Synthesis of Polysubstituted Cyclobutanes through Photoredox

Strain-Release/[3,3]-Rearrangement Cascade

Fangqing Zhang[#], Chun Xu[#], Zichun Zhang, Zhuang Yang, Tao Peng, Wen Shao^{*}, Xiaoming Feng^{*}, Yangbin Liu^{*}

Contents

1.	General information	2
2.	Synthesis of substrates	3
3.	Reaction optimization	
4.	General procedures for the SRRC process of BCBs.	
5.	General procedures for the SRRC process of cyclobutenes	44
6.	X-ray Crystallographic Data	53
7.	Mechanistic study	61
8.	Supplementary discussions	
9.	Post-functionalization of products	72
10.	Anticancer activity study	
11.	DFT calculation	
12.	NMR spectrum	126
13.	References	

1. General information

All solvents were dried and distilled according to general practice prior to use. All reagents were purchased from commercial sources and used without further purification unless specified otherwise. Solvents for flash column chromatography were technical grade and distilled prior to use. Analytical thin-layer chromatography (TLC) was performed using Jiangyou silica gel plates with HSGF 254. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) and appropriate stains. Flash column chromatography was performed using silica gel (300-400 mesh) from Leyan.com with the indicated solvent system according to standard techniques. CDCl₃ was bought from Leyan.com. ¹H NMR, ¹³C NMR and ¹⁹F NMR were recorded on a Bruker NMR 400 (400 MHz). Multiplicities are described as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet); and coupling constants (J) are reported in Hertz (Hz). ¹³C NMR spectra were recorded with total proton decoupling. Melting points were recorded on a Shanghai Jingke SGWX-4B melting-point Meter and are uncorrected. XRD diffraction (Rigaku MicroMax-007 HF) and HRMS (ESI) analysis was performed by the Analytical Instrumentation Center at Peking University Shenzhen Graduate School and (HRMS) data were reported with ion mass/charge (m/z) ratios as values in atomic mass units.

2. Synthesis of substrates

2.1. Synthesis of bicyclo[1.1.0]butane-1-carboxylate 1

General procedures to synthesize bicyclo[1.1.0]butane-1-carboxylate 1a-1f.

1) In a round-bottom flask, 3-oxocyclobutane-1-carboxylic acid (3.4 g, 30.0 mmol, 1.0 equiv.), K_2CO_3 (4.6 g, 33.0 mmol, 1.1 equiv.) were dissolved in DMF (30.0 mL). Then, corresponding allyl bromide (33.0 mmol, 1.1 equiv.) was added. The solution was stirred at rt for 1.5 h. Then the reaction was quenched with water (60.0 mL), and extracted with EtOAc (60.0 mL × 3). The combined organic layers were washed with brine three times and dried with anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford intermediate **S1**.

2) In a round-bottom flask, intermediate **S1** (25.0 mmol, 1.0 equiv.) was dissolved in MeOH (60.0 mL), and the mixture was cooled to 0 °C. NaBH₄ (2.3 g, 27.5 mmol, 1.1 equiv.) was added portionwise (attention: gas evolution) until full conversion (about 30 min, monitored by TLC) of the starting material. The reaction was quenched with water, and the aq. layer was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure to give the intermediate **S2**, which was used in the next step without further purification.

3) To an oven-dried round-bottom flask equipped with a magnetic stir bar was added the intermediate **S2** (22.0 mmol, 1.0 equiv.), Et₃N (4.0 mL, 28.8 mmol, 1.3 equiv.) and CH_2Cl_2 (30.0 mL). Then the solution was cooled to 0 °C, and TsCl (5.5 g, 28.8 mmol, 1.3 equiv.) was added slowly. Then the reaction was allowed to warm up to room temperature and stirred for 14 h. Afterwards, the reaction was quenched with water. The organic layer was separated, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by silica gel column chromatography gave the intermediate **S3**.

4) To an oven-dried round-bottom flask equipped with a magnetic stir bar was added the intermediate **S3** (12.0 mmol, 1.0 equiv.) and dry THF (40.0 mL). The flask was evacuated and backfilled with argon three times. Subsequently, the solution was cooled to 0 °C. KO^tBu (13.2 mL, 1.0 M in THF, 13.2 mmol, 1.1 equiv.) was added dropwise to the reaction flask at 0 °C. After stirring for 30 min, the reaction was quenched with sat. aq. NH₄Cl, and extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, and concentrated under reduced pressure. Purification by silica gel column chromatography gave the desired product **1a-1f**.

3-methylbut-2-en-1-yl 3-oxocyclobutane-1-carboxylate (S1)

Product **S1** was obtained as a colorless oil (4.5 g, 25.0 mmol, 83% yield).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 3:1)

¹H NMR (400 MHz, CDCl₃) δ 5.32 (ddq, J = 8.7, 5.8, 1.4 Hz, 1H), 4.62 (d, J = 7.3 Hz, 2H), 3.44 – 3.33 (m, 2H), 3.31 – 3.15 (m, 3H), 1.74 (d, J = 1.4 Hz, 3H), 1.70 (d, J = 1.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 203.9, 174.1, 139.8, 118.1, 62.2, 51.6, 27.4, 25.8, 18.1. HRMS: m/z [M+Na]⁺ calcd for C₁₀H₁₄NaO₃: 205.0835; found: 205.0836.

3-methylbut-2-en-1-yl 3-hydroxycyclobutane-1-carboxylate (S2)

Product **S2** was obtained as a colorless oil (4.0 g, 22.0 mmol, 88% yield).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 2:1)

¹H NMR (400 MHz, CDCl₃) δ 5.23 (dddd, *J* = 7.2, 5.8, 2.9, 1.5 Hz, 1H), 4.47 (d, *J* = 7.2 Hz, 2H), 4.12 – 4.00 (m, 1H), 3.88 – 3.49 (m, 1H), 2.46 (tdd, *J* = 8.5, 6.4, 3.9 Hz, 3H), 2.17 – 2.02 (m, 2H), 1.66 (d, *J* = 1.6 Hz, 3H), 1.61 (d, *J* = 1.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 139.1, 118.5, 62.9, 61.7, 36.9, 28.9, 25.7, 18.0. HRMS: m/z [M+Na]⁺ calcd for C₁₀H₁₆NaO₃: 207.0992; found: 207.0992.

3-methylbut-2-en-1-yl 3-(tosyloxy)cyclobutane-1-carboxylate (S3)

Product **S3** was obtained as a white solid (4.0 g, 12.0 mmol, 54% yield).

TLC: Rf = 0.5 (Petroleum ether/ethyl acetate 2:1)

¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.64 (m, 2H), 7.33 – 7.18 (m, 2H), 5.21 (ddq, J = 8.7, 5.8, 1.4 Hz, 1H), 4.70 – 4.60 (m, 1H), 4.46 (d, J = 7.3 Hz, 2H), 2.61 – 2.49 (m, 1H), 2.45 – 2.25 (m, 7H), 1.65 (d, J = 1.4 Hz, 3H), 1.60 (d, J = 1.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 173.2, 145.0, 139.3, 133.8, 129.9, 127.8, 118.3, 69.7, 61.8, 34.1, 29.6, 25.7, 21.6, 18.0.

HRMS: m/z [M+Na]⁺ calcd for C₁₇H₂₂NaO₅S: 361.1080; found: 361.1080.

3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (1a)

Following the general procedure, product **1a** was obtained as a colorless oil (1.7 g, 10.2 mmol, 85% yield).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 20:1)

¹H NMR (400 MHz, CDCl₃) δ 5.48 – 5.26 (m, 1H), 4.64 (d, *J* = 7.1 Hz, 2H), 2.40 (d, *J* = 3.3 Hz, 2H), 2.10 (q, *J* = 3.2 Hz, 1H), 1.83 – 1.69 (m, 6H), 1.17 (d, *J* = 3.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 138.7, 118.8, 61.7, 35.6, 25.8, 18.1, 16.5, 9.2. HRMS: m/z [M+Na]⁺ calcd for C₁₀H₁₄NaO₂: 189.0886; found: 189.0884.

allyl bicyclo[1.1.0]butane-1-carboxylate (1b)

Following the general procedure, product **1b** was obtained as a colorless oil (0.47 g, 3.4 mmol, 11% yield for 4 steps).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 20:1)

¹H NMR (400 MHz, CDCl₃) δ 5.94 (ddt, J = 17.2, 10.4, 5.6 Hz, 1H), 5.38 – 5.20 (m, 2H),
4.63 (dt, J = 5.6, 1.4 Hz, 2H), 2.41 (dt, J = 3.5, 1.1 Hz, 2H), 2.16 – 2.10 (m, 1H), 1.19 (dt, J = 2.9, 1.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 132.4, 117.9, 65.3, 35.6, 16.8, 9.1.
 HRMS: m/z [M+Na]⁺ calcd for C₈H₁₀NaO₂: 161.0573; found: 161.0570.

2-methylallyl bicyclo[1.1.0]butane-1-carboxylate (1c)

Following the general procedure, product **1c** was obtained as a colorless oil (1.5 g, 10.0 mmol, 33% yield for 4 steps). **TLC:** Rf = 0.3 (Petroleum ether/ethyl acetate 20:1) **1H NMR** (400 MHz, CDCl₃) δ 4.95 (dp, *J* = 13.8, 1.3 Hz, 2H), 4.55 (s, 2H), 2.41 (dt, *J* = 3.5, 1.1 Hz, 2H), 2.13 (p, *J* = 3.2 Hz, 1H), 1.77 (t, *J* = 1.2 Hz, 3H), 1.20 (dt, *J* = 2.7, 1.0 Hz, 2H). **13C NMR** (101 MHz, CDCl₃) δ 172.8, 140.2, 112.4, 67.7, 35.6, 19.5, 16.7, 9.1. **HRMS:** m/z [M+Na]⁺ calcd for C₉H₁₂NaO₂: 175.0730; found: 175.0731.

but-2-yn-1-yl bicyclo[1.1.0]butane-1-carboxylate (1d)

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 20:1)

¹H NMR (400 MHz, CDCl₃) δ 4.66 (q, J = 2.4 Hz, 2H), 2.39 (dt, J = 3.5, 1.1 Hz, 2H), 2.14 (p, J = 3.2 Hz, 1H), 1.85 (t, J = 2.4 Hz, 3H), 1.17 (dt, J = 2.9, 1.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 83.0, 73.4, 53.0, 35.8, 17.1, 9.0, 3.7. HRMS: m/z [M+Na]⁺ calcd for C₉H₁₀NaO₂: 173.0573; found: 173.0575.

(E)-3,7-dimethylocta-2,6-dien-1-yl bicyclo[1.1.0]butane-1-carboxylate (1e)

Following the general procedure, product **1e** was obtained as a colorless oil (2.5 g, 10.7 mmol, 36% yield for 4 steps).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 20:1)

¹**H NMR** (400 MHz, CDCl₃) δ 5.30 (tq, J = 7.0, 1.3 Hz, 1H), 5.05 (ddp, J = 7.0, 5.9, 1.5 Hz, 1H), 4.59 (d, J = 7.0 Hz, 2H), 2.33 (dt, J = 3.5, 1.1 Hz, 2H), 2.11 – 2.04 (m, 2H), 2.04 – 1.98 (m, 3H), 1.66 (dd, J = 8.8, 1.5 Hz, 6H), 1.57 (d, J = 1.6 Hz, 3H), 1.13 – 1.08 (m, 2H). ¹³**C NMR** (101 MHz, CDCl₃) δ 173.1, 141.8, 131.7, 123.8, 118.6, 61.6, 39.5, 35.5, 26.3, 25.7, 17.7, 16.5, 16.3, 9.1.

HRMS: m/z [M+Na]⁺ calcd for C₁₅H₂₂NaO₂: 257.1512; found: 257.1512.

(2*E*,6*E*)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl bicyclo[1.1.0]butane-1-carboxylate (1f)

Following the general procedure, product **1f** was obtained as a colorless oil (2.7 g, 8.9 mmol, 30% yield for 4 steps).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 20:1)

¹**H NMR** (400 MHz, CDCl₃) δ 5.37 (td, *J* = 8.7, 7.2, 1.5 Hz, 1H), 5.16 – 5.07 (m, 2H), 4.62 (d, *J* = 7.2 Hz, 2H), 2.37 (d, *J* = 3.5 Hz, 2H), 2.15 – 2.11 (m, 3H), 2.08 (dt, *J* = 9.8, 3.5 Hz, 4H), 2.00 (dd, *J* = 9.2, 6.1 Hz, 2H), 1.78 (d, *J* = 1.4 Hz, 3H), 1.70 (d, *J* = 1.6 Hz, 3H), 1.62 (d, *J* = 1.5 Hz, 6H), 1.15 (d, *J* = 2.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 173.2, 142.4, 135.8, 131.4, 124.3, 123.5, 119.4, 61.4, 39.8, 35.6, 32.2, 26.7, 26.7, 25.7, 23.6, 17.7, 16.4, 16.0, 9.2.

HRMS: m/z [M+Na]⁺ calcd for C₂₀H₃₀NaO₂: 325.2138; found: 325.2139.

2.2. Synthesis of α-Silylamines

All the α -Silylamines were prepared according to the literature.^[1]

2.3. Synthesis of cyclobut-1-ene-1-carboxylate 4

General procedures to synthesize cyclobut-1-ene-1-carboxylate 4a-4d

1) In a round-bottom flask, KOH (6.0 g, 100.0 mmol, 4.5 equiv.) and toluene (50.0 mL) were added. The solution was stirred at 120 °C for 30 min until most of KOH was dissolved. Then ethyl 1-bromocyclobutane-1-carboxylate (5.0 g, 24.0 mmol, 1.0 equiv.) was added, and the mixture was stirred at 120 °C for 1 h. The reaction was quenched with water (60.0 mL) and washed with petroleum ether (60.0 mL). The aqueous phase was then acidified to pH = 1 with an aqueous solution of HCl (2.0 M, 30.0 mL). The product was extracted from the aqueous layer with EtOAc (50.0 mL × 3), dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel to afford cyclobut-1-ene-1-carboxylic acid (2.0 g, 20.4 mmol, 85% yield).

2) In a round-bottom flask, cyclobut-1-ene-1-carboxylic acid (2.0 g, 20.4 mmol, 1.0 equiv.) was dissolved in CH_2Cl_2 (10.0 mL), and the solution was cooled to 0 °C. DMF (5 drops) and oxalyl chloride (1.8 mL, 22.4 mmol, 1.1 equiv.) were then added dropwise (attention: gas evolution). The reaction was warmed to rt and stirred for 3 h to afford the cyclobut-1-ene-1-carbonyl chloride solution for next step.

3) To an oven-dried round-bottom flask equipped with a magnetic stir bar was added the corresponding allyl alcohol (22.4 mmol, 1.1 equiv.), Et_3N (6.1 mL, 44.9 mmol, 2.2 equiv.) and CH_2Cl_2 (15.0 mL). Then freshly prepared cyclobut-1-ene-1-carbonyl

chloride solution (20.4 mmol, 1.0 equiv.) was added dropwise at 0 °C. Then the reaction was warmed to rt and stirred for 12 h. Afterwards, the reaction was quenched with water. The organic layer was separated, washed with brine, dried over Na₂SO₄, and concentrated in vacuo. Purification by silica gel column chromatography afforded the product **4a-4d**.

3-methylbut-2-en-1-yl cyclobut-1-ene-1-carboxylate (4a)

Following the general procedure, product **4a** was obtained as a colorless oil (2.1 g, 12.6 mmol, 53% yield for 3 steps). **TLC:** Rf = 0.3 (Petroleum ether/ethyl acetate 20:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.72 (t, *J* = 1.3 Hz, 1H), 5.32 (ddt, *J* = 8.6, 5.8, 1.4 Hz, 1H), 4.59 (dt, *J* = 7.2, 0.9 Hz, 2H), 2.73 – 2.64 (m, 2H), 2.46 – 2.37 (m, 2H), 1.73 – 1.67 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 162.4, 146.3, 138.9, 138.8, 118.7, 61.1, 29.2, 27.1, 25.8, 18.0.

HRMS: m/z [M+Na]⁺ calcd for C₁₀H₁₄NaO₂: 189.0886; found: 189.0886.

but-2-yn-1-yl cyclobut-1-ene-1-carboxylate (4b)

Following the general procedure, product **4b** was obtained as a colorless oil (1.6 g, 10.7 mmol, 44% yield for 3 steps).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 20:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.83 (t, *J* = 1.3 Hz, 1H), 4.69 (q, *J* = 2.4 Hz, 2H), 2.79 – 2.67 (m, 2H), 2.51 – 2.45 (m, 2H), 1.85 (t, *J* = 2.4 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 161.4, 147.6, 138.0, 83.1, 73.2, 52.4, 29.2, 27.3, 3.7.

HRMS: $m/z [M+Na]^+$ calcd for C₉H₁₀NaO₂: 173.0573; found: 173.0573.

2-methylallyl cyclobut-1-ene-1-carboxylate (4d)

Following the general procedure, product **4d** was obtained as a colorless oil (1.3 g, 8.6 mmol, 36% yield for 3 steps).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 20:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.83 (d, J = 1.3 Hz, 1H), 5.08 – 4.90 (m, 2H), 4.57 (s, 2H), 2.83 – 2.69 (m, 2H), 2.51 (td, J = 3.2, 1.5 Hz, 2H), 1.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.9, 146.8, 140.0, 138.6, 112.8, 67.2, 29.2, 27.2, 19.5.
 HRMS: m/z [M+Na]⁺ calcd for C₉H₁₂NaO₂: 175.0730; found: 175.0731.

3. Reaction optimization

Table S1. Photocatalyst screening

Reaction conditions: unless otherwise noted, **1a** (0.1 mmol), **2** (0.12 mmol), **PC** (1.5 mol%) in CH₃CN (0.1 M), 24 h, 450 nm at 40 °C. The yields are determined by ¹H NMR analysis of the crude product mixtures by using 1,3,5-trimethoxybenzene as an internal standard. ^a **1a** (0.2 mmol, 2.0 equiv.) and **2** (0.1 mmol, 1.0 equiv.) were used.

	Me Me +		(1.5 mol%)	Me N CO ₂ H
(0.2 m	1a 1mol, 2.0 equiv.)	2 (0.1 mmol, 1.0 equiv.)	solvent (1.0 mL) 40 °C, 24 h 450 nm	Me Me 3
	entry	solvent	yield (%)	dr
-	1	CH₃CN	53	1.4:1
	2	EA	24	1.3:1
	3	THF	22	1:1
	4	DCM	33	1.3:1
	5	DCE	46	1.3:1
	6	toluene	24	1.3:1
	7	DMF	45	1.1:1
	8	DMSO	21	1.1:1
	9	Dioxane	23	1.2:1

Table S2. solvent screening

Reaction conditions: unless otherwise noted, **1a** (0.2 mmol), **2** (0.1 mmol), **PC1** (1.5 mol%) in solvent (0.1 M), 24 h, 450 nm at 40 °C. The yields are determined by ¹H NMR analysis of the crude product mixtures by using 1,3,5-trimethoxybenzene as an internal standard.

