838; Found 231.0830. The spectra are in accordance with those reported in the literature.

2-(Methylthio)pyridine (3t)

Compound **3t** was synthesized according to **GP-1**. 2-Chloropyridine was used. The yield of **3t** was determined as 65% by ¹H NMR analysis of crude material using CH_2Br_2 as an internal standard (2.51 ppm, s, 3H was used). The spectra are in accordance with those reported in the literature.^[15]

1-(6-(Methylthio)pyridin-3-yl)ethan-1-one (3u)

Compound **3u** was synthesized according to **GP-1**. 1-(6-Chloropyridin-3-yl)ethan-1-one was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3u** as a white solid (26.6 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.98 (dd, J = 2.4, 0.8 Hz, 1H), 8.01 (dd, J = 8.4, 2.4 Hz, 1H), 7.25 (dd, J = 8.4, 0.8 Hz, 1H), 2.61 (s, 3H), 2.59 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.1, 166.0, 150.0, 134.7, 128.2, 121.1, 26.4, 13.2; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₈H₁₀NOS 168.0478; Found 168.0479.

2-(Methylthio)quinoline (3v)

When 2-chloroquinoline or naphthalen-1-yl trifluoromethanesulfonate was used, compound **3v** was synthesized according to **GP-1**. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3v** as a yellow liquid (X = Cl: 27.9 mg, 85% yield, CN: 4.3 mg, 14% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.69 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.63 (ddd, *J* = 8.4, 6.8, 1.6 Hz, 1H), 7.40 (ddd, *J* = 8.4, 6.8, 1.2 Hz, 1H), 7.21 (d, *J* =8.4 Hz, 1H), 2.70 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 159.8, 148.3, 135.1, 129.6, 127.9, 127.6, 125.8, 125.1, 120.6, 12.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₀H₁₀NS 176.0528; Found 176.0528.

3-(Methylthio)quinoline (3w)

Compound **3w** was synthesized according to **GP-1**. 3-Bromoquinoline was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3w** as a colorless liquid (34.1 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 1H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.90 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.67–7.61 (m, 1H), 7.56–7.50 (m, 1H), 2.61 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 149.8, 145.8, 132.6, 131.2, 129.2, 128.5, 128.2, 127.1, 126.6, 15.7; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₀H₁₀NS 176.0528; Found 176.0528. The spectra are in accordance with those reported in the literature.^[16]

4-(Methylthio)dibenzo[*b*,*d*]thiophene (3x)

Compound **3x** was synthesized according to **GP-1**. 4-Chlorodibenzo[*b*,*d*]thiophene was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3x** as a colorless liquid (57.5 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.04 (m, 1H), 7.96–7.91 (m 1H), 7.87–7.81 (m, 1H), 7.50–7.33 (m, 4H), 2.57 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 140.3, 139.3, 135.8, 135.6, 131.7, 126.8, 125.7, 125.1, 124.4, 122.8, 121.8, 119.2, 16.6; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₁S₂ 231.0297; Found 231.0289. The spectra are in accordance with those reported in the literature.^[12]

2-(5-(Methylthio)thiophen-2-yl)pyridine (3y)

Compound **3y** was synthesized according to **GP-1**. 2-(5-Bromothiophen-2-yl)pyridine was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3y** as a yellow liquid (35.8 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.55–8.51 (m, 1H), 7.69–7.62 (m, 1H), 7.61–7.55 (m, 1H), 7.40 (d, *J* = 4.0 Hz, 1H), 7.15–7.10 (m, 1H), 7.02 (d, *J* = 4.0 Hz, 1H), 2.56 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.1, 149.5, 145.7, 140.3, 136.6, 130.2, 124.6, 121.8, 118.2, 21.2; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₀H₁₀NS₂ 208.0249; Found 208.0247.

2-Methyl-5-(methylthio)benzo[d]oxazole (3z)

Compound **3z** was synthesized according to **GP-1**. 5-Chloro-2-methylbenzo[*d*]oxazole was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3z** as a white solid (16.3 mg, 45% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 2.0 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.25 (dd, *J* = 8.4, 2.0 Hz, 1H), 2.62 (s, 3H), 2.52 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 164.5, 149.3, 142.3, 133.8, 124.7, 118.3, 110.4, 17.5, 14.5; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₉H₁₀NOS 180.0478; Found 180.0478.

6-(Methylthio)-2-phenyl-4H-chromen-4-one (3A)

Compound **3A** was synthesized according to **GP-1**. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3A** as a yellow solid (52.5 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 2.4 Hz, 1H), 7.97–7.89 (m, 2H), 7.61–7.47 (m, 5H), 6.84 (s, 1H), 2.58 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 177.5, 163.1, 153.9, 136.4, 132.4, 131.5, 128.9, 126.1, 124.2, 121.0, 118.4, 107.4, 15.8 (One peak is missing due to overlapping); HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₃O₂S 269.0631; Found 269.0630.

4-Methyl-6-(methylthio)-2H-chromen-2-one (3B)

Compound **3B** was synthesized according to **GP-1**. **1B** was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3B** as a yellow solid (19.3 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 2.4 Hz, 1H), 7.45 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.27 (d, *J* = 8.4 Hz, 1H), 6.31 (d, *J* = 1.2 Hz, 1H), 2.53 (s, 3H), 2.44 (d, *J* = 1.2 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.5, 151.7, 151.5, 134.2, 130.9, 123.0, 120.4, 117.6, 115.6, 18.6, 16.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₁O₂S 207.0474; Found 207.0475.