Table S3. concentration screening

Me + 1a (0.2 mmol, 2.0 equiv.)	Me N_TMS 2 (0.1 mmol, 1.0 equiv.)	PC1 (1.5 mol%) CH ₃ CN (x mL) 40 °C, 24 h 450 nm	Me N Me Me 3
entry	x (mL)	yield (%)	dr
1	0.25	69	1.5:1
2	0.5	52	1.3:1
3	1	53	1.4:1
4	1.5	41	1.5:1
5	2	35	1.5:1
6 ^a	0.25	86 (72) ^b	1.4:1

Reaction conditions: unless otherwise noted, **1a** (0.2 mmol), **2** (0.1 mmol), **PC1** (1.5 mol%) in CH₃CN (x mL), 24 h, 450 nm at 40 °C. The yields are determined by ¹H NMR analysis of the crude product mixtures by using 1,3,5-trimethoxybenzene as an internal standard. ^a **1a** (0.4 mmol) and **2** (0.2 mmol) were used. ^b For ease of separation, the carboxylic acid is converted to its methyl ester by TMSCHN₂. The isolated yield of two-step is reported.

Table S4. temperature screening

Me +	Me NTMS	PC1 (1.5 mol%)	Me N CO ₂ H
1a	2	CH₃CN T °C, 24 h 450 nm	Me Me
entry	T (°C)	yield (%)	dr
1	25	44	1.4:1
2	40	86	1.4:1
3	50	77	1.3:1

Reaction conditions: unless otherwise noted, **1a** (0.4 mmol), **2** (0.2 mmol), **PC1** (1.5 mol%) in CH₃CN (0.25 mL), 24 h, 450 nm at T °C. The yields are determined by ¹H NMR analysis of the crude product mixtures by using 1,3,5-trimethoxybenzene as an internal standard.

4. General procedures for the SRRC process of BCBs.

In the glovebox, bicyclo[1.1.0]butane-1-carboxylate **1** (0.4 mmol, 2.0 equiv.), α silylamine **2** (0.2 mmol, 1.0 equiv.), Ir(dtbbpy)(ppy)₂][PF₆] (**PC1**) (3.0 mg, 3.0 × 10⁻³ mmol, 1.5 mol%) and dry CH₃CN (0.25 mL) were added respectively into a flame-dried reaction vial equipped with a stir bar. Then the vial was sealed and transferred out of the glove box. Afterwards, it was irradiated with a 1 W blue LED lamp (450 nm, SYNLED) for 24 h at 40 °C. When the reaction was completed (monitored by TLC), the crude mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel flash chromatography or preparative thin layer chromatography to give the corresponding carboxylic acid. In some cases, for ease of separation, the carboxylic acid was converted to its methyl ester by treatment of TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in a mixture solution of Et₂O and MeOH (Et₂O/MeOH = 4:1, 2.0 mL) at room temperature for 2 h. Then the corresponding methyl ester products were purified by silica gel flash chromatography.

Preheat the photoreactor to 40 °C

Weighing completed

Reaction was lighted in 1 W (450 nm) LED for 24 h

The reaction was completed

methyl 3-((methyl(phenyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1carboxylate (3)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*-methyl-*N*-((trimethylsilyl)methyl)aniline

(38.6 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **3** was obtained as a colorless oil (44.5 mg, 74% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.30 – 7.11 (m, 2H), 6.74 – 6.61 (m, 3H), 5.99 – 5.92 (m, 1H), 5.12 – 4.88 (m, 2H), 3.68 (s, 1.75H), 3.66 (s, 1.25H), 3.28 – 3.24 (m, 2H), 2.90 (s, 1.75H), 2.89 (s, 1.25H), 2.46 – 2.25 (m, 3H), 2.19 – 2.07 (m, 1.2H), 1.98 – 1.87 (m, 0.86H), 1.01 (s, 3.5H), 0.97 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.9, 149.5, 143.8, 129.2, 116.3, 112.7, 112.4, 58.9, 51.6, 51.4, 39.6, 38.9, 31.6, 26.5, 22.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.1, 149.5, 144.9, 129.2, 116.3, 112.4, 112.3, 57.5, 53.3, 50.8, 39.6, 38.8, 32.2, 27.8, 23.0.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₇NNaO₂: 324.1934; found: 324.1933.

methyl 3-(((4-fluorophenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (5)

Following the general procedure, 3-methylbut-2-en-1-yl Me CO₂Me bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, Me Me 4-fluoro-N-methyl-N-2.0 equiv.), ((trimethylsilyl)methyl)aniline (42.2 mg, 0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2[PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in $Et_2O/MeOH$ solution (4:1, 2.0 mL) at rt for 2 h. Product **5** was obtained as a colorless oil (31.9 mg, 50% yield for 2 steps, 1:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.98 – 6.83 (m, 2H), 6.66 – 6.52 (m, 2H), 5.99 – 5.84 (m, 1H), 5.08 – 4.89 (m, 2H), 3.67 (s, 1.5H), 3.66 (s, 1.5H), 3.25 – 3.13 (m, 2H), 2.83 (s, 3H), 2.43 – 2.22 (m, 3H), 2.16 – 2.04 (m, 1H), 1.96 – 1.84 (m, 1H), 1.00 (s, 3H), 0.96 (s, 3H). Diastereomer 1: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 155.4 (d, *J* = 235.3 Hz), 146.5, 144.8, 115.5 (d, *J* = 22.2 Hz), 113.8 (d, *J* = 8.1 Hz), 112.3, 59.8, 51.6, 51.5, 39.6, 39.4, 31.7, 26.4, 22.3.

Diastereomer 2: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.2, 155.4 (d, *J* = 235.3 Hz), 146.5, 143.7, 115.5 (d, *J* = 22.2 Hz), 113.9 (d, *J* = 7.1 Hz), 112.7, 58.4, 53.3, 50.8, 39.6, 39.3, 32.2, 27.7, 22.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –129.3, –129.4.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₆FNNaO₂: 342.1840; found: 342.1840.

methyl 3-(((4-chlorophenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (6)

Following the general procedure, 3-methylbut-2en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 4-chloro-*N*-methyl-*N*-((trimethylsilyl)methyl)aniline (45.4 mg, 0.2

mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **6** was obtained as a colorless oil (43.7 mg, 65% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.17 – 7.06 (m, 2H), 6.60 – 6.49 (m, 2H), 5.98 – 5.84 (m, 1H), 5.09 – 4.89 (m, 2H), 3.68 (s, 1.75H), 3.66 (s, 1.25H), 3.29 – 3.16 (m, 2H), 2.87 (s, 1.75H), 2.86 (s, 1.25H), 2.41 – 2.23 (m, 3H), 2.14 – 2.10 (m, 1.2H), 1.93 – 1.90 (m, 0.84H), 1.00 (s, 3.5H), 0.96 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 148.1, 143.7, 128.9, 121.1, 113.5, 112.8, 58.8, 51.7, 51.5, 39.6, 39.1, 31.5, 26.4, 22.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.1, 148.1, 144.8, 128.9, 121.1, 113.4, 112.4, 57.5, 53.3, 50.8, 39.6, 39.0, 32.1, 27.7, 22.9.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₆ClNNaO₂: 358.1544; found: 358.1545.

methyl 3-(((4-bromophenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (7)

Following the general procedure, 3-methylbut-2en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 4-bromo-*N*-methyl-*N*-((trimethylsilyl)methyl)aniline (54.2 mg, 0.2

mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **7** was obtained as a colorless oil (38.8 mg, 51% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.15 (m, 2H), 6.56 – 6.44 (m, 2H), 5.98 – 5.84 (m, 1H), 5.10 – 4.88 (m, 2H), 3.68 (s, 1.75H), 3.66 (s, 1.25H), 3.30 – 3.14 (m, 2H), 2.87 (s, 1.75H), 2.86 (s, 1.25H), 2.41 – 2.21 (m, 3H), 2.16 – 2.05 (m, 1.22H), 1.92 – 1.89 (m, 0.86H), 1.00 (s, 3.5H), 0.96 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 148.4, 143.7, 131.8, 113.9, 112.8, 108.1, 58.7, 51.7, 51.5, 39.6, 39.0, 31.5, 26.3, 22.3.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.0, 148.4, 144.8, 131.8, 113.9,

112.4, 108.1, 57.3, 53.3, 50.8, 39.6, 38.9, 32.1, 27.7, 22.9.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₆BrNNaO₂: 402.1040, 404.1019; found: 402.1041, 404.1019.

methyl 3-(((4-cyanophenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (8)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 4-

(methyl((trimethylsilyl)methyl)amino)benzonitrile (43.6 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **8** was obtained as a colorless oil (37.2 mg, 57% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.5 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.37 (m, 2H), 6.65 – 6.50 (m, 2H), 5.96 – 5.83 (m, 1H), 5.13 – 4.88 (m, 2H), 3.68 (s, 1.75H), 3.66 (s, 1.25H), 3.38 – 3.25 (m, 2H), 2.97 (s, 1.75H), 2.96 (s, 1.25H), 2.40 – 2.27 (m, 3H), 2.17 – 2.07 (m, 1.25H), 1.93 – 1.89 (m, 0.88H), 0.99 (s, 3.5H), 0.95 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.6, 151.6, 143.5, 133.5, 120.7, 113.0, 111.4, 97.4, 57.8, 51.7, 51.5, 39.5, 39.0, 31.3, 26.3, 22.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 176.8, 151.6, 144.7, 133.5, 120.7, 112.6, 111.4, 97.4, 56.6, 53.3, 50.8, 39.5, 38.9, 31.9, 27.8, 22.9.

HRMS: m/z [M+Na]⁺ calcd for C₂₀H₂₆N₂NaO₂: 349.1886; found: 349.1886.

methyl 3-((methyl(p-tolyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1carboxylate (9)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*,4-dimethyl-*N*-((trimethylsilyl)methyl)aniline (41.4 mg, 0.2 mmol,

1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **9** was obtained as a colorless oil (30.2 mg, 48% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (d, *J* = 8.3 Hz, 2H), 6.61 (d, *J* = 8.2 Hz, 2H), 6.01 – 5.88 (m, 1H), 5.14 – 4.87 (m, 2H), 3.70 (s, 1.75H), 3.68 (s, 1.25H), 3.26 – 3.22 (m, 2H), 2.88 (s, 1.75H), 2.88 (s, 1.25H), 2.44 – 2.29 (m, 3H), 2.26 (s, 3H), 2.17 – 2.12 (m, 1.25H), 1.97 – 1.92 (m, 0.88H), 1.03 (s, 3.5H), 0.99 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.9, 147.6, 143.8, 129.7, 125.6, 112.8, 112.7, 59.3, 51.7, 51.5, 39.6, 39.1, 31.7, 26.4, 22.3, 20.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.2, 147.6, 144.9, 129.7, 125.6, 112.8, 112.3, 58.0, 53.3, 50.8, 39.6, 39.0, 32.2, 27.7, 23.0, 20.3.

HRMS: m/z [M+Na]⁺ calcd for C₂₀H₂₉NNaO₂: 338.2090; found: 338.2090.

methyl 3-(((4-(*tert*-butyl)phenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (10)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 4-(*tert*-butyl)-*N*-methyl-*N*-((trimethylsilyl)methyl)aniline (50.0 mg, 0.2 mmol,

1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **10** was obtained as a white solid (34.4 mg,

48% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 10:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 – 7.18 (m, 2H), 6.67 – 6.56 (m, 2H), 6.00 – 5.87 (m, 1H), 5.11 – 4.90 (m, 2H), 3.69 (s, 1.75H), 3.67 (s, 1.25H), 3.34 – 3.13 (m, 2H), 2.88 (s, 1.75H), 2.87 (s, 1.25H), 2.45 – 2.25 (m, 3H), 2.18 – 2.09 (m, 1.2H), 1.99 – 1.85 (m, 0.83H), 1.28 (s, 9H), 1.02 (s, 3.5H), 0.98 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.9, 147.4, 143.8, 138.9, 125.9, 112.6, 112.1, 59.1, 51.6, 51.4, 39.6, 39.0, 33.8, 31.6, 31.6, 26.6, 22.4.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.2, 147.4, 144.9, 139.0, 125.9, 112.3, 112.2, 57.8, 53.3, 50.8, 39.6, 38.8, 33.8, 32.2, 31.6, 27.8, 23.0.

HRMS: m/z [M+Na]⁺ calcd for C₂₃H₃₅NNaO₂: 380.2560; found: 380.2562.

m.p. 78–79 °C. (**10** was recrystallized from EA/PE = 1:10)

methyl 3-(((3-chlorophenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (11)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 3-chloro-*N*-methyl-*N*-((trimethylsilyl)methyl)aniline (45.4 mg, 0.2 mmol, 1.0

equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **11** was obtained as a colorless oil (41.0 mg, 61% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.10 – 7.06 (m, 1H), 6.66 – 6.55 (m, 2H), 6.50 – 6.48 (m, 1H), 5.99 – 5.85 (m, 1H), 5.12 – 4.89 (m, 2H), 3.69 (s, 1.75H), 3.67 (s, 1.25H), 3.30 – 3.19 (m, 2H), 2.89 (s, 1.75H), 2.88 (s, 1.25H), 2.43 – 2.25 (m, 3H), 2.15 – 2.10 (m, 1.21H), 1.94 – 1.90 (m, 0.86H), 1.00 (s, 3.5H), 0.96 (s, 2.5H).

Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.8, 150.5, 143.7, 135.1, 130.0, 115.9, 112.8, 112.0, 110.3, 58.4, 51.7, 51.5, 39.6, 38.9, 31.4, 26.4, 22.3. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.0, 150.5, 144.8, 135.1, 130.0, 115.9, 112.5, 112.0, 110.3, 57.1, 53.3, 50.8, 39.6, 38.8, 32.0, 27.7, 22.9. HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₆ClNNaO₂: 358.1544; found: 358.1545.

methyl 3-(((3-methoxyphenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (12)

equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **12** was obtained as a colorless oil (31.1 mg, 47% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.5 (Petroleum ether/ethyl acetate 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.11 (t, *J* = 8.2 Hz, 1H), 6.32 – 6.23 (m, 2H), 6.19 – 6.18 (m, 1H), 5.99 – 5.86 (m, 1H), 5.10 – 4.89 (m, 2H), 3.78 (s, 3H), 3.68 (s, 1.75H), 3.66 (s, 1.25H), 3.27 – 3.23 (m, 2H), 2.90 (s, 1.75H), 2.89 (s, 1.25H), 2.45 – 2.24 (m, 3H), 2.15 – 2.10 (m, 1.23H), 1.96 – 1.90 (m, 0.88H), 1.00 (s, 3.5H), 0.97 (s, 2.5H). Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 160.8, 150.8, 143.8, 129.8, 112.7, 105.5, 100.9, 99.0, 58.8, 55.2, 51.6, 51.4, 39.6, 39.0, 31.6, 26.5, 22.3. Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 160.8, 150.9, 144.9, 129.8, 112.3, 105.5, 100.9, 99.0, 57.5, 55.2, 53.3, 50.8, 39.6, 38.9, 32.1, 27.8, 23.0. HRMS: m/z [M+Na]⁺ calcd for C₂₀H₂₉NNaO₃: 354.2040; found: 354.2040.

methyl 3-((methyl(o-tolyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-

carboxylate (13)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*,2-dimethyl-*N*-((trimethylsilyl)methyl)aniline (41.4 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆]

(3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **13** was obtained as a colorless oil (28.4 mg, 45% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.08 (m, 2H), 7.00 (d, *J* = 7.8 Hz, 1H), 6.97 – 6.93 (m, 1H), 6.01 – 5.83 (m, 1H), 5.07 – 4.87 (m, 2H), 3.68 (s, 1.25H), 3.63 (s, 1.75H), 2.85 – 2.81 (m, 2H), 2.59 (s, 1.25H), 2.57 (s, 1.75H), 2.39 – 2.33 (m, 1H), 2.31 – 2.13 (m, 5H), 2.09 – 2.01 (m, 1.2H), 1.87 – 1.82 (m, 0.84H), 1.01 (s, 3.5H), 0.95 (s, 2.5H). Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 152.4, 143.9, 133.6, 131.0, 126.4, 123.2, 120.5, 112.5, 62.7, 51.6, 51.3, 42.4, 39.6, 31.9, 26.6, 22.3, 18.1. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 152.4, 144.9, 133.3, 131.0, 126.4, 123.1, 120.2, 112.1, 61.7, 53.3, 50.8, 42.3, 39.6, 32.4, 27.6, 23.0, 18.2. HRMS: m/z [M+Na]⁺ calcd for C₂₀H₂₉NNaO₂: 338.2090; found: 338.2090.

methyl 3-((ethyl(phenyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1carboxylate (14)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*-ethyl-*N*-((trimethylsilyl)methyl)aniline (41.4 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0

mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **14** was

obtained as a colorless oil (31.5 mg, 50% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 – 7.14 (m, 2H), 6.69 – 6.57 (m, 3H), 6.00 – 5.87 (m, 1H), 5.11 – 4.91 (m, 2H), 3.69 (s, 1.75H), 3.67 (s, 1.25H), 3.38 – 3.31 (m, 2H), 3.27 – 3.15 (m, 2H), 2.46 – 2.26 (m, 3H), 2.15 – 2.10 (m, 1.2H), 1.99 – 1.85 (m, 0.84H), 1.12 – 1.08 (m, 3H), 1.02 (s, 3.5H), 0.98 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.9, 148.1, 143.8, 129.2, 115.8, 112.7, 112.3, 56.9, 51.6, 51.4, 45.7, 39.6, 31.7, 26.6, 22.3, 12.2.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.2, 148.2, 144.9, 129.2, 115.8, 112.3, 112.3, 55.5, 53.1, 50.6, 45.5, 39.6, 32.2, 27.9, 23.0, 12.2.

HRMS: m/z [M+Na]⁺ calcd for C₂₀H₂₉NNaO₂: 338.2090; found: 338.2090.

methyl 3-((isopropyl(phenyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylate (15)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*-isopropyl-*N*-((trimethylsilyl)methyl)aniline (44.2 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆]

(3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **15** was obtained as a colorless oil (30.4 mg, 46% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.17 (m, 2H), 6.78 – 6.63 (m, 3H), 5.97 – 5.88 (m, 1H), 5.09 – 4.91 (m, 2H), 3.98 – 3.89 (m, 1H), 3.69 (s, 1.75H), 3.64 (s, 1.25H), 3.04 (t, *J* = 6.2 Hz, 2H), 2.45 – 2.16 (m, 3H), 2.12 – 2.04 (m, 1.15H), 1.89 – 1.84 (m, 0.81H), 1.13 – 1.10 (m, 6H), 0.99 (s, 3.5H), 0.98 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 178.0, 149.1, 143.9, 129.0, 117.3, 115.5, 112.5, 51.6, 50.5, 50.2, 49.8, 39.5, 31.8, 26.5, 22.4, 20.4.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.2, 149.0, 145.0, 129.0, 117.0,

115.0, 112.2, 52.4, 51.4, 50.2, 49.0, 39.7, 32.4, 27.9, 23.0, 20.4. **HRMS**: m/z [M+Na]⁺ calcd for C₂₁H₃₁NNaO₂: 352.2247; found: 352.2246.

methyl 3-((allyl(phenyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1carboxylate (16)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*-allyl-*N*-((trimethylsilyl)methyl)aniline (43.9 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0

mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **16** was obtained as a colorless oil (32.7 mg, 50% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 2H), 6.70 – 6.58 (m, 3H), 6.02 – 5.85 (m, 1H), 5.85 – 5.72 (m, 1H), 5.15 – 5.05 (m, 2H), 5.05 – 4.91 (m, 2H), 3.95 – 3.84 (m, 2H), 3.68 (s, 1.75H), 3.67 (s, 1.25H), 3.33 – 3.19 (m, 2H), 2.47 – 2.26 (m, 3H), 2.15 – 2.07 (m, 1.18H), 1.98 – 1.84 (m, 0.82H), 1.01 (s, 3.5H), 0.97 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 148.5, 143.8, 134.3, 129.1, 116.2, 116.0, 112.7, 112.4, 57.1, 54.0, 51.6, 51.4, 39.6, 31.7, 26.6, 22.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.1, 148.5, 144.9, 134.4, 129.1,

116.2, 116.0, 112.5, 112.3, 55.8, 53.8, 53.1, 50.6, 39.6, 32.2, 27.8, 23.0.

HRMS: $m/z [M+Na]^+$ calcd for $C_{21}H_{29}NNaO_2$: 350.2090; found: 350.2092.

3-((diphenylamino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylic acid (17)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*-phenyl-*N*-((trimethylsilyl)methyl)aniline (51.0 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆]

(3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **17** was obtained as a colorless oil (46.8 mg, 67% yield, 1.4:1 dr). **TLC:** Rf = 0.4 (Petroleum ether/ethyl acetate 3:1)

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.13 (m, 4H), 7.03 – 6.79 (m, 6H), 6.06 – 5.79 (m, 1H), 5.14 – 4.89 (m, 2H), 3.75 – 3.52 (m, 2H), 2.63 – 2.30 (m, 1.8H), 2.29 – 2.19 (m, 1.26H), 2.12 – 2.04 (m, 1.2H), 1.96 – 1.75 (m, 0.84H), 1.04 (s, 3.5H), 0.99 (s, 2.5H).
Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 183.3, 148.4, 143.4, 129.3, 121.6, 121.3, 113.1, 58.1, 50.4, 39.4, 31.6, 26.7, 22.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 182.9, 148.4, 144.5, 129.3, 121.5, 121.2, 112.9, 57.0, 52.8, 39.4, 32.0, 27.8, 22.9.

HRMS: m/z [M+Na]⁺ calcd for C₂₃H₂₇NNaO₂: 372.1934; found: 372.1934.

methyl 3-(([1,1'-biphenyl]-4-yl(phenyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (18)

Following the general procedure, 3-methylbut-2-en-1yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*-phenyl-*N*-((trimethylsilyl)methyl)-[1,1'-biphenyl]-4-amine (66.3

mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **18** was obtained as a white solid (37.8 mg, 43% yield for 2 steps, 1.8:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.53 (m, 2H), 7.53 – 7.45 (m, 2H), 7.46 – 7.37 (m,

2H), 7.36 – 7.26 (m, 3H), 7.07 – 6.98 (m, 3H), 6.98 – 6.88 (m, 2H), 6.00 – 5.81 (m, 1H), 5.07 – 4.88 (m, 2H), 3.74 – 3.60 (m, 5H), 2.57 – 2.22 (m, 3H), 2.12 – 2.03 (m, 1.3H), 1.90 – 1.81 (m, 0.72H), 1.00 (s, 3.85H), 0.94 (s, 2.15H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 148.1, 147.9, 143.8, 140.9, 133.4, 129.5, 128.8, 127.9, 126.6, 122.8, 122.5, 120.0, 112.7, 58.1, 51.7, 51.4, 39.6, 31.5, 26.9, 22.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.2, 148.0, 147.8, 144.8, 140.9, 133.4, 129.5, 128.8, 127.9, 126.6, 122.6, 122.4, 119.9, 112.4, 57.1, 53.1, 50.7, 39.6, 32.1, 27.9, 23.0.

HRMS: m/z [M+Na]⁺ calcd for C₃₀H₃₃NNaO₂: 462.2404; found: 462.2406.

m.p. 61–62 °C. (**18** was recrystallized from EA/PE = 1:10)

methyl 3-((9*H*-carbazol-9-yl)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1carboxylate (19)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 9-((trimethylsilyl)methyl)-9*H*-carbazole (50.6 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0

mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **19** was obtained as a white solid (18.0 mg, 25% yield for 2 steps, 2:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 – 8.02 (m, 2H), 7.51 – 7.33 (m, 4H), 7.27 – 7.18 (m, 2H), 5.90 (dd, *J* = 17.3, 10.8 Hz, 0.66H), 5.77 (dd, *J* = 17.4, 10.8 Hz, 0.33H), 5.05 – 4.84 (m, 2H), 4.28 (d, *J* = 7.5 Hz, 1.33H), 4.24 (d, *J* = 6.5 Hz, 0.66H), 3.75 (s, 2H), 3.62 (s, 1H), 2.77 – 2.59 (m, 1H), 2.39 – 2.27 (m, 3.33H), 2.10 – 2.03 (m, 0.67H), 0.98 (s, 4H), 0.89 (s, 2H).

Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 143.6, 140.6, 125.7, 122.9,

120.3, 118.9, 112.9, 108.8, 51.62, 51.58, 48.7, 39.6, 31.3, 27.8, 22.3. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 176.9, 144.6, 140.7, 125.7, 122.9, 120.4, 118.9, 112.6, 108.7, 52.7, 50.7, 47.1, 39.6, 31.7, 29.4, 22.8. HRMS: m/z [M+Na]⁺ calcd for C₂₄H₂₇NNaO₂: 384.1934; found: 384.1934. **m.p.** 78–79 °C. (**19** was recrystallized from EA/PE = 1:10)

methyl 3-((10,11-dihydro-5*H*-dibenzo[b,f]azepin-5-yl)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylate (20)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 5-((trimethylsilyl)methyl)-10,11-dihydro-5*H*-dibenzo[b,f]azepine (56.2 mg, 0.2 mmol, 1.0 equiv.) and

Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **20** was obtained as a white solid (36.1 mg, 46% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.05 (m, 4H), 7.05 – 6.97 (m, 2H), 6.95 – 6.86 (m, 2H), 5.95 – 5.78 (m, 1H), 5.06 – 4.83 (m, 2H), 3.70 – 3.62 (m, 2H), 3.61 (s, 1.25H), 3.59 (s, 1.75H), 3.13 (s, 4H), 2.34 – 2.27 (m, 1H), 2.26 – 2.13 (m, 2H), 2.11 – 2.04 (m, 1.2H), 1.94 – 1.82 (m, 0.84H), 0.94 (s, 3.5H), 0.93 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 148.4, 143.8, 134.3, 129.8, 126.3, 122.5, 120.1, 112.5, 57.4, 51.5, 51.4, 39.6, 32.2, 31.4, 25.9, 22.3.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.2, 148.5, 144.8, 134.4, 129.8,

126.3, 122.5, 120.0, 112.2, 56.3, 52.9, 50.7, 39.6, 32.2, 31.8, 26.7, 23.0.

HRMS: m/z [M+Na]⁺ calcd for C₂₆H₃₁NNaO₂: 412.2247; found: 412.2247.

m.p. 60–61 °C. (**20** was recrystallized from EA/PE = 1:10)

3-((benzyl(methyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-

carboxylic acid (21)

equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **21** was obtained as a yellow oil (44.5 mg, 74% yield, 1.4:1 dr).

TLC: Rf = 0.4 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.11 (m, 5H), 6.07 (dd, *J* = 17.2, 10.9 Hz, 0.59H), 5.92 (dd, *J* = 17.4, 10.8 Hz, 0.41H) 5.08 – 4.76 (m, 2H), 3.51 (s, 0.83H), 3.45 (s, 1.16H), 2.52 – 2.31 (m, 3H), 2.22 (t, *J* = 10.0 Hz, 1H), 2.14 (s, 1.66H), 2.08 (s, 2.33H), 2.04 – 1.97 (m, 1H), 1.77 – 1.63 (m, 1H), 1.01 (s, 3.5H), 0.94 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 184.1, 145.4, 137.7, 129.5, 128.3, 127.3, 111.7, 64.5, 61.9, 51.4, 41.6, 39.2, 33.2, 25.6, 22.6.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 182.6, 146.4, 137.0, 129.7, 128.3, 127.5, 111.2, 62.7, 62.2, 53.9, 41.4, 39.2, 33.4, 26.9, 23.3.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₇NNaO₂: 324.1934; found: 324.1935.

3-((methyl(4-methylbenzyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1carboxylic acid (22)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*-methyl-*N*-(4methylbenzyl)-1-(trimethylsilyl)methanamine (44.2

mg, 0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0 × 10⁻³ mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **22** was obtained as a colorless oil (36.6 mg, 58% yield, 1.4:1 dr).

TLC: Rf = 0.4 (Dichloromethane/methanol 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.00 (m, 4H), 6.07 (dd, J = 17.8, 10.4 Hz, 0.58H), 5.94 (dd, J = 17.4, 10.8 Hz, 0.42H), 5.04 – 4.85 (m, 2H), 3.65 (s, 0.83H), 3.55 (s, 1.17H), 2.56 (d, J = 5.6 Hz, 1.75H), 2.47 – 2.40 (m, 1.25H), 2.31 (s, 1.25H), 2.29 (s, 1.75H), 2.27 – 2.02 (m, 6H), 1.78 – 1.66 (m, 1H), 1.03 (s, 3.5H), 0.98 (s, 2.5H). Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 183.0, 145.1, 137.3, 133.0, 129.9, 129.1, 111.4, 63.4, 60.9, 51.2, 40.7, 39.2, 33.1, 25.1, 22.6, 21.2. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 181.5, 146.2, 137.8, 131.5, 130.3, 129.2, 111.8, 62.0, 61.1, 54.2, 40.1, 39.1, 33.9, 27.0, 23.3, 21.2. HRMS: m/z [M+Na]⁺ calcd for C₂₀H₂₉NNaO₂: 338.2090; found: 338.2091.

3-(((4-chlorobenzyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylic acid (23)

MeFollowing the general procedure, 3-methylbut-2-en-1-ylNCO2Mebicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol,2.0equiv.),N-(4-chlorobenzyl)-N-methyl-1-

(trimethylsilyl)methanamine (48.4 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol,1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **23** was obtained as a colorless oil (33.6 mg, 48% yield, 1.8:1 dr).

TLC: Rf = 0.4 (Dichloromethane/methanol 8:1)

C

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.10 (m, 4H), 5.97 (dd, *J* = 17.3, 10.8 Hz, 0.64H), 5.82 (dd, *J* = 17.4, 10.8 Hz, 0.36H), 5.12 – 4.83 (m, 2H), 3.68 (s, 1.08H), 3.60 (s, 1.92H), 3.36 (s, 2H), 2.43 – 2.33 (m, 1H), 2.32 – 2.26 (m, 3H), 2.25 – 2.12 (m, 1H), 2.10 (s, 1.08H), 2.09 (s, 1.92H), 2.03 – 1.96 (m, 1.28H), 1.85 – 1.75 (m, 0.72H), 1.00 (s, 3.85H), 0.93 (s, 2.15H).

Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.8, 143.9, 137.9, 132.6, 130.2, 128.3, 112.6, 64.2, 62.0, 51.6, 51.3, 42.4, 39.5, 32.1, 26.4, 22.3.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 144.8, 137.9, 132.6, 130.3,

128.3, 112.1, 62.9, 61.7, 53.3, 50.7, 42.5, 39.5, 32.5, 27.3, 22.9. $\label{eq:HRMS:m/z} \ [M+Na]^+ \ calcd \ for \ C_{19}H_{26}ClNNaO_2: \ 372.1701; \ found: \ 372.1702.$

3-((methyl(pyridin-4-ylmethyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylic acid (24)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *N*-methyl-1-(pyridin-4-yl)-*N*-((trimethylsilyl)methyl)methanamine (41.6 mg, 0.2

mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0 \times 10⁻³ mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **24** was obtained as a white solid (28.4 mg, 47% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CD₃OD) δ 8.58 – 8.31 (m, 2H), 7.50 – 7.30 (m, 2H), 6.12 (dd, *J* = 17.4, 10.8 Hz, 1H), 5.94 (dd, *J* = 17.4, 10.8 Hz, 0.42H), 5.05 – 4.90 (m, 2H), 3.52 (s, 2H), 2.45 – 2.30 (m, 3H), 2.28 – 2.21 (m, 1H), 2.18 (s, 1.25H), 2.16 (s, 1.75H), 2.14 – 1.94 (m, 2H), 1.78 – 1.69 (m, 1H), 1.04 (s, 3.5H), 0.96 (s, 2.5H).

Major diastereomer: ¹³C NMR (101 MHz, CD₃OD) δ 183.5, 149.5, 148.6, 145.2, 124.4, 110.9, 64.6, 60.7, 51.6, 41.5, 38.7, 32.9, 25.3, 21.8.

Minor diastereomer: ¹³**C NMR** (101 MHz, CD₃OD) δ 182.1, 149.4, 148.6, 146.2, 124.6, 110.6, 62.8, 60.5, 53.7, 41.5, 38.8, 32.9, 26.5, 22.4.

HRMS: m/z [M+Na]⁺ calcd for C₁₈H₂₆N₂NaO₂: 325.1886; found: 325.1887.

m.p. 180–181 °C. (24 was recrystallized from DCM/PE = 1:5)

1-(2-methylbut-3-en-2-yl)-3-(piperidin-1-ylmethyl)cyclobutane-1-carboxylic acid (25)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 1-((trimethylsilyl)methyl)piperidine (34.2 mg,

0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **25** was obtained

as a yellow oil (21.5 mg, 41% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

Major diastereomer:

¹H NMR (400 MHz, CDCl₃) δ 6.17 – 6.00 (m, 1H), 5.04 – 4.87 (m, 2H), 2.86 – 2.33 (m, 6H), 2.31 – 1.98 (m, 5H), 1.63 (p, J = 5.5 Hz, 4H), 1.43 (s, 2H), 1.02 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 183.7, 145.7, 111.4, 64.8, 53.5, 51.3, 39.2, 32.9, 24.4, 23.8, 23.5, 22.7.

HRMS: m/z [M+Na]⁺ calcd for C₁₆H₂₇NNaO₂: 288.1934; found: 288.1934.

Minor diastereomer:

¹H NMR (400 MHz, CDCl₃) δ 6.03 (dd, J = 17.5, 10.8 Hz, 1H), 5.06 – 4.82 (m, 2H), 2.60 (s, 3H), 2.44 (t, J = 9.0 Hz, 6H), 1.68 (d, J = 8.3 Hz, 6H), 1.56 – 1.38 (m, 2H), 1.02 (s, 6H).
¹³C NMR (101 MHz, CDCl₃) δ 182.6, 147.1, 110.7, 64.3, 54.6, 54.1, 38.9, 34.4, 27.2, 24.5, 23.6, 23.4.

HRMS: m/z [M+Na]⁺ calcd for C₁₆H₂₇NNaO₂: 288.1934; found: 288.1934.

methyl 3-((4,4-difluoropiperidin-1-yl)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (26)

Following the general procedure, 3-methylbut-2-en-1yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 4,4-difluoro-1-((trimethylsilyl)methyl)piperidine (41.4 mg, 0.2 mmol,

1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 4 h. Product **26** was obtained as a yellow oil (29.0 mg, 46% yield for 2 steps, 1.8:1 dr).

TLC: Rf = 0.6 (Dichloromethane/methanol 15:1)

¹**H NMR** (400 MHz, CDCl₃) δ 5.96 (dd, *J* = 17.3, 10.9 Hz, 0.64H), 5.85 (dd, *J* = 17.4, 10.8 Hz, 0.36H), 5.06 – 4.88 (m, 2H), 3.67 (s, 1.08H), 3.63 (s, 1.92H), 2.44 (t, *J* = 5.7 Hz, 4H),

2.39 – 2.30 (m, 3H), 2.30 – 2.26 (m, 1H), 2.24 – 2.08 (m, 1H), 2.04 – 1.98 (m, 1H), 1.97 – 1.85 (m, 4H), 1.85 – 1.76 (m, 1H), 0.99 (s, 3.85H), 0.94 (s, 2.15H). Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 143.7, 122.0 (t, *J* = 242.4 Hz), 112.7, 64.4, 51.6, 51.3, 50.1 (t, *J* = 5.4 Hz), 39.5, 34.0 (t, *J* = 23.2 Hz), 32.4, 26.4, 22.3. Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.3, 144.8, 122.0 (t, *J* = 242.4 Hz), 112.2, 63.3, 53.5, 50.7, 50.1 (t, *J* = 5.4 Hz), 39.5, 34.0 (t, *J* = 23.2 Hz), 32.8, 27.4, 23.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -98.1.

HRMS: m/z [M+Na]⁺ calcd for C₁₇H₂₇F₂NNaO₂: 338.1902; found: 338.1903.

3-((4-(ethoxycarbonyl)piperidin-1-yl)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylic acid (27)

Following the general procedure, 3-methylbut-2en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), ethyl 1-

((trimethylsilyl)methyl)piperidine-4-carboxylate (48.6 mg, 0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **27** was obtained as a yellow oil (44.5 mg, 66% yield, 1.4:1 dr).

TLC: Rf = 0.2 (Dichloromethane/methanol 8:1)

Major diastereomer:

¹**H NMR** (400 MHz, CDCl₃) δ 6.07 (dd, *J* = 17.2, 11.0 Hz, 1H), 5.03 – 4.87 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 2H), 2.84 (d, *J* = 11.1 Hz, 2H), 2.40 (d, *J* = 6.5 Hz, 2H), 2.30 – 2.14 (m, 3H), 2.01 (dt, *J* = 19.5, 10.0 Hz, 5H), 1.85 (d, *J* = 10.6 Hz, 2H), 1.80 – 1.65 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H), 1.00 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 184.2, 174.9, 145.7, 111.5, 65.4, 60.4, 52.6, 51.5, 40.7, 39.1, 33.1, 27.6, 24.9, 22.7, 14.3.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₃₁NNaO₄: 360.2145; found: 360.2145.

Minor diastereomer:

¹**H NMR** (400 MHz, CDCl₃) δ 5.96 (dd, *J* = 17.4, 10.8 Hz, 1H), 4.90 (dd, *J* = 26.1, 14.1 Hz,

2H), 4.10 (q, *J* = 7.1 Hz, 2H), 2.86 (d, *J* = 10.6 Hz, 2H), 2.45 – 2.19 (m, 6H), 2.10 (s, 2H), 1.91 – 1.61 (m, 6H), 1.22 (t, *J* = 7.1 Hz, 3H), 0.95 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 182.6, 174.9, 146.8, 110.9, 64.2, 60.5, 54.3, 52.7, 40.4, 39.0, 34.0, 27.3, 23.3, 14.3.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₃₁NNaO₄: 360.2145; found: 360.2144.

3-((1,4-dioxa-8-azaspiro[4.5]decan-8-yl)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylic acid (28)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 8-((trimethylsilyl)methyl)-1,4dioxa-8-azaspiro[4.5]decane (45.8 mg, 0.2 mmol, 1.0

equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **28** was obtained as a white solid (42.6 mg, 66% yield, 1.4:1 dr).