Isopropyl 2-methyl-2-(4-(4-(methylthio)benzoyl)phenoxy)propanoate (3C)

Compound **3C** was synthesized according to **GP-1**. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3C** as a white solid (56.4 mg, 76% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.8 Hz, 2H), 7.70 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.14–5.04 (m, 1H), 2.54 (s, 3H), 1.66 (s, 6H), 1.21 (d, *J* = 6.4 Hz, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.6, 173.2, 159.4, 144.6, 134.2, 131.8, 130.8, 130.4, 124.9, 117.2, 79.3, 69.3, 25.3, 21.5, 14.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₅O₄S 373.1468; Found 373.1470. The spectra are in accordance with those reported in the literature.^[17]

3-Methoxy-4-(methylthio)benzaldehyde (3D)

Compound **3D** was synthesized according to **GP-1**. **1D** was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3D** as a yellow liquid (23.5 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.45 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.31 (d, *J* = 1.6 Hz, 1H), 7.22 (d, *J* = 7.6 Hz, 1H), 3.97 (s, 3H), 2.49 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.3, 155.8, 137.4, 133.8, 125.2, 123.6, 107.1, 56.0, 13.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₉H₁₁O₂S 183.0474; Found 183.0474.

(4-Allyl-2-methoxyphenyl)(methyl)sulfane (3E)

Compound **3E** was synthesized according to **GP-1**. **1E** was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3E** as a yellow liquid (37.3 mg, 96% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.10 (d, *J* = 8.0 Hz, 1H), 6.78 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.67 (d, *J* = 1.6 Hz, 1H), 6.01–5.89 (m, 1H), 5.13–5.04 (m, 2H), 3.88 (s, 3H), 3.36 (d, *J* = 6.8 Hz, 2H), 2.41 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 156.5, 138.5, 137.2, 126.8, 123.9, 121.2, 115.9, 110.6, 55.7, 40.0, 15.1; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₅OS 195.0838; Found 195.0838.

N,N-Dimethyl-3-(2-(methylthio)-10H-phenothiazin-10-yl)propan-1-amine (3F)

Compound **3F** was synthesized according to **GP-1**. Purification by PTLC (chloroform/methanol = 90:10) afforded **3F** as a brown liquid (53.3 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.17–7.10 (m 2H), 7.04 (d, *J* = 8.4 Hz, 1H), 6.95–6.84 (m, 2H), 6.84–6.79 (m, 2H), 3.90 (t, *J* = 7.2 Hz, 2H), 2.46 (s, 3H), 2.40 (t, *J* = 7.2 Hz, 2H), 2.21 (s, 6H), 1.99–1.89 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 145.7, 144.9, 137.4, 127.5, 127.4, 127.2, 125.1, 122.5, 122.1, 120.7, 115.7, 114.6, 57.1, 45.5, 45.3, 25.1, 16.4; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₈H₂₃N₂S₂ 331.1297; Found 331.1294.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-3-(methylthio)-6,7,8,9,11,12,13,14,15,16-decahydrospiro[cyclopenta[*a*]phenanthrene-17,2'-[1,3]dioxolane] (3G)

Compound **3G** was synthesized according to **GP-1**. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3G** as a white solid (49.5 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.0 Hz, 1H), 7.06 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.01–6.99 (m, 1H), 3.99–3.85 (m, 4H), 2.88–2.78 (m, 2H), 2.46 (s, 3H), 2.36–2.20 (m, 2H), 2.08–1.98 (m, 1H), 1.94–1.71 (m, 4H), 1.68–1.23 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.7, 137.5, 134.9, 127.5, 125.9, 124.5, 119.4, 65.2, 64.6, 49.4, 46.1, 43.8, 38.8, 34.2, 30.7, 29.5, 26.8, 25.9, 22.3, 16.3, 14.3; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₉O₂S 345.1883; Found 345.1881.

((8R,9S,13S,14S)-13-Methyl-7,8,9,11,12,13,14,15-octahydro-6H-cyclopenta[a]phenanthrene-3,17diyl)bis(methylsulfane) (3H)

Compound **3H** was synthesized according to **GP-1**. **1** (3.0 equiv) was used. Purification by PTLC (hexane/EtOAc = 80:20) afforded **3H** as a colorless liquid (46.3 mg, 70% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.0 Hz, 1H), 7.06 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.02–6.99 (m, 1H), 5.19–5.15 (m, 1H), 2.91–2.84 (m, 2H), 2.46 (s, 3H), 2.40–2.23 (m, 3H), 2.27 (s, 3H), 2.07–1.98 (m, 1H), 1.96–1.87 (m, 2H), 1.73–1.54 (m, 4H), 1.49–1.37 (m, 1H), 0.91 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 151.6, 137.8, 137.3, 134.9, 127.5, 125.6, 124.4, 116.9, 56.3, 48.4, 44.4, 37.1, 34.2, 31.3, 29.3, 27.5, 26.2, 16.5, 16.2, 14.2; HRMS (APCI) *m/z*: [M]⁺ Calcd for C₂₀H₂₆S₂ 330.1470; Found 331.1499.

5-(2-Chlorobenzyl)-2-(methylthio)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (3I)

Compound **3I** was synthesized according to **GP-1**. **1** (3.0 equiv) was used. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3I** as a yellow liquid (46.1 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.36 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.27–7.16 (m, 2H), 6.71 (s, 1H), 3.80 (s, 2H), 3.55 (s, 2H), 2.86–2.83 (m, 4H), 2.43 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.7, 135.9, 134.25, 134.20, 134.0, 130.6, 130.1, 129.4, 128.2, 126.7, 58.4, 52.7, 50.5, 25.7, 22.6; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₇ClNS₂ 310.0485; Found 310.0484.