TLC: Rf = 0.2 (Dichloromethane/methanol 8:1)

¹H NMR (400 MHz, CDCl₃) δ 6.15 – 5.94 (m, 1H), 5.12 – 4.78 (m, 2H), 3.93 (s, 4H), 2.67 (s, 4H), 2.58 (s, 1H), 2.48 – 2.35 (m, 2H), 2.28 – 2.17 (m, 1H), 2.17 – 2.02 (m, 2H), 1.87 – 1.61 (m, 5H), 1.03 (s, 3.5H), 0.98 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 184.8, 145.5, 111.7, 106.5, 64.3, 64.0, 51.2, 50.8, 39.2, 33.7, 32.5, 24.3, 22.6.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 183.2, 146.5, 111.3, 106.4, 64.3, 63.4, 54.2, 51.2, 39.0, 33.9, 33.7, 27.1, 23.3.

HRMS: m/z [M+Na]⁺ calcd for C₁₈H₂₉NNaO₄: 346.1989; found: 346.1989.

m.p. 104–105 °C. (28 was recrystallized from DCM/PE = 1:5)

3-(azocan-1-ylmethyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylic acid (29)

Following the general procedure, 3-methylbut-2-en-1yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 1-((trimethylsilyl)methyl)azocane (39.8 mg, 0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **29** was obtained as a yellow oil (41.0 mg, 70% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.04 (dd, *J* = 17.4, 10.8 Hz, 0.58H), 5.94 (dd, *J* = 17.4, 10.8 Hz, 0.42H), 5.07 – 4.74 (m, 2H), 2.99 – 2.91 (m, 1H), 2.90 – 2.75 (m, 2H), 2.76 – 2.60 (m, 2H), 2.59 – 2.25 (m, 2H), 2.25 – 1.98 (m, 3H), 1.78 – 1.46 (m, 11H), 0.99 (s, 3.5H), 0.95 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 182.9, 145.4, 111.6, 62.1, 51.2, 50.5, 39.1, 32.6, 26.9, 25.5, 24.3, 22.6.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 181.4, 146.6, 111.2, 60.0, 54.4, 49.8, 38.9, 34.2, 26.8, 25.0, 24.3, 23.3.

HRMS: m/z [M+Na]⁺ calcd for C₁₈H₃₁NNaO₂: 316.2247; found: 316.2247.

1-(2-methylbut-3-en-2-yl)-3-(morpholinomethyl)cyclobutane-1-carboxylic acid (30)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 4-((trimethylsilyl)methyl)morpholine (34.6 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0

mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **30** was obtained as a colorless oil (34.2 mg, 64% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.11 (dd, *J* = 17.4, 10.8 Hz, 0.58H), 6.01 (dd, *J* = 17.4, 10.8 Hz, 0.42H), 5.14 – 4.89 (m, 2H), 3.90 – 3.60 (m, 4H), 2.78 – 2.28 (m, 7H), 2.29 – 2.04 (m, 3H), 1.84 – 1.64 (m, 1H), 1.06 (s, 3.5H), 1.02 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 185.4, 145.2, 112.1, 66.4, 65.1, 53.6, 51.2, 39.3, 32.4, 26.6, 22.7.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 185.4, 146.3, 111.6, 66.2, 64.7, 53.6, 53.2, 39.2, 33.5, 29.8, 23.3.

HRMS: m/z [M+Na]⁺ calcd for C₁₅H₂₅NNaO₃: 290.1727; found: 290.1727.

3-((4-(*tert*-butoxycarbonyl)piperazin-1-yl)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylic acid (31)

Following the general procedure, 3-methylbut-2-en1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg,
0.4 mmol, 2.0 equiv.), *tert*-butyl 4((trimethylsilyl)methyl)piperazine-1-carboxylate

(54.4 mg, 0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **31** was obtained as a yellow solid (44.0 mg, 60% yield, 1.4:1 dr).

TLC: Rf = 0.4 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.02 (dd, *J* = 17.2, 10.9 Hz, 0.58H), 5.89 (dd, *J* = 17.4, 10.8 Hz, 0.42H), 5.12 – 4.79 (m, 2H), 3.56 – 3.27 (m, 4H), 2.56 – 2.27 (m, 7H), 2.27 – 2.07 (m, 2H), 2.04 – 1.94 (m, 1H), 1.77 – 1.63 (m, 1H), 1.42 (s, 9H), 1.00 (s, 3.5H), 0.95 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 183.1, 154.7, 144.7, 112.2, 79.8, 65.1, 52.6, 51.0, 42.5, 39.1, 32.9, 28.5, 24.9, 22.5.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 181.5, 154.6, 145.6, 111.8, 79.9, 63.9, 54.0, 52.8, 43.3, 39.1, 33.7, 28.5, 27.2, 23.2.

HRMS: $m/z [M+Na]^+$ calcd for $C_{20}H_{34}N_2NaO_4$: 389.2411; found: 389.2411.

m.p. 140–141 °C. (31 was recrystallized from DCM/PE = 1:5)

tert-butyl 4-((3-(methoxycarbonyl)-3-(2-methylbut-3-en-2-yl)cyclobutyl)methyl)-1,4-diazepane-1-carboxylate (32)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), *tert*-butyl 4-((trimethylsilyl)methyl)-1,4-diazepane-1-carboxylate (57.2 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 4 h. Product **32** was obtained as a yellow oil (26.1 mg, 33% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Dichloromethane/methanol 15:1)

¹H NMR (400 MHz, CDCl₃) δ 5.99 (dd, *J* = 17.3, 10.8 Hz, 0.58H), 5.88 (dd, *J* = 17.4, 10.8 Hz, 0.42H), 5.10 – 4.90 (m, 2H), 3.70 (s, 1.25H), 3.66 (s, 1.75H), 3.52 – 3.32 (m, 4H), 2.66 – 2.51 (m, 4H), 2.50 – 2.43 (m, 2H), 2.42 – 2.35 (m, 1H), 2.35 – 2.10 (m, 3H), 2.07 – 2.00 (m, 1H), 1.85 – 1.75 (m, 2H), 1.45 (s, 9H), 1.02 (s, 3.5H), 0.97 (s, 2.5H). Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 155.6, 143.8, 112.6, 79.3, 64.3, 56.1, 54.9, 51.6, 51.4, 46.6, 46.0, 39.5, 32.4, 28.6, 27.6, 26.7, 22.3. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 155.7, 144.8, 112.1, 79.3, 63.2, 56.1, 54.9, 53.5, 50.7, 46.0, 45.2, 39.5, 32.8, 29.8, 28.6, 27.8, 23.0. HRMS: m/z [M+Na]⁺ calcd for C₂₂H₃₈N₂NaO₄: 417.2724; found: 417.2725.

methyl 3-((3,4-dihydroquinolin-1(2*H*)-yl)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylate (33)

Following the general procedure, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 1-((trimethylsilyl)methyl)-1,2,3,4-tetrahydroquinoline (43.8 mg, 0.2 mmol, 1.0 equiv.) and

Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 2 h. Product **33** was obtained as a colorless oil (22.2 mg, 34% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Petroleum ether/ethyl acetate 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.06 – 6.95 (m, 1H), 6.96 – 6.86 (m, 1H), 6.59 – 6.50 (m,
1H), 6.50 - 6.43 (m, 1H), 6.02 - 5.84 (m, 1H), 5.11 - 4.89 (m, 2H), 3.68 (s, 1.75H), 3.67 (s, 1.25H), 3.32 - 3.13 (m, 4H), 2.72 (t, J = 6.4 Hz, 2H), 2.48 - 2.28 (m, 3H), 2.17 - 2.10 (m, 1H), 1.98 - 1.83 (m, 3H), 1.01 (s, 3.5H), 0.98 (s, 2.5H). Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 145.5, 143.8, 129.3, 127.0, 122.3, 115.6, 112.7, 110.6, 57.7, 51.6, 51.4, 50.4, 39.6, 32.3, 28.2, 26.2, 22.3. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.2, 145.5, 144.9, 129.3, 127.0, 122.3, 115.6, 112.3, 110.6, 56.3, 53.4, 50.7, 50.2, 39.6, 31.8, 28.2, 27.6, 23.0, 22.3.

HRMS: m/z [M+H]⁺ calcd for C₂₁H₃₀NO₂: 328.2271; found: 328.2271.

1-allyl-3-(morpholinomethyl)cyclobutane-1-carboxylic acid (34)

Followingthegeneralprocedure,allylbicyclo[1.1.0]butane-1-carboxylate(55.2 mg, 0.4 mmol,2.0 equiv.),4-((trimethylsilyl)methyl)morpholine(34.6

mg, 0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0 × 10⁻³ mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **34** was obtained as a yellow oil (23.4 mg, 49% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹H NMR (400 MHz, CDCl₃) δ 9.38 (s, 1H), 5.94 – 5.53 (m, 1H), 5.18 – 4.86 (m, 2H), 3.68 (t, *J* = 4.5 Hz, 4H), 2.68 – 2.22 (m, 10H), 2.20 – 1.77 (m, 2H), 1.68 – 1.50 (m, 1H).

Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 182.5, 134.8, 117.4, 66.2, 64.6, 53.2, 44.2, 34.7, 25.1.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 182.5, 134.6, 117.1, 66.2, 65.3, 53.2, 41.8, 36.5, 27.1.

HRMS: m/z [M+Na]⁺ calcd for C₁₃H₂₁NNaO₃: 262.1414; found: 262.1414.

1-(2-methylallyl)-3-(morpholinomethyl)cyclobutane-1-carboxylic acid (35)

Following the general procedure, 2-methylallyl bicyclo[1.1.0]butane-1-carboxylate (60.8 mg, 0.4 mmol, 2.0 equiv.), 4-((trimethylsilyl)methyl)morpholine (34.6 mg,

0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **35** was obtained as a yellow oil (21.3 mg, 42% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (s, 1H), 4.75 – 4.51 (m, 2H), 3.69 (t, *J* = 4.6 Hz, 4H), 2.76 – 2.23 (m, 10H), 2.21 – 2.00 (m, 2H), 1.71 – 1.56 (m, 4H).

Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 182.1, 143.2, 111.9, 66.0, 64.2, 52.9, 48.1, 45.3, 35.4, 25.1, 23.6.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 181.6, 143.1, 111.7, 66.0, 65.1, 53.1, 45.9, 43.7, 38.2, 27.9, 23.5.

HRMS: m/z [M+Na]⁺ calcd for C₁₄H₂₃NNaO₃: 276.1570; found: 276.1571.

1-(buta-2,3-dien-2-yl)-3-(morpholinomethyl)cyclobutane-1-carboxylic acid (36)

Following the general procedure, but-2-yn-1-yl bicyclo[1.1.0]butane-1-carboxylate (60.0 mg, 0.4 mmol, 2.0 equiv.), 4-((trimethylsilyl)methyl)morpholine (34.6 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0

mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **36** was obtained as a yellow oil (31.1 mg, 62% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 4.94 – 4.59 (m, 2H), 3.85 – 3.53 (m, 4H), 2.69
– 2.36 (m, 7H), 2.38 – 2.26 (m, 1H), 2.26 – 2.16 (m, 1H), 2.14 – 2.03 (m, 1H), 1.87 – 1.71 (m, 1H), 1.61 (s, 1.75H), 1.56 (s, 1.25H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 205.7, 181.7, 101.7, 76.6, 66.3, 64.6, 53.2, 47.2, 35.5, 25.8, 15.1.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 205.8, 181.7, 103.9, 76.6, 66.3, 65.3, 53.4, 48.1, 36.6, 26.3, 14.8.

HRMS: m/z [M+Na]⁺ calcd for C₁₄H₂₁NNaO₃: 274.1414; found: 274.1414.

1-(3,7-dimethylocta-1,6-dien-3-yl)-3-(morpholinomethyl)cyclobutane-1-carboxylic acid (37)

Following the general procedure, (*E*)-3,7-dimethylocta-2,6-dien-1-yl bicyclo[1.1.0]butane-1-carboxylate (93.6 mg, 0.4 mmol, 2.0 equiv.), 4-((trimethylsilyl)methyl)morpholine (34.6 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm,

SYNLED) at 40 °C for 24 h. Product **37** was obtained as a yellow oil (28.8 mg, 43% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹H NMR (400 MHz, CDCl₃) δ 6.03 – 5.72 (m, 1H), 5.25 – 4.85 (m, 3H), 3.85 – 3.50 (m, 4H), 2.63 – 2.35 (m, 6H), 2.34 – 1.96 (m, 4H), 1.83 – 1.74 (m, 2H), 1.71 – 1.57 (m, 4H), 1.53 (s, 3H), 1.48 – 1.30 (m, 2H), 0.99 (s, 1.75H), 0.96 (s, 1.25H). Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 182.7, 142.7, 131.0, 125.2, 114.4, 66.1, 65.0, 53.0, 51.7, 42.6, 35.2, 32.7, 32.3, 25.8, 24.4, 23.4, 17.7, 17.0. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 143.9, 131.0, 125.1, 113.9, 66.0, 64.1, 54.8, 53.3, 42.3, 36.6, 34.3, 34.0, 27.8, 25.8, 23.3, 18.1, 17.7. HRMS: m/z [M+Na]⁺ calcd for C₂₀H₃₃NNaO₃: 358.2353; found: 358.2352.

(*E*)-3-(morpholinomethyl)-1-(3,7,11-trimethyldodeca-1,6,10-trien-3-yl)cyclobutane-1-carboxylic acid (38)

Following the general procedure, (2E,6E)-3,7,11trimethyldodeca-2,6,10-trien-1-yl bicyclo[1.1.0]butane-1-carboxylate (120.8 mg, 0.4 mmol, 2.0 equiv.), 4-((trimethylsilyl)methyl)morpholine (34.6 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0 × 10⁻³ mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **38** was obtained as a colorless oil (33.1 mg, 41% yield, 1.4:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 9.81 (s, 1H), 5.93 (dd, *J* = 17.4, 10.8 Hz, 0.58H), 5.84 (dd, *J* = 17.5, 10.8 Hz, 0.42H), 5.24 – 4.87 (m, 4H), 3.84 – 3.60 (m, 4H), 2.80 – 2.50 (m, 5H), 2.49 – 2.37 (m, 2H), 2.35 – 2.09 (m, 3H), 2.07 – 1.99 (m, 2H), 1.97 – 1.89 (m, 2H), 1.87 – 1.72 (m, 3H), 1.66 (s, 3H), 1.58 (s, 3H), 1.55 (s, 3H), 1.48 – 1.31 (m, 2H), 1.02 (s, 1.75H), 0.98 (s, 1.25H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 181.5, 142.4, 134.7, 131.3, 124.9, 124.4, 114.6, 65.9, 64.3, 52.6, 51.3, 42.6, 39.8, 35.3, 32.6, 32.2, 26.8, 25.7, 24.1, 23.3, 17.7, 17.0, 16.0.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 180.2, 143.8, 134.7, 131.3, 124.9, 124.4, 114.0, 65.7, 63.8, 54.8, 53.1, 42.3, 39.8, 36.6, 34.5, 34.1, 27.9, 26.8, 25.7, 23.1, 18.1, 17.7, 16.0.

HRMS: m/z [M+Na]⁺ calcd for C₂₅H₄₁NNaO₃: 426.2979; found: 426.2977.

3-((4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylic acid (39)

Following the general procedure, 3methylbut-2-en-1-yl bicyclo[1.1.0]butane-1carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 1-(bis(4-fluorophenyl)methyl)-4-

((trimethylsilyl)methyl)piperazine (75.0 mg, 0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Product **39** was obtained as a yellow solid (46.9 mg, 50% yield, 1.4:1 dr).

TLC: Rf = 0.4 (Dichloromethane/methanol 8:1)

¹**H NMR** (500 MHz, CDCl₃) δ 7.28 – 7.19 (m, 4H), 6.90 – 6.82 (m, 4H), 5.94 (dd, *J* = 17.7, 10.4 Hz, 0.58H), 5.83 (dd, *J* = 17.4, 10.8 Hz, 0.42H), 4.97 – 4.81 (m, 2H), 4.12 (s, 1H), 2.81 – 2.50 (m, 4H), 2.51 – 2.23 (m, 6H), 2.22 – 1.92 (m, 4H), 1.69 – 1.56 (m, 1H), 0.93

(s, 3.5H), 0.89 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 181.2, 161.9 (d, *J* = 246.4 Hz), 144.6, 137.6 (d, *J* = 4.0 Hz), 129.3 (d, *J* = 6.1 Hz), 115.6 (d, *J* = 21.2 Hz), 112.2, 74.2, 63.0, 52.0, 50.6, 50.0, 39.2, 32.3, 23.8, 22.5.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 180.1, 161.9 (d, *J* = 246.4 Hz), 145.8, 137.5 (d, *J* = 4.0 Hz), 129.2 (d, *J* = 6.1 Hz), 115.6 (d, *J* = 21.2 Hz), 111.7, 74.1, 62.9, 54.4, 52.7, 49.9, 38.9, 34.2, 27.3, 23.2.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.2, -115.3.

HRMS: m/z [M+Na]⁺ calcd for C₂₈H₃₄F₂N₂NaO₂: 491.2481; found: 491.2484.

m.p. 103–104 °C. (**39** was recrystallized from DCM/PE = 1:5)

methyl 3-((4-((4-chlorophenyl)(pyridin-2-yl)methoxy)piperidin-1-yl)methyl)-1-(2methylbut-3-en-2-yl)cyclobutane-1-carboxylate (40)

Following the general procedure, 3methylbut-2-en-1-yl bicyclo[1.1.0] butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), 2-((4-chlorophenyl) ((1-((trimethylsilyl)methyl)piperidin-4-

yl)oxy)methyl)pyridine (77.8 mg, 0.2 mmol, 1.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.5 mL, 1.0 mmol, 5 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 4 h. Product **40** was obtained as a yellow oil (39.8 mg, 40% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Dichloromethane/methanol 15:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 – 8.43 (m, 1H), 7.68 – 7.61 (m, 1H), 7.54 – 7.47 (m, 1H), 7.37 – 7.30 (m, 2H), 7.27 – 7.21 (m, 2H), 7.16 – 7.08 (m, 1H), 5.96 (dd, *J* = 17.3, 10.9 Hz, 0.58H), 5.85 (dd, *J* = 17.4, 10.8 Hz, 0.42H), 5.56 (s, 1H), 5.07 – 4.86 (m, 2H), 3.66 (s, 1.25H), 3.62 (s, 1.75H), 3.46 – 3.36 (m, 1H), 2.69 – 2.58 (m, 2H), 2.41 – 2.26 (m, 4H), 2.24 – 2.14 (m, 1H), 2.13 – 2.04 (m, 2H), 2.03 – 1.97 (m, 1H), 1.90 – 1.76 (m, 3H),

1.73 – 1.63 (m, 2H), 0.99 (s, 3.5H), 0.93 (s, 2.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.8, 162.2, 148.9, 143.8, 140.5, 136.9, 133.3, 128.5, 128.2, 122.5, 120.7, 112.6, 80.9, 73.1, 65.4, 51.6, 51.3, 51.0, 39.5, 32.7, 31.3, 26.5, 22.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.3, 162.2, 148.9, 144.8, 140.5, 136.9, 133.3, 128.5, 128.2, 122.5, 120.7, 112.1, 80.9, 73.1, 64.1, 53.5, 51.0, 50.6, 39.5, 33.0, 31.3, 27.4, 23.0.

HRMS: m/z [M+Na]⁺ calcd for C₂₉H₃₇ClN₂NaO₃: 519.2385; found: 519.2385.

methyl (*R*)-3-((methyl(3-(naphthalen-2-yloxy)-3-(thiophen-2yl)propyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylate (41)

Following the general procedure, 3methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate (66.4 mg, 0.4 mmol, 2.0 equiv.), (*R*)-*N*-methyl-3-(naphthalen-2yloxy)-3-(thiophen-2-yl)-*N*-

((trimethylsilyl)methyl)propan-1-amine (76.6 mg, 0.2 mmol, 1.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 24 h. Then the isolated carboxylic acid product was treated with TMSCH₂N₂ (0.4 mL, 0.8 mmol, 4.0 equiv.) in Et₂O/MeOH solution (4:1, 2.0 mL) at rt for 4 h. Product **41** was obtained as a yellow oil (34.4 mg, 35% yield for 2 steps, 1.4:1 dr).

TLC: Rf = 0.6 (Dichloromethane/methanol 15:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.42 – 8.29 (m, 1H), 7.85 – 7.70 (m, 1H), 7.54 – 7.43 (m, 2H), 7.43 – 7.34 (m, 1H), 7.31 – 7.25 (m, 1H), 7.23 – 7.16 (m, 1H), 7.10 – 7.02 (m, 1H), 6.98 – 6.90 (m, 1H), 6.90 – 6.81 (m, 1H), 5.87 – 5.69 (m, 2H), 5.00 – 4.83 (m, 2H), 3.66 (s, 1.25H), 3.61 (s, 1.75H), 2.64 – 2.49 (m, 1H), 2.44 – 2.33 (m, 2H), 2.30 (t, *J* = 6.5 Hz, 2H), 2.26 – 2.10 (m, 6H), 2.08 – 1.92 (m, 2H), 1.82 – 1.67 (m, 1H), 0.92 (s, 2.5H), 0.90 (s, 3.5H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.9, 153.5, 145.5, 143.9, 134.7, 127.6, 126.6, 126.3, 126.2, 125.8, 125.2, 124.7, 124.6, 122.2, 120.5, 112.4, 107.0, 74.2, 65.0, 53.4, 51.6, 51.3, 42.8, 39.4, 37.0, 32.2, 26.5, 22.2, 22.1.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 177.4, 153.6, 145.6, 144.9, 134.7, 127.5, 126.6, 126.3, 126.2, 125.8, 125.2, 124.7, 124.6, 122.2, 120.6, 112.1, 107.1, 74.5, 63.6, 54.0, 53.3, 50.7, 42.4, 39.5, 36.8, 32.6, 27.3, 23.0, 22.9.

HRMS: m/z [M+Na]⁺ calcd for C₃₀H₃₇NNaO₃S: 514.2386; found: 514.2386.

5. General procedures for the SRRC process of cyclobutenes

In the glovebox, cyclobut-1-ene-1-carboxylate **4** (0.2 mmol, 1.0 equiv.), α -silylamine **2** (0.4 mmol, 2.0 equiv.), Ir(dtbbpy)(ppy)₂][PF₆] (**PC1**, 3.0 mg, 3.0 × 10⁻³ mmol, 1.5 mol%) and dry CH₃CN (0.25 mL) were added respectively into a flame-dried reaction vial equipped with a stir bar. Then the vial was sealed and transferred out of the glove box. Afterwards, it was irradiated with a 1 W blue LED lamp (450 nm, SYNLED) for 12 h at 40 °C. When the reaction was completed (monitored by TLC), the crude mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel flash chromatography or preparative thin layer chromatography to give the corresponding carboxylic acid product.

2-(((4-cyanophenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1-carboxylic acid (42)

Following the general procedure, 3-methylbut-2-en-1-yl cyclobut-1-ene-1-carboxylate (33.2 mg, 0.2 mmol, 1.0 equiv.), 4-(methyl((trimethylsilyl)methyl)amino)

benzonitrile (87.2 mg, 0.4 mmol, 2.0 equiv.) and

Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **42** was obtained as a white solid (41.2 mg, 66% yield, >20:1 dr).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 3:1)

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 9.0 Hz, 2H), 6.59 (d, J = 9.1 Hz, 2H), 6.02 (dd, J = 17.4, 10.8 Hz, 1H), 5.17 – 4.98 (m, 2H), 3.83 (dd, J = 15.0, 3.8 Hz, 1H), 3.26 (dd, J = 15.0, 10.8 Hz, 1H), 2.97 (s, 3H), 2.80 – 2.61 (m, 1H), 2.42 (ddd, J = 12.6, 9.7, 4.0 Hz, 1H), 2.12 – 1.95 (m, 1H), 1.93 – 1.80 (m, 1H), 1.79 – 1.63 (m, 1H), 1.12 (s, 3H), 1.10 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 180.4, 151.5, 144.3, 133.5, 120.7, 113.2, 111.5, 97.2, 58.7,

44

55.7, 40.3, 39.4, 37.0, 24.1, 23.6, 22.8, 22.8.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₄N₂NaO₂: 335.1730; found: 335.1730. **m.p.** 150–151 °C. (**42** was recrystallized from EA/PE = 1:10)

2-((4,4-difluoropiperidin-1-yl)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1carboxylic acid (43)

Following the general procedure, 3-methylbut-2-en-1-yl cyclobut-1-ene-1-carboxylate (33.2 mg, 0.2 mmol, 1.0 equiv.), 4,4-difluoro-1-((trimethylsilyl)methyl)piperidine (82.8 mg, 0.4 mmol, 2.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0

 \times 10⁻³ mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **43** was obtained as a yellow solid (36.1 mg, 60% yield, >20:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.04 (dd, *J* = 17.0, 11.2 Hz, 1H), 5.15 – 5.02 (m, 2H), 3.07 – 2.72 (m, 3H), 2.70 – 2.51 (m, 3H), 2.51 – 2.42 (m, 2H), 2.17 – 1.93 (m, 5H), 1.86 (dtd, *J* = 12.3, 10.0, 8.1 Hz, 1H), 1.28 (ddt, *J* = 12.3, 11.2, 5.0 Hz, 1H), 1.10 (s, 3H), 1.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 177.3, 144.1, 120.7 (t, J = 242.4 Hz), 113.4, 60.2, 58.9, 49.5, 40.1, 33.6, 33.0 (t, J = 24.2 Hz), 24.8, 23.0, 21.9, 18.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –96.5, –102.1.

HRMS: m/z [M+Na]⁺ calcd for C₁₆H₂₅F₂NNaO₂: 324.1746; found: 324.1746.

m.p. 140–141 °C. (**43** was recrystallized from DCM/PE = 1:5)

1-(2-methylbut-3-en-2-yl)-2-(morpholinomethyl)cyclobutane-1-carboxylic acid (44)

Following the general procedure, 3-methylbut-2-en-1-yl cyclobut-1-ene-1-carboxylate (33.2 mg, 0.2 mmol, 1.0 equiv.), 4-((trimethylsilyl)methyl)morpholine (69.2 mg, 0.4 mmol, 2.0

equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **44** was obtained as a yellow solid

(28.3 mg, 53% yield, >20:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 6.06 (dd, *J* = 17.7, 10.5 Hz, 1H), 5.15 – 4.97 (m, 2H), 3.71 (d, *J* = 26.9 Hz, 4H), 2.84 – 2.68 (m, 2H), 2.69 – 2.56 (m, 2H), 2.56 – 2.33 (m, 4H), 2.10 (dddd, *J* = 13.4, 10.2, 4.9, 1.4 Hz, 1H), 1.85 (dtd, *J* = 12.3, 10.0, 8.3 Hz, 1H), 1.31 – 1.22 (m, 1H), 1.10 (s, 3H), 1.04 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 177.5, 144.3, 113.4, 65.8, 61.4, 58.9, 40.2, 32.7, 24.9, 23.1, 21.9, 18.7.

HRMS: m/z [M+Na]⁺ calcd for C₁₅H₂₅NNaO₃: 290.1727; found: 290.1727.

m.p. 143–144 °C. (**44** was recrystallized from DCM/PE = 1:5)

1-(2-methylbut-3-en-2-yl)-2-((4-phenylpiperazin-1-yl)methyl)cyclobutane-1carboxylic acid (45)

Following the general procedure, 3-methylbut-2-en-1-yl cyclobut-1-ene-1-carboxylate (33.2 mg, 0.2 mmol, 1.0 equiv.), 1-phenyl-4-((trimethylsilyl)methyl)piperazine (99.2

mg, 0.4 mmol, 2.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0 × 10⁻³ mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **45** was obtained as a yellow solid (31.5 mg, 46% yield, >20:1 dr).

TLC: Rf = 0.4 (Dichloromethane/methanol 8:1)

¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.20 (m, 2H), 6.95 – 6.86 (m, 3H), 6.09 (dd, J = 17.6, 10.5 Hz, 1H), 5.16 – 5.04 (m, 2H), 3.55 – 2.88 (m, 6H), 2.87 – 2.79 (m, 1H), 2.78 – 2.58 (m, 3H), 2.57 – 2.43 (m, 2H), 2.12 (dddd, J = 13.4, 10.2, 4.9, 1.4 Hz, 1H), 1.88 (dtd, J = 12.3, 10.0, 8.3 Hz, 1H), 1.30 (ddt, J = 12.3, 11.2, 4.9 Hz, 1H), 1.12 (s, 3H), 1.06 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 177.7, 150.6, 144.4, 129.3, 120.8, 116.6, 113.3, 60.8, 58.9, 48.4, 40.2, 33.0, 24.9, 23.1, 22.0, 18.7.

HRMS: m/z [M+Na]⁺ calcd for C₂₁H₃₀N₂NaO₂: 365.2199; found: 365.2199.

m.p. 134–135 °C. (**45** was recrystallized from DCM/PE = 1:5)

2-((4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carboxylic acid (46)

Following the general procedure, 3-methylbut-2en-1-yl cyclobut-1-ene-1-carboxylate (33.2 mg, 0.2 mmol, 1.0 equiv.), 1-(bis(4-fluorophenyl)methyl)-4-((trimethylsilyl)methyl)piperazine (150.0 mg, 0.4

mmol, 2.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **46** was obtained as a white solid (47.8 mg, 51% yield, >20:1 dr).

TLC: Rf = 0.4 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.26 (m, 4H), 7.02 – 6.86 (m, 4H), 6.06 (dd, *J* = 17.8, 10.4 Hz, 1H), 5.10 – 4.92 (m, 2H), 4.20 (s, 1H), 3.11 – 2.63 (m, 4H), 2.63 – 2.37 (m, 5H), 2.37 – 2.14 (m, 2H), 2.13 – 1.92 (m, 2H), 1.84 (dtd, *J* = 12.3, 9.9, 8.4 Hz, 1H), 1.29 – 1.19 (m, 1H), 1.08 (s, 3H), 1.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 178.2, 162.0 (d, J = 247.5 Hz), 144.6, 137.8 (d, J = 3.0 Hz), 137.6 (d, J = 3.0 Hz), 129.12 (d, J = 8.1 Hz), 129.09 (d, J = 8.1 Hz), 115.73 (d, J = 22.2 Hz), 115.71 (d, J = 22.2 Hz), 113.1, 74.2, 60.4, 58.7, 50.4, 40.1, 32.8, 25.0, 23.1, 21.9, 18.7.
¹⁹F NMR (376 MHz, CDCl₃) δ -115.0, -115.1.

HRMS: m/z [M+Na]⁺ calcd for C₂₈H₃₄F₂N₂NaO₂: 491.2481; found: 491.2480.

m.p. 200–201 °C. (**46** was recrystallized from DCM/PE = 1:5)

2-((4-((4-chlorophenyl)(pyridin-2-yl)methoxy)piperidin-1-yl)methyl)-1-(2methylbut-3-en-2-yl)cyclobutane-1-carboxylic acid (47)

Following the general procedure, 3-methylbut-2-en-1-yl cyclobut-1-ene-1-carboxylate (33.2 mg, 0.2 mmol, 1.0 equiv.), 2-((4chlorophenyl)((1-((trimethylsilyl)methyl) piperidin-4-yl)oxy)methyl)pyridine (155.6 mg,

0.4 mmol, 2.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%),

lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **47** was obtained as a colorless oil (40.6 mg, 42% yield, >20:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 – 8.48 (m, 1H), 7.75 – 7.67 (m, 1H), 7.48 (d, J = 8.0Hz, 1H), 7.38 – 7.34 (m, 2H), 7.33 – 7.29 (m, 2H), 7.23 – 7.15 (m, 1H), 6.16 (dd, J = 17.6, 10.5 Hz, 1H), 5.58 (s, 1H), 5.15 – 5.04 (m, 2H), 3.89 – 3.18 (m, 1H), 2.89 (s, 3H), 2.75 – 2.40 (m, 4H), 2.26 – 1.66 (m, 7H), 1.33 – 1.24 (m, 1H), 1.15 (s, 3H), 1.08 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 179.3, 161.4, 149.1, 144.9, 139.7, 137.1, 137.1, 133.6, 128.7, 128.1, 120.6, 120.6, 112.8, 81.4, 60.4, 58.8, 40.0, 32.8, 24.9, 23.2, 21.7, 18.6. **HRMS**: m/z [M+Na]⁺ calcd for C₂₈H₃₅ClN₂NaO₃: 505.2228; found: 505.2229.

1-(buta-2,3-dien-2-yl)-2-(((4-cyanophenyl)(methyl)amino)methyl)cyclobutane-1carboxylic acid (48)

Following the general procedure, but-2-yn-1-yl cyclobut-1-ene-1-carboxylate (30.0 mg, 0.2 mmol, 1.0 equiv.), 4-(methyl((trimethylsilyl)methyl)amino)benzonitrile (87.2 mg, 0.4 mmol, 2.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0

mg, 3.0×10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **48** was obtained as a yellow solid (36.1 mg, 61% yield, >20:1 dr).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 3:1)

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 6.66 – 6.58 (m, 2H), 4.84 (q, J = 3.0 Hz, 2H), 3.69 (dd, J = 15.0, 4.6 Hz, 1H), 3.31 (dd, J = 15.0, 10.1 Hz, 1H), 3.04 – 2.85 (m, 4H), 2.65 – 2.50 (m, 1H), 2.05 – 1.89 (m, 3H), 1.66 (t, J = 3.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 205.8, 179.5, 151.5, 133.6, 133.4, 120.6, 111.7, 111.6, 102.0, 97.3, 54.1, 53.5, 40.6, 39.1, 28.3, 22.6, 15.0.

HRMS: m/z [M+Na]⁺ calcd for C₁₈H₂₀N₂NaO₂: 319.1417; found: 319.1417.

m.p. 123–124 °C. (**48** was recrystallized from EA/PE = 1:10)

1-(buta-2,3-dien-2-yl)-2-((4,4-difluoropiperidin-1-yl)methyl)cyclobutane-1-

carboxylic acid (49)

Following the general procedure, but-2-yn-1-yl cyclobut-1ene-1-carboxylate (30.0 mg, 0.2 mmol, 1.0 equiv.), 4,4difluoro-1-((trimethylsilyl)methyl)piperidine (82.8 mg, 0.4 mmol, 2.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0 ×

 10^{-3} mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **49** was obtained as a white solid (28.5 mg, 50% yield, >20:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹**H NMR** (400 MHz, CDCl₃) δ 4.89 (dq, *J* = 9.5, 3.1 Hz, 1H), 4.76 (dq, *J* = 9.6, 3.0 Hz, 1H), 3.21 – 2.83 (m, 3H), 2.78 – 2.65 (m, 2H), 2.65 – 2.47 (m, 3H), 2.14 – 1.94 (m, 6H), 1.65 (t, *J* = 3.1 Hz, 3H), 1.56 – 1.45 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 205.6, 175.7, 120.7 (t, *J* = 243.4 Hz), 103.8, 60.1, 54.7, 49.6, 37.2, 33.0 (t, *J* = 24.2 Hz), 28.3, 20.0, 14.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -99.2.

HRMS: m/z [M+Na]⁺ calcd for C₁₅H₂₁F₂NNaO₂: 308.1433; found: 308.1433.

m.p. 147–148 °C. (**49** was recrystallized from DCM/PE = 1:5)

1-allyl-2-(((4-cyanophenyl)(methyl)amino)methyl)cyclobutane-1-carboxylic acid (50)

Following the general procedure, allyl cyclobut-1-ene-1carboxylate (27.6 mg, 0.2 mmol, 1.0 equiv.), 4-(methyl((trimethylsilyl)methyl)amino)benzonitrile (87.2

mg, 0.4 mmol, 2.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0 × 10⁻³ mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **50** was obtained as a yellow oil (34.1 mg, 60% yield, 2.5:1 dr).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 3:1)

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.36 (m, 2H), 6.73 – 6.53 (m, 2H), 5.91 – 5.68 (m, 1H), 5.28 – 5.04 (m, 2H), 3.80 (dd, J = 14.9, 4.3 Hz, 0.29H), 3.70 (dd, J = 14.9, 4.9 Hz, 0.71H), 3.49 – 3.33 (m, 0.85H), 3.03 (s, 2.15H), 3.00 (s, 2H), 2.75 – 2.55 (m, 2H), 2.54 –

2.34 (m, 2H), 2.13 – 1.87 (m, 3H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 181.1, 151.5, 133.5, 133.3, 120.7, 118.5, 111.6, 97.3, 53.6, 50.5, 42.6, 41.3, 39.1, 26.6, 22.4.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 182.0, 151.4, 133.6, 132.9, 120.7, 118.7, 111.6, 97.3, 52.5, 49.4, 39.4, 39.1, 35.2, 25.6, 22.4.

HRMS: m/z [M+Na]⁺ calcd for C₁₇H₂₀N₂NaO₂: 307.1417; found: 307.1417.

1-allyl-2-((4,4-difluoropiperidin-1-yl)methyl)cyclobutane-1-carboxylic acid (51)

Following the general procedure, allyl cyclobut-1-ene-1carboxylate (27.6 mg, 0.2 mmol, 1.0 equiv.), 4,4-difluoro-1-((trimethylsilyl)methyl)piperidine (82.8 mg, 0.4 mmol, 2.0 equiv.) and Ir(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0×10^{-3} mmol,

1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **51** was obtained as a yellow oil (27.3 mg, 50% yield, 2.5:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹H NMR (400 MHz, CDCl₃) δ 5.86 – 5.62 (m, 1H), 5.26 – 5.00 (m, 2H), 2.97 – 2.71 (m, 3H), 2.68 – 2.44 (m, 5H), 2.42 – 2.21 (m, 1H), 2.20 – 1.92 (m, 5H), 1.94 – 1.54 (m, 2H), 1.52 – 1.40 (m, 1H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 178.1, 133.5, 120.6 (t, *J* = 243.4 Hz), 118.5, 59.3, 52.0, 49.1, 45.4, 37.5, 32.9 (t, *J* = 24.2 Hz), 28.1, 19.7.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.2, 132.5, 120.8 (t, J = 243.4 Hz),

118.7, 56.4, 50.5, 50.3, 38.4, 35.3, 33.3 (t, *J* = 24.2 Hz), 25.1, 20.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -99.0.

HRMS: m/z [M+Na]⁺ calcd for C₁₄H₂₁F₂NNaO₂: 296.1433; found: 296.1433.