2-(Methylthio)-5-(2-(methylthio)benzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (3J)

Compound **3J** was synthesized according to **GP-1**. **1** (3.0 equiv) was used. The reaction was carried out for 24 hours. Purification by PTLC (hexane/EtOAc = 90:10) afforded **3J** as a yellow liquid (32.3 mg, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 8.4 Hz, 1H), 7.31–7.21 (m, 2H), 7.16–7.09 (m, 1H), 6.70 (s, 1H), 3.73 (s, 2H), 3.52 (s, 2H), 2.90–2.78 (m, 4H), 2.45 (s, 3H), 2.41 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.7, 136.8, 136.3, 134.4, 133.7, 130.2, 129.4, 127.7, 125.4, 124.5, 59.5, 52.5, 50.2, 25.7, 22.6, 15.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₆H₂₀NS₃ 322.0752; Found 322.0752.

5. Oxidation of Aryl Methyl Sulfides

5 and **6** were synthesized according to procedures reported in the literature.^[23] To a 20-mL glass vessel containing a magnetic stirring bar and methyl(naphthalen-2-yl)sulfane **3c** (0.20 mmol, 1.0 equiv) in CH₂Cl₂ (10 mL) were added a solution of m-CPBA (0.24 mmol or 0.60 mmol) in EtOAc (2.0 mL) in dropwise. Stirring the mixture for 30 minutes at 5 °C. The reaction mixture was added saturated NaHCO₃ aq. and extracted three times with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, filtered, and then concentrated *in vacuo* to give sulfoxide **5** or sulfone **6**.

2-(Methylsulfinyl)naphthalene (5)

Purification by PTLC (hexane/EtOAc = 50:50) afforded **5** as a white solid (34.7 mg, 84% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.96–7.88 (m, 2H), 7.63–7.56 (m, 3H), 2.79 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 142.7, 134.3, 132.8, 129.5, 128.4, 128.0, 127.7, 127.3, 124.0, 119.4, 43.7; HRMS (APCI) *m*/*z*: [M+H]⁺ Calcd for C₁₁H₁₁OS 191.0525; Found 191.0530. The spectra are in accordance with those reported in the literature.^[24]

(S)-2-(Methylsulfinyl)naphthalene (6)

Purification by PTLC (hexane/EtOAc = 50:50) afforded **6** as a white solid (37.5.6 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.10–7.98 (m, 2H), 7.98–7.88 (m, 2H), 7.77–7.61 (m, 2H), 3.13 (s, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.3, 135.2, 132.1, 129.7, 129.3, 129.2, 129.0, 127.9, 127.7, 122.1, 44.5; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₁O₂S 207.0474; Found 207.0474. The spectra are in accordance with those reported in the literature.^[25]

6. Synthesis and Reaction of Thioalkyl/arylating Agents

6-1. Preparation of 4-((Alkyl/Arylthio)methyl)morpholines 1b–1d^{[18][19]}

S4 was synthesized according to procedure reported in the literature.^[18] To a 20-mL glass vessel containing a magnetic stirring bar and thiol **S3** (2.0 mmol, 1.0 equiv) were added paraformaldehyde (2.0 mmol, 1.0 equiv) and a hydrogen bromide solution 33 wt. % in AcOH (4.0 mmol, 2.0 equiv) in one portion. The reaction mixture was stirred at room temperature while the reaction progress was being monitored the reaction progress by TLC. The reaction mixture was added saturated NaHCO₃ aq. and extracted three times with EtOAc. The combined organic layer was dried over Na₂SO₄, filtered, and then concentrated *in vacuo* (**S3** to **S4**). **S4** was added to a round-bottom flask containing a magnetic stirring bar, sodium carbonate (4.0 mmol, 2.0 equiv) and morpholine (2.0 mmol, 1.0 equiv) in MeCN (5.0 mL, 0.40 M). After stirring the mixture at room temperature while the reaction progress was being monitored the reaction progress by TLC. The solution was added saturated NaHCO₃ aq. and extracted three times with EtOAc. The combined organic layer was dried over Na₂SO₄, and extracted three times with EtOAc mol, 2.0 equiv) and morpholine (2.0 mmol, 1.0 equiv) in MeCN (5.0 mL, 0.40 M). After stirring the mixture at room temperature while the reaction progress was being monitored the reaction progress by TLC. The solution was added saturated NaHCO₃ aq. and extracted three times with EtOAc. The combined organic layer was dried over Na₂SO₄, and then filtered. The filtrate was concentrated *in vacuo* and the residue was purified by Isolera[®] to provide **1b** or **1c**.

4-((Decylthio)methyl)morpholine (1b)

The reaction was conducted on a 2.0 mmol scale. Purification by Isolera[®] (hexane/EtOAc = 95:5 to 50:50) afforded **1b** as a colorless liquid (102.2 mg, 0.32 mmol, 19% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.87 (s, 2H), 3.78–3.68 (m, 4H), 2.66–2.54 (m, 6H), 1.65–1.54 (m, 2H), 1.43–1.33 (m, 2H), 1.33–1.16 (m, 12H), 0.88 (t, *J* = 6.4 Hz, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 66.6, 62.9, 50.9, 33.2, 31.7, 30.1, 29.41, 29.38, 29.2, 29.1, 28.7, 22.5, 14.0; HRMS (APCI) *m*/*z*: [M+H]⁺ Calcd for C₁₅H₃₂NOS 274.2199; Found 274.2199.

4-((((3s,5s,7s)-Adamantan-1-yl)thio)methyl)morpholine (1c)

The reaction was conducted on a 2.0 mmol scale. Purification by Isolera[®] (hexane/EtOAc = 95:5 to 50:50) afforded **2c** as a white solid (154.2 mg, 0.59 mmol, 30% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 2H), 3.74–3.66 (m, 4H), 2.63–2.53 (m, 4H), 2.03 (brs, 3H), 1.90 (d, *J* = 2.4Hz, 6H), 1.69 (s,

6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 66.9, 56.5, 51.4, 44.6, 44.0, 36.3, 29.8; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₅H₂₆NOS 268.1730 ;Found 268.1730.

4-((Phenylthio)methyl)morpholine (1d) was synthesized according to procedures reported in the literature.^[19] To a round-bottom flask containing a magnetic stirring bar and samarium(III) chloride hexahydrate (SmCl₃ · 6H₂O, 40.6 mg, 0.15 mmol, 5 mol%) in CHCl₃ (5 mL, 0.60 M) were added dimorpholinomethane **S6** (0.33 mL, 3.6 mmol, 1.2 equiv), thiophenol (**S5**: 0.31 mL, 3.0 mmol, 1.0 equiv). After stirring the mixture at 60 °C for 6 hours, the reaction was quenched with water. The mixture was extracted three times with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄, and then filtered. The filtrate was concentrated *in vacuo* and the residue was purified by Isolera[®] (hexane/EtOAc = 95:5 to 70:30) to afford **1d** as a yellow liquid (188.0 mg, 30% yield).

Compound **1d**: ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.46 (m, 2H), 7.36–7.25 (m, 2H), 7.24–7.17 (m, 1H), 4.42 (s, 2H), 3.75–3.63 (m, 4H), 2.70–2.57 (m, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.5, 131.4, 128.8, 126.4, 67.0, 66.5, 50.5; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₁H₁₆NOS 210.0947; Found 210.0949.

6-2. Coupling between haloarene and 1b-1d

The reactions were carried out according to the method written in **4-2**. Thioalkyl/arylating agents **1b–1d** was used instead of **1**.

Decyl(naphthalen-2-yl)sulfane (7)

Purification by PTLC (hexane/EtOAc = 90:10) afforded 7 as a yellow liquid (46.1 mg, 77% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.75–7.70 (m, 3H), 7.50–7.37 (m, 3H), 3.01 (t, *J* = 7.2Hz, 2H), 1.75–1.64 (m, 2H), 1.50–1.39 (m, 2H), 1.36–1.18 (m, 12H), 0.87 (t, *J* = 6.8 Hz, 3H);

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 134.6, 133.8, 131.5, 128.2, 127.7, 127.1, 126.9, 126.4, 126.2, 125.4, 33.4, 31.9, 29.51, 29.48, 29.3, 29.1, 29.0, 28.9, 22.7, 14.1; HRMS (APCI) m/z: [M+H]⁺ Calcd for C₂₀H₂₉S 301.1984; Found 301.1985.

Adamantan-1-yl(naphthalen-2-yl)sulfane (8)

Purification by PTLC (hexane/EtOAc = 90:10) afforded **8** as a white solid (50.3 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.89–7.80 (m, 2H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.53–7.44 (m, 2H), 2.00 (s, 3H), 1.87 (s, 6H), 1.72–1.54 (m, 6H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.2, 134.6, 133.2, 133.0, 128.0, 127.9, 127.6, 127.5, 126.5, 126.2, 48.3, 43.7 36.1, 29.9; HRMS (APCI) *m*/*z*: [M+H]⁺ Calcd for C₂₀H₂₃S 295.1515; Found 295.1505. The spectra are in accordance with those reported in the literature.^[20]

Naphthalen-2-yl(phenyl)sulfane (9)

Purification by PTLC (hexane/EtOAc = 90:10) afforded **9** as a white solid (39.2 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 2.0 Hz, 1H), 7.81–7.69 (m, 3H), 7.49–7.42 (m, 2H), 7.42–7.34 (m, 3H), 7.34–7.22 (m, 3H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.8, 133.8, 133.0, 132.3, 130.9, 129.9, 129.2, 128.8, 128.7, 127.7, 127.4, 127.0, 126.6, 126.2; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₃S 237.0732; Found 237.0728. The spectra are in accordance with those reported in the literature.^[21]

In the thiophenylation of Cl-2c, some by-products in which aryl exchange proceeded was obtained.^[22]

7. Mechanistic Investigations

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs₂CO₃ (130.3 mg, 0.40 mmol, 2.0 equiv) was dried with a heat gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this vessel were added chloroarene **Cl-2a** or **2s** (0.20 mmol, 1.0 equiv), sodium methanethiolate (**S7**: 81.6 mg, 1.2 mmol, 5.8 equiv), 4-((methylthio)methyl)morpholine (**1**: 44.1 mg, 0.30 mmol, 1.5 equiv), Pd(OAc)₂ (2.3 mg, 0.010 mmol, 5.0 mol%), dppf (0.020 mmol, 10 mol%), and zinc (26.2 mg, 0.40 mmol, 2.0 equiv). The vessel was placed under vacuum and refilled three times with N₂ gas. To this was added toluene (1.0 mL). The vessel was sealed with the O-ring tap and then heated at 150 °C for 12 hours in a nine-well aluminum reaction block with stirring. After the reaction mixture had been cooled to room temperature, the mixture was passed through a pad of silicagel with EtOAc as an eluent. The filtrate was concentrated *in vacuo*, and the residue was purified by PTLC to afford the corresponding aryl methyl sulfide **3**. Although sodium methanethiolate, which was enough for the possible water content.

1 2 3 4	Pd(OAc) ₂ Pd(OAc) ₂ Pd(dba) ₂ Pd(dba) ₂	Zn (2.0 equiv) Zn (2.0 equiv)	75 trace 46 10	5 98 45 90
entry	Pd	additive	recovery yield of 2m / %	yield of 3m / %
2m 0.20 mmol		0 1 (1.5 equiv)		3m
OMe	т	$\left(\right)$	toluene (0.20 M)	OMe
NeO	1	SMe	5.0 mol% Pd 10 mol% dppf additive (2.0 equiv) Cs ₂ CO ₃ (2.0 equiv)	MeO SMe

7-1. Effect of zinc

Ν

Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard.