2-(((4-cyanophenyl)(methyl)amino)methyl)-1-(2-methylallyl)cyclobutane-1carboxylic acid (52)

Following the general procedure, 2-methylallyl cyclobut-1ene-1-carboxylate (30.4 mg, 0.2 mmol, 1.0 equiv.), 4-(methyl((trimethylsilyl)methyl)amino)benzonitrile (87.2 mg, 0.4 mmol, 2.0 equiv.) and lr(dtbbpy)(ppy)₂][PF₆] (3.0 mg, 3.0

 \times 10⁻³ mmol, 1.5 mol%), lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **52** was obtained as a yellow oil (42.9 mg, 72% yield, 2:1 dr).

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 3:1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.32 (m, 2H), 6.69 – 6.41 (m, 2H), 4.87 – 4.49 (m, 2H), 3.77 (dd, *J* = 14.9, 4.2 Hz, 0.33H), 3.67 (dd, *J* = 14.9, 4.5 Hz, 0.66H), 3.41 – 3.23 (m, 1H), 2.98 (s, 1H), 2.95 (s, 2H), 2.83 – 2.69 (m, 1H), 2.67 – 2.45 (m, 2.33H), 2.35 (d, *J* = 15.0 Hz, 0.67H), 2.10 – 1.98 (m, 1H), 1.97 – 1.82 (m, 2H), 1.71 (s, 1H), 1.68 (s, 2H). Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 181.0, 151.5, 141.8, 133.6, 120.6, 112.5, 111.5, 97.5, 53.6, 50.9, 46.3, 42.7, 39.0, 27.2, 23.6, 23.1. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 182.4, 151.4, 141.5, 133.5, 120.6, 113.1, 111.6, 97.4, 52.4, 49.0, 40.5, 39.0, 38.0, 25.6, 23.6, 22.7. **HRMS**: m/z [M+Na]⁺ calcd for C₁₈H₂₂N₂NaO₂: 321.1573; found: 321.1574.

2-((4,4-difluoropiperidin-1-yl)methyl)-1-(2-methylallyl)cyclobutane-1-carboxylic acid (53)

Me

Following the general procedure, 2-methylallyl cyclobut-1-ene-1-carboxylate (30.4 mg, 0.2 mmol, 1.0 equiv.), 4,4-difluoro-1-((trimethylsilyl)methyl)piperidine (82.8 mg, 0.4 mmol, 2.0 equiv.) and $Ir(dtbbpy)(ppy)_2][PF_6]$ (3.0 mg, 3.0 × 10⁻³ mmol, 1.5 mol%),

lighted in 1 W blue LED (450 nm, SYNLED) at 40 °C for 12 h. Product **53** was obtained as a white solid (39.6 mg, 69% yield, 2.5:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 8:1)

¹H NMR (400 MHz, CDCl₃) δ 4.86 – 4.66 (m, 2H), 2.92 – 2.79 (m, 2H), 2.79 – 2.72 (m, 1H), 2.68 – 2.60 (m, 2H), 2.60 – 2.53 (m, 2H), 2.53 – 2.41 (m, 2H), 2.41 – 2.29 (m, 1H), 2.15 – 1.93 (m, 5H), 1.93 – 1.85 (m, 1H), 1.71 (s, 3H), 1.64 – 1.42 (m, 1H).

Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 142.2, 120.6 (t, *J* = 243.4 Hz), 114.0, 59.3, 52.4, 49.3, 49.2, 38.7, 33.0 (t, *J* = 24.2 Hz), 29.3, 23.1, 20.8. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 141.1, 120.8 (t, *J* = 243.4 Hz), 114.4, 56.5, 50.3, 50.1, 39.4, 38.3, 33.2 (t, *J* = 24.2 Hz), 24.9, 23.3, 20.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -99.2. HRMS: m/z [M+Na]⁺ calcd for C₁₅H₂₃F₂NNaO₂: 310.1589; found: 310.1590.

m.p. 144–145 °C. (**53** was recrystallized from DCM/PE = 1:5)

6. X-ray Crystallographic Data

Compound	31
Formula	$C_{20}H_{34}N_2O_4$
Dcalc./ g cm-3	1.135
<i>m/mm-1</i>	0.631
Formula Weight	366.504
Τ/Κ	300.69(10)
Crystal System	monoclinic
Space Group	C2/c
a/Å	26.4619(3)
b/Å	6.3388(1)
c/Å	26.1419(3)
a/°	90
b/°	101.877(1)
g/°	90
V/Å3	4291.08(10)
Z	8
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Си Ка
Qmin/°	3.41
Qmax/°	77.06
Measured Refl.	22227
Independent Refl.	4373
Reflections with $I \ge s(I)$	3782
Rint	0.0200
Parameters	241
Restraints	1
Largest Peak	0.6843
Deepest Hole	-0.2815
GooF	1.0297
wR2 (all data)	0.2379
wR2	0.2300
R1 (all data)	0.0780
R1	0.0721

Atom	Atom	Length/Å
0001	C007	1.308(2)
O002	COOE	1.327(3)
O002	СООК	1.466(3)
N003	СООВ	1.459(3)
N003	COOF	1.473(3)
N003	COOI	1.486(3)
O004	C007	1.214(2)
N005	COOC	1.454(3)
N005	COOE	1.361(3)
N005	C00G	1.463(3)
O006	COOE	1.211(3)
C007	C008	1.513(3)
C008	C009	1.556(2)
C008	COOD	1.568(3)
C008	C001	1.552(3)
C009	СООН	1.554(3)
C00A	COOD	1.506(3)
C00A	COON	1.295(4)
COOB	COOC	1.497(3)
COOD	COOL	1.536(3)
COOD	COOM	1.549(4)
COOF	C00G	1.520(3)
СООН	C001	1.545(3)
СООН	COOJ	1.486(3)
СООК	C000	1.535(4)
СООК	COOP	1.490(5)

Table S4. Bond Lengths in Å for 31.

Table S5. Bond Angles in [°] for 31.

Atom	Atom	Atom	Angle/°
СООК	0002	COOE	121.3(2)
C00F	N003	COOB	108.19(15)
COOJ	N003	COOB	113.43(17)
COOJ	N003	COOF	108.20(16)
COOE	N005	C00C	118.01(18)
C00G	N005	C00C	114.07(16)
C00G	N005	COOE	122.99(18)
O004	C007	0001	122.11(19)
C008	C007	0001	114.12(16)
C008	C007	O004	123.77(19)
C009	C008	C007	113.16(15)
COOD	C008	C007	109.19(14)
COOD	C008	C009	116.98(16)
C00I	C008	C007	112.06(17)
C00I	C008	C009	88.92(13)
C00I	C008	COOD	115.40(17)
СООН	C009	C008	89.94(14)
COON	C00A	COOD	127.5(2)
C00C	COOB	N003	111.20(17)
COOB	C00C	N005	110.71(18)
C00A	COOD	C008	109.58(16)
COOL	COOD	C008	109.4(2)
COOL	COOD	C00A	112.2(2)
C00M	COOD	C008	110.46(18)
C00M	COOD	C00A	106.6(2)
C00M	COOD	COOL	108.6(2)
N005	COOE	O002	111.31(19)

Atom	Atom	Atom	Angle/°
O006	COOE	O002	125.1(2)
O006	COOE	N005	123.6(2)
C00G	COOF	N003	111.09(17)
COOF	C00G	N005	110.53(18)
C00I	C00H	C009	89.25(15)
COOJ	С00Н	C009	118.41(19)
COOJ	С00Н	C00I	114.4(2)
C00H	C00I	C008	90.37(15)
C00H	COOJ	N003	115.36(19)
C000	СООК	0002	102.2(2)
COOP	СООК	O002	109.9(2)
COOP	СООК	C00O	108.8(3)
C00Q	СООК	O002	109.2(2)

CCDC 2403839

Compound	42
Empirical formula	$C_{19}H_{24}N_2O_2$
Formula weight	312.40
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	9.7265(2)
b/Å	14.7461(2)
c/Å	12.5014(2)
α/°	90
β/°	108.624(2)
γ/°	90
Volume/Å ³	1699.16(5)
Z	4
ρ _{calc} g/cm ³	1.221
µ/mm⁻¹	0.630
F(000)	672.0
Crystal size/mm ³	$0.2 \times 0.2 \times 0.2$
Radiation	Cu Kα (λ = 1.54184)
20 range for data collection/°	9.576 to 153.82
Index ranges	-10 ≤ h ≤ 12, -18 ≤ k ≤ 15, -15 ≤ l ≤ 13
Reflections collected	10262
Independent reflections	3388 [$R_{int} = 0.0212$, $R_{sigma} = 0.0206$]
Data/restraints/parameters	3388/52/233
Goodness-of-fit on F ²	1.037
Final R indexes [I>=2σ (I)]	R ₁ = 0.0376, wR ₂ = 0.0956
Final R indexes [all data]	$R_1 = 0.0408$, $wR_2 = 0.0979$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.23

ФС Эн Фр

Atom	Atom	Length/Å
C1	C2	1.4135(15)
C1	C6	1.4127(15)
C1	N7	1.3768(14)
C2	C3	1.3803(16)
C3	C4	1.3966(16)
C4	C5	1.3990(15)
C4	C10	1.4336(16)
C5	C6	1.3759(15)
C8	N7	1.4567(16)
С9	C12	1.5230(17)
С9	N7	1.4658(15)
C10	N11	1.1485(17)
C12	C13	1.5762(15)
C12	C15	1.5481(15)
C13	C14	1.5549(15)
C13	C16	1.5226(15)
C13	C19	1.5713(16)
C14	C15	1.5390(17)
C16	017	1.2684(14)
C16	O18	1.2597(14)
C19	C23	1.551(2)
C19	C20	1.5327(18)
C19	C21	1.5227(18)
C19	C23A	1.542(3)
C22	C23	1.319(3)
C22A	C23A	1.310(5)

Table S6. Bond Lengths in Å for 42.

Atom	Atom	Atom	Angle/°
C6	C1	C2	117.44(10)
N7	C1	C2	121.05(10)
N7	C1	C6	121.51(10)
C3	C2	C1	120.65(10)
C2	C3	C4	121.15(10)
C3	C4	C5	118.71(10)
C3	C4	C10	121.21(10)
C5	C4	C10	120.04(10)
C6	C5	C4	120.54(10)
C5	C6	C1	121.44(10)
N7	C9	C12	112.04(9)
N11	C10	C4	179.36(13)
C9	C12	C13	123.12(9)
C9	C12	C15	118.86(10)
C15	C12	C13	87.96(8)
C14	C13	C12	87.37(8)
C14	C13	C19	117.89(10)
C16	C13	C12	110.88(9)
C16	C13	C14	110.43(9)
C16	C13	C19	110.02(9)
C19	C13	C12	118.47(9)
C15	C14	C13	89.06(8)
C14	C15	C12	88.94(9)
017	C16	C13	118.04(10)
018	C16	C13	119.24(10)
018	C16	017	122.70(10)
C23	C19	C13	109.45(10)

Table S7. Bond Angles in \degree for 42.

_

Atom	Atom	Atom	Angle/°
C20	C19	C13	109.58(10)
C20	C19	C23	99.72(14)
C20	C19	C23A	124.8(2)
C21	C19	C13	111.65(10)
C21	C19	C23	116.41(13)
C21	C19	C20	109.31(10)
C21	C19	C23A	93.44(18)
C23A	C19	C13	107.00(15)
C22	C23	C19	124.3(2)
C1	N7	C8	119.23(10)
C1	N7	С9	119.99(9)
C8	N7	С9	116.89(9)
C22A	C23A	C19	121.4(4)

7. Mechanistic study

7.1 Radical trapping experiment with TEMPO

Results: The crude residue was detected by ¹H NMR and HRMS analysis. Only trace of targeted product was found and the expected TEMPO-aminoalkyl adduct was detected by HRMS. It suggests a possible radical reaction pathway and the involvement of aminoalkyl radical species in the catalytic process.

7.2 Intermediate confirmation experiment

Results: In the presence of external water, the desired radical addition/rearrangement cascade reaction was completely inhibited. However, the aminoalkylation-protonation products **54** and **55** were detected in good yields. It supports the possible generation of α -ester anion species, which are quite sensitive to the moisture.

3-methylbut-2-en-1-yl 3-(morpholinomethyl)cyclobutane-1-carboxylate (54)

product **54** was obtained as a colorless oil (25.6 mg, 48% yield, 1.5:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 30:1)

¹H NMR (400 MHz, CDCl₃) δ 5.41 – 5.26 (m, 1H), 4.59 (d, J = 7.2 Hz, 2H), 3.71 – 3.66 (m, 4H), 3.12 – 3.00 (m, 1H), 2.72 – 2.58 (m, 1H), 2.46 – 2.33 (m, 8H), 2.03 – 1.92 (m, 2H), 1.76 (s, 3H), 1.71 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.2, 139.1, 118.7, 67.0, 64.9, 61.5, 53.8, 35.3, 29.6, 29.6, 25.8, 18.1.

HRMS: m/z [M+Na]⁺ calcd for C₁₅H₂₅NNaO₃: 290.1727; found: 290.1725.

3-methylbut-2-en-1-yl 2-(morpholinomethyl)cyclobutane-1-carboxylate (55)

product **55** was obtained as a colorless oil (33.1 mg, 62% yield, 2:1 dr).

TLC: Rf = 0.3 (Dichloromethane/methanol 30:1)

¹H NMR (400 MHz, CDCl₃) δ 5.43 – 5.27 (m, 1H), 4.66 – 4.50 (m, 2H), 3.74 – 3.60 (m, 4H), 3.26 – 2.73 (m, 2H), 2.67 – 2.27 (m, 6H), 2.26 – 1.98 (m, 3H), 1.80 – 1.71 (m, 6H), 1.71 – 1.60 (m, 1H).

Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 138.9, 118.8, 66.9, 64.4, 61.3, 53.8, 42.9, 36.6, 25.8, 24.5, 22.2, 18.1.

Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 138.7, 118.9, 67.0, 61.2, 60.0, 53.7, 40.1, 34.8, 25.8, 23.8, 21.1, 18.1.

HRMS: m/z [M+Na]⁺ calcd for C₁₅H₂₅NNaO₃: 290.1727; found: 290.1727.

7.3 Competition experiments

Procedure: In the glovebox, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1carboxylate 1 (33.2 mg, 0.2 mmol, 1.0 equiv.), 3-methylbut-2-en-1-yl cyclobut-1-ene-1-carboxylate 4 (33.2 mg, 0.2 mmol, 1.0 equiv.), 4,4-difluoro-1-((trimethylsilyl)methyl)piperidine (41.4 0.2 mmol, 1.0 equiv.), mg, $Ir(dtbbpy)(ppy)_2][PF_6]$ (**PC1**, 3.0 mg, 3.0×10^{-3} mmol, 1.5 mol%) and dry CH₃CN (0.25) mL) were added respectively into a flame-dried reaction vial equipped with a stir bar. Then the vial was sealed and transferred out of the glove box. Afterwards, it was irradiated with a 1 W blue LED lamp (450 nm, SYNLED) for 12 h at 40 °C. The crude mixture was concentrated by rotary evaporation. Then the residue was purified by flash column chromatography on silica gel to afford 26 (11.4 mg, 19% yield, 1.4:1 dr) and **43** (37.9 mg, 63%, >20:1 dr).

Results: In the competition experiment, the cyclobutenes proved to be higher reaction rates as compared to BCBs for such radical addition reactions.

7.4 UV-Vis absorption spectroscopy

Fig S1. Absorption spectra of **PC1** (0.1 mM in MeCN, black line), **4** (0.5 mM in MeCN, red line), **1** (0.5 mM in MeCN, blue line), Amine-CN (0.5 mM in MeCN, green line). Absorbance is measured in arbitrary units (a.u.).

7.5 Stern–Volmer luminescence quenching analysis

Stern–Volmer luminescence quenching analysis was carried out to identify quenchers of the excited photoredox catalyst through measuring the luminescence of the excited photocatalyst (**PC1**^{*}) in the presence of varying concentrations of potential quencher (**1**, **4**, **Amine-CN**).

Stock solution of **PC1** (Ir(dtbbpy)(ppy)₂][PF₆], 2.0 mM in CH₃CN; solution **a**) and **Amine-CN** (20.0 mM in CH₃CN; solution **b**) were prepared in a 5.0 mL volumetric flask. Then 250.0 μ L of solution **a** was diluted to 5.0 mL with CH₃CN (0.1 mM; solution **c**). Then the solution **c** was transferred to a 10 x 10 mm light path quartz fluorescence cuvette equipped with a PTFE lid. The emission spectra were recorded using a Spectrophotometer. Subsequently, a series of PC solution containing different concentrations of **Amine-CN** were prepared (as following table, solution **c**-**h**, diluted to 5.0 mL with CH₃CN), and the emission spectrum of the title solution was recorded. The excitation wavelength was fixed at 350 nm while the emission light was acquired from 370 nm to 700 nm. Emission intensity at $\lambda = 571$ nm was used for quenching data.

Solution	Volume of solution a	Volume of solution b	Concentration of
Solution	[µL]	[µL]	Amine-CN [mM]
С	250.0	0	0
d	250.0	125.0	0.5
е	250.0	250.0	1.0
f	250.0	500.0	2.0
g	250.0	750.0	3.0
h	250.0	1000.0	4.0

Fig. S2. Quenching of the PC1 emission (0.1 mM in CH_3CN) in the presence of Amine-

CN.

Fig. S3. Stern-Volmer plot for the quenching studies. Emission wavelength fixed at 571 nm. The Stern-Volmer constant (*KSV*) for the quenching by **Amine-CN** being 458.7 mM⁻¹.

7.6 Light on/off experiment

1) In the glovebox, 3-methylbut-2-en-1-yl bicyclo[1.1.0]butane-1-carboxylate **1** (132.8 mg, 0.8 mmol, 2.0 equiv.), *N*-methyl-*N*-((trimethylsilyl)methyl)aniline **2** (77.2 mg, 0.4 mmol, 1.0 equiv.), $Ir(dtbbpy)(ppy)_2][PF_6]$ **PC1** (6.0 mg, 6.0 × 10⁻³ mmol, 1.5 mol%) and dry CH₃CN (0.5 mL) were added respectively into a flame-dried reaction vial equipped with a stir bar. Then the vial was sealed and transferred out of the glove box. Afterwards, it was irradiated with a 1 W blue LED lamp (450 nm, SYNLED) at 40 °C. As the time period indicated, at the end of each period, a small portion (50.0 µL) of the reacting solution was taken by a syringe. Then, the mixture was detected by ¹H NMR (1,3,5-trimethoxybenzene as the internal standard).

2) In the glovebox, 3-methylbut-2-en-1-yl cyclobut-1-ene-1-carboxylate **4** (66.4 mg, 0.4 mmol, 1.0 equiv.), **Amine-CN** (174.4 mg, 0.8 mmol, 2.0 equiv.), Ir(dtbbpy)(ppy)₂][PF₆] **PC1** (6.0 mg, 6.0 × 10⁻³ mmol, 1.5 mol%) and dry CH₃CN (0.5 mL) were added respectively into a flame-dried reaction vial equipped with a stir bar. Then the vial was sealed and transferred out of the glove box. Afterwards, it was irradiated with a 1 W blue LED lamp (450 nm, SYNLED) at 40 °C. As the time period indicated, at the end of each period, a small portion (50.0 µL) of the reacting solution was taken by a syringe. Then, the mixture was detected by ¹H NMR (1,3,5-trimethoxybenzene as the internal standard).

Time (h)	Light	NMR yield of 3 (%)	NMR yield of 42 (%)
6	On	15	19
7	Off	15	19
13	On	30	36
14	Off	30	36
21	On	43	46
22	Off	43	46
29	On	52	55

Fig. S4. The light on/off experiment.