The reactions were carried out according to the method **GP-1**. As results above, zinc works as reduction of compounds generated in the reaction besides reduction of Pd(OAc)₂ (entries 3and 4).

The reactions were carried out according to the method **GP-1**. On each reaction, dimethyl disulfide was used as thiolating agent instead of **1**. Purification by PTLC (hexane/EtOAc = 90:10) afford **3a**. The spectra are of **3a** matched with those reported in chapter 4.

7-2. Investigation of the generation of SMe anion

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar filled with N₂ gas. To this vessel were added 4-methoxyphenol (**S8**, 0.20 mmol, 1.0 equiv) in toluene (0.20 M) and 4-((methylthio)methyl)morpholine (1: 0.20 mmol, 1.0 equiv). The vessel was sealed with the O-ring tap and then heated for 12 hours in a nine-well aluminum reaction block with stirring. After the reaction mixture had been cooled to room temperature, the mixture was concentrated *in vacuo*, and yields of **1** and **4** were determined by ¹H NMR using CH₂Br₂ as an internal standard.

Compound 4: ¹H NMR (400 MHz, CDCl₃) δ 6.78–6.71 (m, 2H), 6.58–6.55 (m, 1H), 3.79–3.71 (m, 7H), 3.66 (brs, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 152.6, 151.2, 121.3, 116.4, 114.6, 113.7, 66.7, 61.9, 55.7, 52.9; HRMS (APCI) *m/z*: [M+H]⁺ Calcd for C₁₂H₁₈NO₃ 224.1281; Found 224.1282.

7-3. Time-course monitoring of the formation of 4

In the experimental procedure described in Section 7.2, the reaction was conducted at 0, 1, 2, 3, 4, 5, and 6 h. To account for experimental variability, each reaction was performed four times, and the average yield at each time point was plotted.

Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard.

7-4. Preparation of Zn(SMe)₂ and its application in methylthiolation

Dimethyl disulfide (260 μ L, 3.0 mmol, 1.0 equiv) and zinc powder (102.5 mg, 1.5 mmol, 0.5 equiv) were stirred in DMSO (0.20 M) at 150 °C for 12 hours. After completion of the reaction, the mixture was filtered, and the resulting solid was washed with ethyl acetate to afford white solid Zn(SMe)² in 70% yield (168.2 mg, 1.05 mmol). Anal. Calcd for C₂H₆S₂Zn: C, 15.05; H, 3.79; S, 40.18. Found: C, 15.00; H, 3.60; S, 37.95.

A 20-mL glass vessel equipped with J. Young[®] O-ring tap containing a magnetic stirring bar and Cs₂CO₃ (131.0 mg, 0.40 mmol, 2.0 equiv) was dried with a heat gun *in vacuo* and filled with N₂ gas after cooling to room temperature. To this vessel were added haloarene or **Cl-2a** (32.9 mg, 0.20 mmol, 1.0 equiv), $Zn(SMe)_2$ (24.3 mg, 0.15 mmol, 0.75 equiv), Pd(OAc)₂ (2.2 mg, 0.010 mmol, 5.0 mol%), dppf (11.4 mg, 0.020 mmol, 10 mol%) and zinc (26.3 mg, 0.40 mmol, 2.0 equiv). The vessel was placed under vacuum and refilled three times with N₂ gas. To this was added toluene (1.0 mL). The vessel was sealed

with the O-ring tap and then heated at 150 °C for 12 hours in a nine-well aluminum reaction block with stirring. After the reaction mixture had been cooled to room temperature, the mixture was passed through a pad of silica-gel with EtOAc as an eluent. The filtrate was concentrated *in vacuo*, and the residue was purified by PTLC to afford t **3a** (80% yield) and recovery of **Cl-2a** (12% yield).

7-5. Effect of Zn, Mn, and Mg using a Pd(0) catalyst

Yields were determined by ${}^{1}H$ NMR using $CH_{2}Br_{2}$ as an internal standard.

7-6. Effect of Zn, Mn, and Mg using (SMe)2 as a methylthiolation agent

Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard.

7-7. The fate of the iminium ion during catalysis

8. Effect of Parameters

Effect of solvent

	,CI L	SMe	5.0 mo 10 n Cs ₂ CC Zn (I% Pd(OAc) ₂ nol% dppf 9 ₃ (2.0 equiv) 2.0 equiv)	S S	Ме
Ũ		$\left(\begin{array}{c} \\ \end{array} \right)$	solve 150	nt (0.20 M) 0 ℃, 12 h		
CI-2a 0.20 mm	nol (2	1 .0 equiv)			CI-3a	
entry	solvent	recovery of	CI-2a/ %	yield of 1/%	yield of CI-3a / %	
1	toluene	2		2	96 ^a	
2	Et ₂ O	14		3	84	
3	^t butanol	15		0	77	
4	2-methyl-2-butano	24		0	66	
5	MeCN	25		2	65	
6	THF	33		7	62	
7	DCM	68		0	0	

Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. ^a Isolated yield.

Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. A number in parentheses is isolated yield. ^a 150 °C.

Effect of ligand

The screening using 1-bromonaphthalene was conducted at 100 °C.

In the screening using 1-chloronaphthalene, both of dppp and dppf were suitable for conditions. However, we selected dppf as the optimal ligand due to a practical consideration: the 1H NMR signals of dppp overlap significantly with the methylthio product, making accurate yield determination difficult.

Yields were determined by ¹H NMR using CH₂Br₂ as an internalstandard. ^a Isolated yield.

Effect of equivalent of zinc

Yields were determined by ${}^1\!H$ NMR using CH_2Br_2 as an internal standard. a Isolated yield.

Effect of temperature

Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard.

Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. ^a Isolated tield.

Effect of amount of catalysts

Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard. ^a Isolated yield.

Effect of cesium carbonate

Yields were determined by ${}^1\text{H}$ NMR using CH_2Br_2 as an internal standard. Numbers in parentheses are isolated yields.

Effect of zinc

Effect of methylthiolation agent

entry 1 2	x/ equiv 1.0 1.5	recovery yield of CI-2a / % trace 5	yield of 3a / % 83 96 80
0.20 mmol entry	(x equiv	quiv) recovery yield of CI-2a / %	yield of 3a / %
CI-2a	1		3a
CI	+	SMe Cs ₂ CO ₃ (2.0 equiv) Zn (2.0 equiv) toluene (0.20 M) 150 °C, 12 h) SMe

^a Yields were determined by ¹H NMR using CH₂Br₂ as an internal standard.

Using Ni (II) salt instead of Ni(cod)₂

Yields were determined by ${}^{1}H$ NMR using $CH_{2}Br_{2}$ as an internal standard. ^a Et₂O, 80 °C. ^b 10 mol% Ni(OAc)₂, 20 mol% dppf were used.

8. References

[1] Pan, D.; Xu, S.; Tian, Q.; Li, Y. Pd-Catalyzed Intermolecular Transthiolation of Ar-OTf Using Methyl 3-(Methylthio) Propanoate as a Thiol Surrogate. *Eur. J. Org. Chem.* **2021**, 4616–4619.

[2] Zhang, S.; Yang, L.; Fu, J.; Tan, Q.; Liu, K.; Huang, T.; Li, C.; Liu, L.; Chen, T. Palladium-Catalyzed and Norbornene-Mediated C–H Amination and C–O Alkenylation of Aryl Triflates. *Org. Biomol. Chem.* 2023, *21*, 4398–4403.

[3] Li, B.-Y.; Voets, L.; Van Lommel, R.; Hoppenbrouwers, F.; Alonso, M.; Verhelst, S. H. L.; De Borggraeve, W. M.; Demaerel, J. SuFEx-Enabled, Chemoselective Synthesis of Triflates, Triflamides and Triflimidates. *Chem. Sci.* **2022**, *13*, 2270–2279.

[4] Kalvet, I.; Magnin, G.; Schoenebeck, F. Corrigendum: Rapid Room-Temperature, Chemoselective C–C Coupling of Poly(Pseudo)Halogenated Arenes Enabled by Palladium(I) Catalysis in Air. *Angew. Chem., Int. Ed.* **2020**, *59*, 7643–7643.

[5] Hu, W.; Pan, S.; Xu, X.; Vicic, D. A.; Qing, F. Nickel-Mediated Trifluoromethylation of Phenol Derivatives by Aryl C–O Bond Activation. *Angew. Chem., Int. Ed.* **2020**, *59*, 16076–16082.

[6] Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J. Multimetallic Catalysed Cross-Coupling of Aryl Bromides with Aryl Triflates. *Nature* **2015**, *524*, 454–457.

[7] Yu, R.; Chen, X.; Martin, S. F.; Wang, Z. Differentially Substituted Phosphines *via* Decarbonylation of Acylphosphines. *Org. Lett.* **2017**, *19*, 1808–1811.

[8] Komatsuda, M.; Kato, H.; Muto, K.; Yamaguchi, J. Pd-Catalyzed Dearomative Three-Component Reaction of Bromoarenes with Diazo Compounds and Allylborates. *ACS Catal.* **2019**, *9*, 8991–8995.

[9] Wang, H.; Li, C.; Li, Y.; Chen, J.; Liu, S.; Li, Y. Palladium-Catalyzed Thiocarbonylation of Alkenes toward Branched Thioesters Using CO₂. *Org. Chem. Front.* **2024**, *11*, 1322–1331.

[10] Wu, D.; Shiozuka, A.; Kawashima, K.; Mori, T.; Sekine, K.; Kuninobu, Y. Bifunctional 1-Hydroxypyrene Photocatalyst for Hydrodesulfurization *via* Reductive C(Aryl)–S Bond Cleavage. *Org. Lett.* **2023**, *25*, 3293–3297.

[11] Miao, R.; Qi, X.; Wu, X. Synthesis of Aryl Methyl Sulfides from Arysulfonyl Chlorides with Dimethyl Carbonate as the Solvent and C1 Source. *Eur. J. Org. Chem.* **2021**, 5219–5221.

[12] Fan, Y.; Zhang, T.; Wu, M.; Liu, P.; Sun, P. Alkylthiolation of Aryl Halides under Electrochemical Conditions. *J. Org. Chem.* **2024**, *89*, 17744–17751.

[13] Kaur, M.; Sharma, C.; Sharma, N.; Jamwal, B.; Paul, S. Pd Nanoparticles Decorated on ZnO/Fe₃O₄ Cores and Doped with Mn²⁺ and Mn³⁺ for Catalytic C–C Coupling, Nitroaromatics Reduction, and the Oxidation of Alcohols and Hydrocarbons. *ACS Appl. Nano Mater.* **2020**, *3*, 10310–10325.

[14] Li, H. L.; Kuninobu, Y.; Kanai, M. Lewis Acid–Base Interaction-Controlled Ortho-Selective C–H Borylation of Aryl Sulfides. *Angew. Chem., Int. Ed.* **2016**, *56*, 1495–1499.

[15] Zhong, Z.; Ma, T.-K.; White, A. J. P.; Bull, J. A. Synthesis of Pyrazolesulfoximines Using α -Diazosulfoximines with Alkynes. *Org. Lett.* **2024**, *26*, 1178–1183.

[16] Sheng, X.; Yan, M.; Zhang, B.; Wong, W.-Y.; Kambe, N.; Qiu, R. Nickel-Catalyzed Site-Selective C3–H Functionalization of Quinolines with Electrophilic Reagents at Room Temperature. *ACS Catal.* 2023, *13*, 9753–9765.