8. Supplementary discussions

8.1 Exploration of other radical precursors

Other radical precursors (such as boronate, sulfinate, and carboxylate) have been investigated in this SRRC process as below. When employing the benzyl trifluoroborate as the radical precursor, the SRRC products were not detected under the standard conditions. Then we evaluated the performance of sodium benzenesulfinate as the radical precursor, it was showed that the SRRC products were not obtained, but the sulfonylation-protonation products were observed. When using the acid derivative as the radical precursor, the SRRC products were not detected either.

a) trifluoroborate as the radical precursor

Secondary amine **2-s1** and primary amine **2-s2** as radical precursors were also tested under the standard conditions. However, neither **2-s1** nor **2-s2** gave the desired products.

8.2 Exploration of other radical acceptors

The disubstituted bicyclobutane **1-s1**, BCB allyl amide **1-s2** and cyclobutenyl allyl amide **4-s1** as radical acceptors were evaluated. Unfortunately, there were no desired products observed under the standard conditions.

(a) disubstituted-BCB allyl ester as the radical acceptor

8.3 Determining whether chiral substrates undergo racemization

To determine whether chiral substrates undergo racemization, The dr values of the chiral products **40** and **47** were monitored under the standard conditions at different reaction times. And the results showed that the dr values of **40** and **47** remained consistent across different time points, indicating that the stereochemistry of the benzylic position was well retained throughout the reaction process.

9. Post-functionalization of products

An oven-dried vial was charged with **21** (60.2 mg, 0.2 mmol, 1.0 equiv., 1.4:1 dr) in anhydrous DMF (2.0 mL). Then ethyl glycyl-*L*-phenylalaninate (75.0 mg, 0.3 mmol, 1.5 equiv.), HATU (114.0 mg, 0.3 mmol, 1.5 equiv.) and DIPEA (103.4 mg, 0.8 mmol, 4.0 equiv.) were added under argon atmosphere. The resulting reaction mixture was stirred for 12 h at 60 °C. After this time, a saturated aqueous NH₄Cl solution was added, and the aqueous phase was extracted with EtOAc twice. The combined organic layers were washed with brine, dried (anhydrous Na₂SO₄), filtered, and the solvent was evaporated under reduced pressure. After purification by chromatography on silica gel (dichloromethane/methanol 30:1), the product **56** was obtained as a colorless oil (50.2 mg, 47% yield, 2:1 dr).

ethyl (3-((benzyl(methyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutane-1carbonyl)glycyl-L-phenylalaninate (56)

TLC: Rf = 0.3 (Dichloromethane/methanol 30:1)
¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 8H), 7.19
– 7.12 (m, 2H), 6.79 – 6.68 (m, 1H), 6.43 (t, J = 5.1 Hz, 0.3H), 6.11 – 5.97 (m, 1.3H), 5.89 (dd, J = 17.5,

10.8 Hz, 0.32H), 5.14 – 4.94 (m, 2H), 4.90 – 4.80 (m, 1H), 4.22 – 4.11 (m, 2H), 4.08 – 3.81 (m, 2H), 3.44 (s, 2H), 3.22 – 3.05 (m, 2H), 2.41 – 2.33 (m, 4H), 2.32 – 2.18 (m, 1H), 2.17 – 2.13 (m, 3H), 2.05 – 1.97 (m, 1.34H), 1.89 (s, 0.66H), 1.27 – 1.21 (m, 3H), 1.08 (s, 4H), 0.98 (s, 2H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 178.0, 171.3, 168.8, 143.9, 139.0, 135.8, 129.4, 129.1, 128.7, 128.2, 127.2, 127.0, 113.4, 64.5, 62.6, 61.6, 53.4, 51.0, 43.2, 42.4, 39.4, 38.0, 32.4, 26.5, 22.3, 14.2.
Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 176.8, 171.3, 168.8, 144.8, 139.1, 135.8, 129.4, 129.1, 128.6, 128.2, 127.2, 127.0, 113.2, 62.7, 62.4, 61.6, 53.5, 53.4, 43.5, 42.6, 39.5, 38.0, 32.4, 26.8, 23.2, 14.2.

HRMS: m/z [M+Na]⁺ calcd for C₃₂H₄₃N₃NaO₄: 556.3146; found: 556.3144.

An oven-dried vial was charged with **42** (62.4 mg, 0.2 mmol, 1.0 equiv., >20:1 dr) in anhydrous DMF (2.0 mL). Then methyl *L*-alanylglycinate hydrochloride (59.1 mg, 0.3 mmol, 1.5 equiv.), HATU (114.0 mg, 0.3 mmol, 1.5 equiv.) and DIPEA (103.4 mg, 0.8 mmol, 4.0 equiv.) were added under argon atmosphere. The resulting reaction mixture was stirred for 12 h at 60 °C. After this time, a saturated aqueous NH₄Cl solution was added, and the aqueous phase was extracted with EtOAc twice. The combined organic layers were washed with brine, dried (anhydrous Na₂SO₄), filtered, and the solvent was evaporated under reduced pressure. After purification by chromatography on silica gel (petroleum ether/ethyl acetate 5:1), the product **57** was obtained as a colorless oil (54.6 mg, 60% yield, 1.2:1 dr).

methyl (2-(((4-cyanophenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutane-1-carbonyl)-D-alanylglycinate (57)

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 5:1)

¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.32 (m, 2H), 6.91 (t, *J* = 5.5 Hz, 0.5H), 6.85 (t,

J = 5.4 Hz, 0.5H), 6.65 – 6.55 (m, 2H), 6.50 (d, J = 7.0 Hz, 0.5H), 6.41 (d, J = 7.2 Hz, 0.5H),, 6.09 – 5.92 (m, 1H), 5.18 – 5.01 (m, 2H), 4.64 – 4.50 (m, 1H), 4.16 – 3.93 (m, 2H), 3.93 – 3.76 (m, 1H), 3.78 – 3.64 (m, 3H), 3.34 – 3.18 (m, 1H), 3.04 – 2.88 (m, 3H), 2.76 – 2.58 (m, 1H), 2.32 – 2.00 (m, 2H), 1.94 – 1.83 (m, 1H), 1.76 – 1.54 (m, 1H), 1.45 – 1.35 (m, 3H), 1.14 – 0.96 (m, 6H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 173.3, 172.4, 170.0, 151.6, 144.7, 133.5, 120.8, 113.8, 111.5, 97.1, 58.4, 55.3, 52.4, 48.9, 41.2, 40.6, 39.4, 36.7, 24.0, 23.9, 22.5, 22.4, 18.3.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 173.4, 172.6, 170.1, 151.6, 144.4, 133.5, 120.9, 113.5, 111.4, 96.9, 58.3, 55.2, 52.4, 48.8, 41.2, 39.3, 38.7, 36.9, 24.4, 23.4, 23.0, 22.3, 18.0.

HRMS: m/z [M+Na]⁺ calcd for C₂₅H₃₄N₄NaO₄: 477.2472; found: 477.2473.

An oven-dried vial was charged with **21** (60.2 mg, 0.2 mmol, 1.0 equiv., 1.4:1 dr) in MeOH (1.0 mL) and Et₂O (4.0 mL). Then TMSCHN₂ (2.0 M in hexanes, 0.5 mL, 1.0 mmol, 5.0 equiv.) was added slowly at room temperature. After stirring for 2 h, all volatiles were removed under reduced pressure and the compound was subsequently used without further purification. The above mixture was dissolved in dry THF (1.0 mL), which was added into the stirred suspension of LiAlH₄ (23.5 mg, 0.6 mmol, 3.0 equiv.) in THF (1.0 mL) at 0 °C under the argon atmosphere. The reaction mixture was stirred at room temperature for 2 h. Then it was quenched by water and 2.0 M HCl and extracted by ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography (dichloromethane/methanol 30:1) to afford product **58** (24.7 mg, 43% yield for 2 steps, 2:1 dr).

(3-((benzyl(methyl)amino)methyl)-1-(2-methylbut-3-en-2-yl)cyclobutyl)methanol (58)

2.37 (m, 2H), 2.37 – 2.25 (m, 1H), 2.23 (s, 2H), 2.21 (s, 1H), 2.15 – 2.07 (m, 1.34H), 1.90 – 1.78 (m, 0.66H), 1.76 – 1.68 (m, 0.66H), 1.68 – 1.61 (m, 1.34H), 1.04 (s, 4H), 0.96 (s, 2H).

Major diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 145.8, 138.5, 129.4, 128.3, 127.2, 111.8, 68.0, 63.5, 62.6, 44.9, 42.5, 39.5, 28.5, 25.9, 22.0.

Minor diastereomer: ¹³**C NMR** (101 MHz, CDCl₃) δ 146.8, 138.9, 129.2, 128.3, 127.0, 111.4, 68.0, 63.2, 62.5, 45.3, 42.6, 39.7, 29.2, 28.5, 22.5.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₉NNaO: 310.2141; found: 310.2139.

An oven-dried vial was charged with **42** (62.4 mg, 0.2 mmol, 1.0 equiv., >20:1 dr), DPPA (70.0 μ L, 0.3 mmol, 1.5 equiv.), Et₃N (54.0 μ L, 0.4 mmol, 2.0 equiv.) and dry toluene (4.0 mL). Then the reaction mixture was stirred at 80 °C for 3 h. Afterwards, BnOH (0.2 mL, 2.0 mmol, 10.0 equiv.) was added. Then the mixture was stirred at 120 °C for 16 h. The solvent was removed under reduced pressure and the residue was purified by flash chromatography directly on silica gel (petroleum ether/ethyl acetate 20:1) to obtain product **59** as a colorless oil (54.3 mg, 65% yield, >20:1 dr).

benzyl (2-(((4-cyanophenyl)(methyl)amino)methyl)-1-(2-methylbut-3-en-2yl)cyclobutyl)carbamate (59)

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 20:1) ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.30 (m, 7H), 6.60 (d, J = 9.1 Hz, 2H), 5.72 (dd, J = 17.4, 10.9 Hz, 1H), 5.16 – 4.95 (m, 4H), 4.82 (s, 1H), 3.56 – 3.37 (m, 2H), 3.03 – 2.92 (m,

1H), 2.91 (s, 3H), 2.80 (p, *J* = 7.8 Hz, 1H), 2.29 – 2.12 (m, 1H), 1.93 – 1.73 (m, 2H), 1.02 (s, 3H), 0.94 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.7, 151.7, 143.0, 136.7, 133.5, 128.6, 128.3, 128.3, 120.5, 114.6, 112.0, 97.9, 66.4, 64.0, 54.0, 43.6, 39.2, 36.9, 23.3, 22.1, 20.5, 19.9.
HRMS: m/z [M+Na]⁺ calcd for C₂₆H₃₁N₃NaO₂: 440.2308; found: 440.2308.

To a suspension of **21** (60.2 mg, 0.2 mmol, 1.0 equiv., 1.4:1 dr) and NaHCO₃ (50.4 mg, 0.6 mmol, 3.0 equiv.) in H₂O (1.0 mL) was added NaI (90.0 mg, 1.2 mmol, 6.0 equiv.), followed by I₂ (50.8 mg, 0.2 mmol, 1.0 equiv.) under the argon atmosphere. The flask was covered with aluminum foil. Then the reaction mixture was stirred in dark for 4 h before being uncovered to reveal a brown precipitate. The reaction was extracted with CH_2CI_2 , washed with $10\% Na_2S_2O_3$ (aq.), $10\% NaHCO_3$ (aq.), and brine respectively. The organic phase was dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (dichloromethane/methanol 40:1) to afford the product of **60** (42.7 mg, 50% yield, 1.1:1 dr).

2-((benzyl(methyl)amino)methyl)-7-(iodomethyl)-8,8-dimethyl-6oxaspiro[3.4]octan-5-one (60)

TLC: Rf = 0.4 (Dichloromethane/methanol 40:1)
¹H NMR (400 MHz, CDCl₃) δ 7.40 - 7.23 (m, 5H), 4.37 - 4.18 (m, 1H), 3.59 - 3.43 (m, 2H), 3.33 - 3.22 (m, 1H), 3.21 - 3.12 (m, 1H), 2.95 - 2.85 (m, 0.47H), 2.62 (s,

0.47H), 2.60 (s, 0.53H), 2.50 – 2.40 (m, 1H), 2.39 (s, 0.53H), 2.37 (s, 0.47H), 2.34 – 2.27 (m, 0.6H), 2.25 – 2.14 (m, 4.6H), 1.96 – 1.87 (m, 0.47H), 1.87 – 1.80 (m, 0.5H), 1.66 – 1.56 (m, 0.55H), 1.26 (s, 1.45H), 1.07 (s, 1.55H), 0.90 (s, 1.45H), 0.81 (s, 1.55H). Major diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 179.9, 138.9, 129.1, 128.3, 127.1, 85.7, 63.3, 62.3, 50.5, 43.4, 42.6, 31.5, 29.7, 27.7, 21.0, 16.4, -0.4. Minor diastereomer: ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 138.8, 129.1, 128.3, 127.1, 85.3, 63.3, 62.7, 49.9, 43.7, 42.5, 30.8, 27.7, 26.1, 20.0, 16.6, -0.6. HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₆INNaO₂: 450.0900; found: 450.0889.

The compound **42** (21.7 mg, 0.1 mmol, 1.0 equiv., >20:1 dr) was dissolved in dry DCM (5.0 mL), and oxalyl chloride (42.0 μ L, 0.5 mmol, 5.0 equiv.) was added dropwise at 0 °C under the argon atmosphere. Then dry DMF (0.2 mL) was added, and the reaction mixture was stirred for 12 h at 35 °C. Afterwards, another portion of oxalyl chloride (42.0 μ L, 0.5 mmol, 5.0 equiv.) was added at 0 °C, and the reaction mixture was stirred for another 36 h at 35 °C. Then it was concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether/ethyl acetate 3:1) to afford product **61** as a colorless oil (14.0 mg, 50% yield, >20:1 dr).

4-(1-(2-methylbut-3-en-2-yl)-2-oxo-3-azabicyclo[3.2.0]heptan-3-yl)benzonitrile (61)

TLC: Rf = 0.3 (Petroleum ether/ethyl acetate 3:1)

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.79 (m, 2H), 7.75 – 7.59 (m, 2H), 6.04 – 5.85 (m, 1H), 5.16 – 4.95 (m, 2H), 3.83 (dd, J = 9.9, 6.8 Hz, 1H), 3.53 (d, J = 9.8 Hz, 1H), 2.92 (dt, J = 8.9, 6.8 Hz, 1H),

2.36 – 2.26 (m, 1H), 2.22 – 2.13 (m, 1H), 2.13 – 2.03 (m, 1H), 1.81 – 1.69 (m, 1H), 1.14 (s, 3H), 1.07 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 178.8, 143.7, 143.7, 133.0, 119.6, 119.0, 113.3, 107.1, 57.8, 53.2, 39.5, 31.5, 24.9, 22.1, 21.9, 21.9.

HRMS: m/z [M+Na]⁺ calcd for C₁₈H₂₀N₂NaO: 303.1468; found: 303.1468.

To an oven-dried 25.0 mL round-bottom flask was added **42** (62.4 mg, 0.2 mmol, 1.0 equiv., >20:1 dr), Pd/C (11.0 mg, 2.0×10^{-2} mmol, 0.1 equiv.) and EtOH (5.0 mL). Then the mixture was stirred at rt for 3 h under H₂ atmosphere. The solvent was removed under reduced pressure and the residue was purified by flash chromatography directly on silica gel (petroleum ether/ethyl acetate 3:1) to obtain product **62** as a colorless oil (47.1 mg, 75% yield, >20:1 dr).

2-(((4-cyanophenyl)(methyl)amino)methyl)-1-(tert-pentyl)cyclobutane-1-carboxylic acid (62)

J = 15.1, 10.8 Hz, 1H), 2.98 (s, 3H), 2.84 – 2.66 (m, 1H), 2.42 (ddd, J = 12.8, 9.6, 3.8 Hz, 1H), 2.15 – 1.99 (m, 1H), 1.96 – 1.79 (m, 1H), 1.72 (dq, J = 11.1, 9.2 Hz, 1H), 1.53 – 1.38 (m, 1H), 1.32 – 1.24 (m, 1H), 1.02 (s, 3H), 0.97 (s, 3H), 0.86 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 181.1, 151.5, 133.6, 120.7, 111.4, 97.2, 60.1, 55.9, 39.4, 37.5, 36.9, 30.7, 24.3, 23.3, 22.8, 22.4, 8.8.

HRMS: m/z [M+Na]⁺ calcd for C₁₉H₂₆N₂NaO₂: 337.1886; found: 337.1887.

To a solution of **43** (60.2 mg, 0.2 mmol, 1.0 equiv., >20:1 dr) in MeOH (1.0 mL) and Et₂O (4.0 mL) was added TMSCHN₂ (2.0 M in hexane, 0.5 mL, 1.0 mmol, 5.0 equiv.) slowly at room temperature. After stirring for 2 h, the reaction mixture was concentrated under reduced pressure. The residue was used for next step without purification. The above residue was dissolved in 9-BBN (0.5 M in tetrahydrofuran, 1.8 mL, 0.9 mmol, 4.5 equiv.) under an argon atmosphere, and the resulting solution was stirred 24 h at room temperature. The reaction was diluted with ethanol (6.0 mL) and treated with 4.0 M sodium hydroxide (1.0 mL). Then 30% hydrogen peroxide (1.2 mL) was added dropwise at 0 °C. The reaction was stirred at 0 °C for 1 h, which was then quenched by addition of saturated NH₄Cl. The mixture was extracted with diethyl ether. The combine organic phases were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (dichloromethane/methanol 30:1) to afford product **63** (29.3 mg, 44% yield for 2 steps, >20:1 dr).

methyl 2-((4,4-difluoropiperidin-1-yl)methyl)-1-(4-hydroxy-2-methylbutan-2yl)cyclobutane-1-carboxylate (63)

2.56 – 2.44 (m, 3H), 2.44 – 2.36 (m, 1H), 2.17 (dd, J = 12.7, 10.4 Hz, 1H), 2.05 – 1.84

(m, 6H), 1.72 – 1.51 (m, 4H), 1.51 – 1.42 (m, 1H), 1.03 (s, 3H), 0.98 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 175.0, 122.0, 61.4, 59.7, 59.5, 51.2, 50.4 (t, *J* = 5.1 Hz),
41.3, 36.9, 36.8, 34.2, 34.0 (t, *J* = 23.2 Hz), 33.8, 23.8, 23.7, 23.6, 23.6.

HRMS: $m/z [M+Na]^+$ calcd for $C_{17}H_{29}F_2NNaO_3$: 356.2008; found: 356.2008.

10.Anticancer activity study

Cell culture

TMD-8, KPC or HCT-116 cells were cultured in IMEM (Gibco, Milano, Italy). The above media contained 10% fetal bovine serum (FBS) (Invitrogen, Milano, Italy), 100.0 units/mL penicillin (Gibco, Milano, Italy), and 100.0 µg/mL streptomycin (Gibco, Milano, Italy). Cells were incubated at 37 °C in a humidified atmosphere of 5% CO₂. The source of the tumor cell lines was from American Type Culture Collection (ATCC). Tumor cells were subcultured and seeded in vitro by State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, China.