[17] Wang, M.; Qiao, Z.; Zhao, J.; Jiang, X. Palladium-Catalyzed Thiomethylation *via* a Three-Component Cross-Coupling Strategy. *Org. Lett.* **2018**, *20*, 6193–6197.

[18] Silva-Cuevas, C.; Paleo, E.; León-Rayo, D. F.; Lujan-Montelongo, J. A. An Expeditious and Efficient Bromomethylation of Thiols: Enabling Bromomethyl Sulfides as Useful Building Blocks. *RSC Adv.* **2018**, *8*, 24654–24659.

[19] Khairullina, R. R.; Akmanov, B. F.; Kunakova, R. V.; Ibragimov, A. G. Synthesis of Amino Sulfides in the Presence of Rare-Earth and Transition Metal Catalysts. *Russ. J. Org. Chem.* **2012**, *48*, 902–907.

[20] Delcaillau, T.; Morandi, B. Nickel-Catalyzed Thiolation of Aryl Nitriles. *Chem. Eur. J.* **2021**, *27*, 11823–11826.

[21] Cao, H.; Shi, Y.; Ma, J.; Yan, P.; Cong, X.; Bie, F. Palladium- and Nickel-Catalyzed Synthesis of Thioethers *via* Thioesters–Aryl Halides Coupling. *Tetrahedron Lett.* **2023**, *119*, 154414.

[22] Matsuyama, T.; Yatabe, T.; Yabe, T.; Yamaguchi, K. Direct Thioether Metathesis Enabled by *in Situ* Formed Pd Nanocluster Catalysts. *Catal. Sci. Technol.* **2024**, *14*, 76–82.

[23] Pasha, G. F.; Asghari, S.; Tajbakhsh, M.; Mohseni, M. Synthesis and Characterization of Sulfide, Sulfoxide and Sulfone Derivatives of Thiopyran: Antimicrobial Evaluation. *Res. Chem. Intermed.* 2017, 43, 7291–7306.

[24] Avramidou, E.; Triandafyllou, A. K.; Zisopoulou, S. A.; Stini, N. A.; Demertzidou, V. P.; Kokotos,
C. G.; Gkizis, P. L.; Gallos, J. K. Iodonium Salt-Mediated Oxidation of Sulfides to Sulfoxides by DMSO. *Eur. J. Org. Chem.* 2024, *27*, e202400596.

[25] Hethcox, J. C.; Johnson, H. C.; Kim, J.; Wang, X.; Cheng, L.; Cao, Y.; Tan, M.; DiRocco, D. A.;
Ji, Y. Nickel-Catalyzed Sulfonylation of Aryl Bromides Enabled by Potassium Metabisulfite as a Uniquely Effective SO₂ Surrogate. *Angew. Chem., Int. Ed.* 2023, *62*, e202217623.
9. ¹H, ¹³C, and ¹⁹F NMR Spectra

¹H NMR of **1** (400 MHz, CDCl₃)

əsluq_əlgnis — 8-3osi_869TS

¹³C NMR of **1b** (101 MHz, CDCl₃)

əsluq_əlgnis — MT_007TS

¹H NMR of **1c** (400 MHz, CDCl₃)

¹³C NMR of **1c** (101 MHz, CDCl₃)

ST700_TM_C — single pulse decoupled gated NOE

¹H NMR of 1d (400 MHz, CDCl₃)

¹³C NMR of **1d** (101 MHz, CDCl₃)

¹H NMR of **OTf-2k** (400 MHz, CDCl₃)

¹³C NMR of OTf-2k (101 MHz, CDCl₃)

¹⁹F NMR of **OTf-2k** (376 MHz, CDCl₃)

ST734_F — single pulse decoupled gated NOE

¹H NMR of **2B** (400 MHz, CDCl₃)

¹³C NMR of **2B** (101 MHz, CDCl₃)

ST592_TM_C - single pulse decoupled gated NOE

¹⁹F NMR of **2B** (376 MHz, CDCl₃)

ST592_F — single pulse decoupled gated NOE

¹H NMR of **2G** (400 MHz, CDCl₃)

¹³C NMR of **2**G (101 MHz, CDCl₃)

¹⁹F NMR of **2G** (376 MHz, CDCl₃)

ST639_F — single pulse decoupled gated NOE

¹H NMR of **2H** (400 MHz, CDCl₃)

sluq_slgnis — MT_327TS

¹³C NMR of **2H** (101 MHz, CDCl₃)

¹⁹F NMR of **2H**(376 MHz, CDCl₃)

ST725_F — single pulse decoupled gated NOE

¹H NMR of **3a** (400 MHz, CDCl₃)

¹³C NMR of **3a** (101 MHz, CDCl₃)

¹H NMR of **3b** (400 MHz, CDCl₃)

¹³C NMR of **3b** (101 MHz, CDCl₃)

ST115_M — single pulse decoupled gated NOE

¹H NMR of **3c** (400 MHz, CDCl₃)

¹³C NMR of **3c** (101 MHz, CDCl₃)

¹H NMR of **3d** (400 MHz, CDCl₃)

10 obdis - t-0-tg t2013

¹³C NMR of **3d** (101 MHz, CDCl₃)

ST217_C - single pulse decoupled gated NOE

¹H NMR of **3e** (400 MHz, CDCl₃)

S65

¹³C NMR of **3e** (101 MHz, CDCl₃)

¹H NMR of **3f** (400 MHz, CDCl₃)

¹³C NMR of **3f** (101 MHz, CDCl₃)

ST64_TM – single pulse decoupled gated NOE

¹H NMR of **3g** (400 MHz, CDCl₃)

¹³C NMR of **3g** (101 MHz, CDCl₃)

¹H NMR of **3h** (400 MHz, CDCl₃)

¹³C NMR of **3h** (101 MHz, CDCl₃)

¹H NMR of **3i** (400 MHz, CDCl₃)

S73

¹³C NMR of **3i** (101 MHz, CDCl₃)

ST62_TM — single pulse decoupled gated NOE

¹H NMR of **3j** (400 MHz, CDCl₃)

¹³C NMR of **3j** (101 MHz, CDCl₃)

¹H NMR of **3k** (400 MHz, CDCl₃)

S77

¹³C NMR of **3k** (101 MHz, CDCl₃)

¹H NMR of **3l** (400 MHz, CDCl₃)

¹³C NMR of **3**l (101 MHz, CDCl₃)

¹H NMR of **3m** (400 MHz, CDCl₃)

S81

¹³C NMR of **3m** (101 MHz, CDCl₃)

¹H NMR of 3n (400 MHz, CDCl₃)

¹³C NMR of **3n** (101 MHz, CDCl₃)

ST63_TM_C - single pulse decoupled gated NOE

¹H NMR of **30** (400 MHz, CDCl₃)

¹³C NMR of **30** (101 MHz, CDCl₃)

ST219_TM_C - single pulse decoupled gated NOE

¹H NMR of **3p** (400 MHz, CDCl₃)

S87

¹³C NMR of **3p** (101 MHz, CDCl₃)

ST391_TM — single pulse decoupled gated NOE

¹H NMR of **3q** (400 MHz, CDCl₃)

S89

¹³C NMR of **3q** (101 MHz, CDCl₃)

¹H NMR of **3r** (400 MHz, CDCl₃)

S91

¹³C NMR of **3r** (101 MHz, CDCl₃)

ST655_TM_C_re - single pulse decoupled gated NOE

¹H NMR of **3s** (400 MHz, CDCl₃)

ssluq_slgnis — MT_468TS

¹³C NMR of **3s** (101 MHz, CDCl₃)

ST594_TM_C — single pulse decoupled gated NOE

¹H NMR of **3u** (400 MHz, CDCl₃)

¹³C NMR of **3u** (101 MHz, CDCl₃)

ST220_TM — single pulse decoupled gated NOE

¹H NMR of **3v** (400 MHz, CDCl₃)

¹³C NMR of **3v** (101 MHz, CDCl₃)

¹H NMR of **3w** (400 MHz, CDCl₃)

¹³C NMR of **3w** (101 MHz, CDCl₃)

¹H NMR of **3x** (400 MHz, CDCl₃)

¹³C NMR of **3x** (101 MHz, CDCl₃)

Τ

¹H NMR of **3y** (400 MHz, CDCl₃)

sluq_slgniz - SMT_S85TS

¹³C NMR of **3**y (101 MHz, CDCl₃)

ST682_P1_C — single pulse decoupled gated NOE

¹H NMR of **3z** (400 MHz, CDCl₃)

S105

¹³C NMR of **3z** (101 MHz, CDCl₃)

ST767_P4_C — single pulse decoupled gated NOE

¹³C NMR of **3A** (101 MHz, CDCl₃)

ST352_TM — single pulse decoupled gated NOE
¹H NMR of **3B** (400 MHz, CDCl₃)

əsluq_əlgniz — ɛəา_MT_7eaTS

¹³C NMR of **3B** (101 MHz, CDCl₃)

ST597_P1-P2 — single pulse decoupled gated NOE

¹H NMR of **3**C (400 MHz, CDCl₃)

¹³C NMR of **3**C (101 MHz, CDCl₃)

ST596_TM_C_re — single pulse decoupled gated NOE

¹H NMR of **3D** (400 MHz, CDCl₃)

¹³C NMR of **3D** (101 MHz, CDCl₃)

¹H NMR of **3E** (400 MHz, CDCl₃)

əsluq_əlgnis — MT_069TS

¹³C NMR of **3E** (101 MHz, CDCl₃)

ST630_TM_C - single pulse decoupled gated NOE

¹H NMR of **3F** (400 MHz, CDCl₃)

¹³C NMR of **3F** (101 MHz, CDCl₃)

¹H NMR of **3G** (400 MHz, CDCl₃)

ST649_P2_2 - single_pulse

¹³C NMR of **3**G (101 MHz, CDCl₃)

ST649_P2_C — single pulse decoupled gated NOE

¹H NMR of **3H** (400 MHz, CDCl₃)

¹³C NMR of **3H** (101 MHz, CDCl₃)

¹H NMR of **3I** (400 MHz, CDCl₃)

¹³C NMR of **3I** (101 MHz, CDCl₃)

ST703_P2_C — single pulse decoupled gated NOE

¹H NMR of 3J (400 MHz, CDCl₃)

əsluq_əlgniz — 19_907TS

¹³C NMR of **3J** (101 MHz, CDCl₃)

ST709_TM_C — single pulse decoupled gated NOE

¹H NMR of **5** (400 MHz, CDCl₃)

¹³C NMR of **5** (101 MHz, CDCl₃)

ST701_P2_O — Single pulse decoupled gated NOE

¹H NMR of 6 (400 MHz, CDCl₃)

¹³C NMR of **6** (101 MHz, CDCl₃)

¹H NMR of 7 (400 MHz, CDCl₃)

¹³C NMR of 7 (101 MHz, CDCl₃)

¹H NMR of 8 (400 MHz, CDCl₃)

S133

¹³C NMR of 8 (101 MHz, CDCl₃)

ST705_P1_C — single pulse decoupled gated NOE

¹H NMR of 9 (400 MHz, CDCl₃)

¹³C NMR of **9** (101 MHz, CDCl₃)

¹H NMR of 4 (400 MHz, CDCl₃)

¹³C NMR of 4 (101 MHz, CDCl₃)

SON betage belonded decoupled dated NOE and Set of the set of the