Cell viability assay

Cells in logarithmic phase were seeded into 96-well culture plates at densities of 3000-5000 cells per well and subsequently treated with various concentrations of compounds for 72 h in final volumes of 200.0 μ L. Upon end point, 20.0 μ L of MTT (5.0 mg/mL) was added to each well, and the cells were incubated for an additional 1-3 h. After carefully removal of the medium, the precipitates were dissolved in 150.0 μ L of DMSO via mechanically shaking, and then absorbance values at a wavelength of 570 nm were taken on a spectrophotometer (Molecular Devices, Sunnyvale, USA). IC₅₀ values were calculated using percentage of growth versus untreated control.

Fig. S5. Anticancer activity study. TMD-8 inhibition induced by selected compounds at 10.0 μ M for 72 h, and IC₅₀ values of compound **31** in different cancer cell lines, including TMD-8, KPC and HCT-116. IC₅₀ values were evaluated using the MTT assay.

11. DFT calculation

All calculations were performed by using the Gaussian 09 program.² B3LYP functional and the 6-31G(d,p) basis set, combined with Grimme's D3(BJ) dispersion correction and the IEFPCM solvation model were utilized for the initial geometry optimizations and frequency calculations. For single-point energy calculations of intermediates and transition states, we operated them at the M06/def2-TZVP/SMD (acetonitrile) level.³ And the Intrinsic Reaction Coordinate (IRC) method was employed to verify the accuracy of the transition states, ensuring that the transition states connected two energy minima. To further confirm the reliability of our conclusions, the single-point energies were recalculated via the range-separated meta-GGA hybrid functional ω B97M-V⁴⁻⁶ and the def2-TZVPP basis set using ORCA software.⁷ And the consistent results were obtained. Furthermore, Multiwfn 3.8 (dev)⁸ was utilized to analyze non-covalent interactions between fragments based on the Independent Gradient Model (IGMH) with Hirshfeld partitioning; and the structures were visualized by using VMD (version 1.9.3)⁹ with an isovalue of 0.007; and the high-quality threedimensional (3D) images were generated by CYLview.¹⁰ All energies were discussed in terms of Gibbs free energies in solution (kcal/mol). The choice of functionals and basis sets was based on the recent benchmark studies, ensuring the accuracy of the computational methods and the credibility of the results.

Fig. S6. Insights from DFT calculations. a, aminoalkyl radical addition to BCB **1** and cyclobutene **4**. **b**, relative energies for [3,3]-rearrangement of BCB-TMS intermediate. **c**, relative energies for [3,3]-rearrangement of (*E*)-cyclobutene-TMS intermediate. Calculations were performed at the B3LYP/6-31G(d,p)/SMD (acetonitrile) level of theory.

Fig. S7. Relative energies for [3,3]-rearrangement of (*Z*)-cyclobutene-TMS intermediate.

Cartesian Coordinates (Å) for the Optimized Structures

C	-2.22793300	-1.34492400	0.56657700
С	-3.18534500	-0.27289600	0.96598600
С	-2.34563400	-1.25745300	-0.91743000
Н	-1.41160000	-1.75446400	1.14413300
Н	-3.00907100	0.21784200	1.91941300
Н	-4.23548900	-0.37106300	0.68753700
Н	-1.48692300	-1.57546100	-1.50174900
Н	-3.31314100	-1.45179300	-1.38275600
С	-1.05036300	0.92153800	-0.03581000
0	-0.88949100	1.74677700	0.84997000
0	-0.18424000	0.72772400	-1.05270300
С	1.07967000	1.44960200	-0.95138100
Н	1.51441700	1.32936800	-1.94539400
Н	0.86338600	2.50566000	-0.78389300
С	1.96766800	0.90763900	0.13360300
Н	2.18231300	1.58092400	0.95924300
С	2.47104400	-0.33536500	0.16349200
С	3.33202700	-0.79937400	1.30855800
Н	2.88216200	-1.66739500	1.80681800
Н	4.31584500	-1.12461200	0.94761600
Н	3.47939800	-0.01353500	2.05354700
С	2.21249200	-1.36704700	-0.90332200
Н	1.63663700	-2.20374100	-0.48789900
Н	1.65577900	-0.97299300	-1.75415600
Н	3.15771900	-1.78910700	-1.26511100
С	-2.19389100	0.01400600	-0.12618800
TS-1	L		

С	-0.20228100	-1.61815200	-0.39401000	

С	-0.48341600	-2.67143600	0.62897400
С	-1.18876700	-2.03005500	-1.43411800
Н	-0.03947900	-0.58321700	-0.12714000
Н	-0.33575300	-2.41033000	1.67437900
Н	-0.17881000	-3.69120700	0.38287200
Н	-1.60780800	-1.25404100	-2.06867300
Н	-0.98723600	-2.96638500	-1.95972400
С	-2.60448700	-1.19814900	0.61597600
0	-2.70367400	-1.03651000	1.82965300
0	-3.31430600	-0.46093100	-0.28806400
С	-3.89399900	0.75930900	0.24184600
Н	-4.50880700	1.12947200	-0.58208800
Н	-4.54468800	0.51193400	1.08248100
С	-2.84213300	1.75227300	0.66331300
Η	-2.85194300	2.04522400	1.71008500
С	-1.88707100	2.25149700	-0.13566800
С	-0.84473800	3.20050300	0.39548900
Н	0.16268900	2.78588500	0.26224500
Н	-0.86292500	4.14967000	-0.15460700
Н	-0.98815900	3.41269100	1.45787900
С	-1.75595500	1.91021500	-1.59753000
Н	-0.82641200	1.35553500	-1.78039800
Н	-2.58074000	1.30138900	-1.96807300
Н	-1.69254800	2.82519900	-2.19852500
С	-1.72868700	-2.14836300	-0.03154100
Ν	2.78492700	-0.72716800	-0.55621900
С	2.62144200	0.62598900	-1.09375400
Н	1.56461200	0.84463900	-1.31361900
н	3.17452100	0.69573100	-2.03769900

С	2.99272200	-0.79290300	0.88319400
Н	2.10615900	-0.43487200	1.42889100
Н	3.14147500	-1.83630600	1.17159500
С	3.15456900	1.64938800	-0.08894300
Н	2.41673100	1.83808100	0.70451700
Н	3.35162800	2.59956500	-0.58994500
С	4.23558400	0.02527300	1.26107500
Н	5.14074100	-0.56730100	1.09828600
Н	4.18440300	0.29364200	2.32602000
0	4.38608700	1.20423800	0.46086300
С	2.10642200	-1.75276900	-1.17977800
Н	2.30114100	-2.75210400	-0.80581700
Н	1.94662800	-1.63279700	-2.24617500
4			
С	3.89462200	0.27141700	0.20466800
С	2.62368500	-1.40985700	0.11630600
Н	4.37454900	0.75027400	-0.65404700
Н	4.13762300	0.83626800	1.10961200
Н	1.95750300	-2.26480200	0.06912400
С	1.25586000	0.77770200	-0.17411000
0	1.30435600	1.99748000	-0.22696500
0	0.11872200	0.06431300	-0.28955300
С	-1.09798300	0.84058700	-0.50018300
Н	-1.24447300	1.49738500	0.35859600
Н	-0.94065300	1.47454300	-1.37917000
С	-2.21593200	-0.12358800	-0.71227600
Н	-2.11056500	-0.75385800	-1.59387500
С	-3.31111000	-0.27069900	0.04880300
С	-4.37120700	-1.27529600	-0.32435900

Н	-4.51914100	-2.00019300	0.48575700
н	-5.33834200	-0.78060300	-0.47864200
н	-4.11499300	-1.82181200	-1.23526100
С	-3.60964400	0.51510900	1.29882900
н	-3.80096000	-0.16826600	2.13481800
н	-2.80779300	1.19339700	1.59265800
н	-4.52339200	1.10750100	1.16691200
С	2.42927300	-0.07993600	0.02503500
С	4.12072600	-1.28186100	0.31094200
н	4.49990400	-1.62969900	1.27753300
Н	4.73636700	-1.71594800	-0.48379400
TS-2	2		

С	-3.43762200	-2.08730500	0.15470700
С	-2.36541700	-0.34788000	-0.44823500
н	-3.89640000	-2.85065900	-0.48391000
н	-3.59323400	-2.37323200	1.20185000
Н	-1.87548400	0.45661800	-0.98277300
С	-0.79270400	-2.40152400	-0.19461300
0	-0.67002000	-3.60162900	0.05395100
0	0.28346800	-1.59684600	-0.46041700
С	1.58431200	-2.23386300	-0.40244300
Н	1.72900300	-2.65280400	0.59563200
Н	1.59724200	-3.06771500	-1.11174900
С	2.60510900	-1.20193700	-0.76030600
Н	2.66057200	-0.95476100	-1.81905000
С	3.41130600	-0.54195900	0.08582400
С	4.37357200	0.49874500	-0.42610200
Н	4.16193900	1.47473300	0.02872600
н	5.40576700	0.24614400	-0.15321000

Н	4.31939000	0.60624800	-1.51219400
С	3.44220400	-0.74239300	1.57843900
Н	3.24853100	0.20930700	2.08829600
Н	2.71224500	-1.46980100	1.93560200
Н	4.43835600	-1.06916800	1.90066300
С	-2.02752200	-1.66848800	-0.21706600
С	-1.53499900	0.88220000	1.49128600
Н	-1.03099500	0.01236300	1.89322400
н	-2.51465100	1.13163700	1.88211100
Ν	-0.73839300	1.92966400	1.13172700
С	-1.34589200	3.17742100	0.66011500
Н	-1.22878500	3.97511700	1.40645600
Н	-2.41444200	3.00176100	0.51508400
С	0.61079000	1.68852100	0.63737200
Н	1.26839000	2.47559900	1.02238200
Н	0.96915500	0.73299400	1.01851300
С	-0.69982500	3.59930900	-0.67068400
Н	0.22564600	4.16697700	-0.49752100
Н	-1.38256900	4.23690200	-1.23642200
С	0.63072300	1.66798000	-0.90862300
Н	0.48473700	0.65113500	-1.27080800
Н	1.60039000	2.04084300	-1.26943300
0	-0.43614900	2.44805600	-1.46088400
С	-3.84502100	-0.60918800	-0.19288000
Н	-4.30407100	-0.04242400	0.62301200
Н	-4.48446700	-0.51994700	-1.07851700
INT			

С	-2.37021000	-0.09395600	-0.25625200
н	-2.85676100	-1.03029500	-0.01600600

Н	-2.92898100	0.83362900	-0.21996600
Ν	-1.00017800	-0.02461600	-0.09523900
С	-0.35826100	1.28318500	-0.01266100
Н	-0.84014900	1.91836600	0.74881100
Н	-0.46020500	1.79332700	-0.97898200
С	-0.25215100	-1.13187900	0.47137400
Н	-0.16339200	-1.03691500	1.56603000
Н	-0.79222400	-2.06176000	0.27737900
С	1.12214800	1.10946700	0.33085400
Н	1.25264300	0.90239600	1.40281300
Н	1.67015500	2.02626000	0.10195600
С	1.13687700	-1.21260700	-0.17875700
Н	1.07197100	-1.73091900	-1.14061400
Н	1.81268800	-1.78255800	0.47531100
0	1.69563600	0.07694000	-0.45967500

INT-A

С	-0.17208200	3.00204400	-0.99785800
С	0.60621300	0.97490100	-0.62123200
Н	-0.76321000	3.26991600	-1.88312700
Н	-0.10439500	3.89778400	-0.36816200
Н	0.40381500	0.16834400	-1.33929600
С	-1.84595100	1.46487600	0.41433400
0	-2.78658400	2.24659800	0.54820900
0	-1.83300200	0.20846700	0.93492600
С	-3.05545900	-0.21249100	1.60400900
Н	-2.74423400	-1.09611000	2.16412200
Н	-3.35300800	0.56701400	2.30747900
С	-4.17015300	-0.51130400	0.64051900
Н	-5.02296800	0.16183600	0.66804800

С	-4.16528700	-1.51473400	-0.24977400
С	-5.32338800	-1.72946100	-1.18818100
н	-4.99569000	-1.66122200	-2.23322400
н	-5.74540300	-2.73431600	-1.06069800
н	-6.11924500	-0.99765700	-1.02884000
С	-3.02383400	-2.48475200	-0.40814500
н	-2.59469600	-2.40045900	-1.41449700
н	-2.21906900	-2.32029500	0.30905500
н	-3.38049100	-3.51711000	-0.30825900
С	-0.63510900	1.75980700	-0.30017800
С	1.39315700	0.41907700	0.57159900
н	0.80652100	-0.38044600	1.05771600
н	1.50908200	1.22055800	1.31055100
Ν	2.72902400	-0.02001300	0.19277000
С	3.60282400	-0.15037400	1.36747000
Н	3.07565600	-0.60726600	2.22517600
н	3.91735700	0.85345300	1.67521100
С	2.76125100	-1.24476000	-0.59823400
н	2.48679000	-2.13199300	0.00234300
Н	2.03651700	-1.18402900	-1.41348000
С	4.82208900	-1.02688300	1.02870500
н	4.61301300	-2.08219800	1.25787800
н	5.68775400	-0.72601000	1.62344300
С	4.16730900	-1.39619100	-1.20082800
Н	4.24490700	-0.82018100	-2.12758800
н	4.36127600	-2.45458100	-1.43253400
0	5.18464400	-0.88177700	-0.33699300
С	1.17436900	2.26497100	-1.29504400
Н	2.03356900	2.67539000	-0.76096700

H 1.42683100 2.16501600 -2.35184700

INT-B

С	-0.93397700	-1.08110800	-0.81255100	
Н	-1.60328300	-1.07934100	-1.67618600	
Н	-0.53344400	-0.07393600	-0.68785700	
С	1.43219000	-1.94179700	-0.30445500	
0	2.41194400	-2.65591300	-0.51387700	
0	1.42196400	-0.95322500	0.63080000	
С	2.69164500	-0.66700600	1.27741100	
Н	2.40226000	-0.11406800	2.17331300	
Н	3.15481000	-1.60875200	1.57504000	
С	3.61236600	0.12551500	0.39132800	
Н	4.52712900	-0.37076100	0.07732200	
С	3.36299300	1.36684600	-0.05222400	
С	4.33053000	2.08030800	-0.95912500	
Н	3.85103100	2.34241600	-1.91071300	
Н	4.66145200	3.02442600	-0.50839600	
Н	5.21258100	1.47214300	-1.17454700	
С	2.11363900	2.13867400	0.28558400	
Н	1.52330500	2.31564900	-0.62259500	
Н	1.47229700	1.62351000	1.00160900	
Н	2.36899600	3.12646900	0.68745600	
С	0.17523200	-2.03843500	-1.00994000	
Н	0.07431800	-2.89241000	-1.67088900	
С	-1.77090500	-1.42598600	0.47837900	
Н	-1.07543600	-1.46479100	1.32139700	
Н	-2.18961600	-2.42968100	0.35003400	
Ν	-2.84821400	-0.52512800	0.82787900	
С	-3.97571500	-0.45106400	-0.10836500	

Н	-4.92393000	-0.65482200	0.41202300
Н	-3.85181400	-1.22929400	-0.86618600
С	-2.48046000	0.78068700	1.35675500
Н	-3.31935600	1.14467300	1.96308900
Н	-1.62618300	0.66962900	2.03032300
С	-4.06355800	0.93104900	-0.78880900
Н	-4.66702300	1.62533700	-0.18444700
Н	-4.53395200	0.85140200	-1.77199900
С	-2.15808800	1.82338700	0.25382300
Н	-1.08425300	1.88586900	0.05990000
Н	-2.50477700	2.82005300	0.56977900
0	-2.76052800	1.46485600	-0.99061000

INT-TMS-A

С	-1.33815600	2.10000100	-0.45947500
С	-0.87523500	1.27659700	-1.70012100
С	0.54344300	1.41872500	-1.18499300
С	0.14889900	2.51063500	-0.20624200
Н	-2.01856400	2.93036300	-0.66570500
Н	-1.05714700	1.79706000	-2.64849600
Н	-1.28857500	0.26645000	-1.77266000
Н	0.37728700	3.52041600	-0.56866600
Н	0.49434000	2.43631300	0.82885500
С	1.63941600	0.69877600	-1.42759300
0	1.64457600	-0.20041400	-2.46090100
0	2.84111300	0.80383800	-0.80015200
С	-1.86052400	1.20897400	0.66297500
Н	-1.99976900	1.81081900	1.58304300
Н	-1.08488300	0.46752100	0.89140200
Ν	-3.06425100	0.46637000	0.31264800

С	-3.30229600	-0.63718900	1.25107500
н	-3.10905800	-0.33818900	2.29846600
Н	-2.60466600	-1.44800400	1.01222900
С	-4.26485000	1.28137200	0.17721700
Н	-4.62168300	1.65976700	1.15384200
н	-4.05272100	2.15767600	-0.43943400
С	-4.76061100	-1.11888800	1.14872900
Н	-5.39514200	-0.58048500	1.86820200
н	-4.83089300	-2.18425300	1.38084200
С	-5.34662200	0.43778500	-0.51687500
н	-5.21999000	0.48114500	-1.60267600
Н	-6.34423900	0.83084400	-0.26791100
0	-5.25820400	-0.94750800	-0.17081700
С	0.91926600	-2.15205500	-1.21334100
Н	-0.09596300	-1.94561700	-1.54888900
С	1.08744400	-2.88462100	-0.10249800
С	2.42293000	-3.27643200	0.47400500
Н	3.26908100	-2.86362800	-0.07629700
Н	2.49898500	-2.95027200	1.51803400
н	2.52842200	-4.36816900	0.47844700
С	-0.10359000	-3.39256600	0.66972600
Н	-1.04652700	-3.10762300	0.19630300
Н	-0.07875800	-4.48554700	0.76043700
Н	-0.09635100	-2.99406000	1.69234600
Si	3.21702700	0.88335700	0.85791600
С	1.84474400	0.10887900	1.88231700
Н	2.27273500	-0.36249500	2.77335900
Н	1.10471100	0.84158500	2.21350900
н	1.32591200	-0.65996300	1.30397300

С	4.81016900	-0.09332900	1.01073600
Н	4.65497900	-1.15173800	0.78236100
Н	5.57500900	0.29354800	0.32975900
Н	5.20277300	-0.02404900	2.03110900
С	3.52623000	2.67610400	1.31972500
Н	4.35264500	3.09060900	0.73321800
Н	2.64483700	3.30174400	1.15446200
Н	3.79773400	2.75015700	2.37886000
С	1.98031200	-1.56040000	-2.09125800
Н	2.97079800	-1.58119800	-1.63056000
Н	2.04034500	-2.08386900	-3.05081900

TS-A1

С	1.62199900	0.41986500	-0.97953200	
С	0.95895900	0.61380400	0.42082700	
С	-0.38220300	0.32678700	-0.22531900	
С	0.21365600	0.14468500	-1.60259500	
Н	2.07805500	1.33455900	-1.36772000	
Н	1.08989600	1.60441900	0.86636800	
Н	1.27945100	-0.12601200	1.16335700	
Н	-0.10743600	0.87614500	-2.35591600	
Н	0.08789100	-0.85280100	-2.04235100	
С	-1.55879600	-0.11469400	0.32310500	
0	-1.85678500	0.01444200	1.56900300	
0	-2.51651600	-0.59282700	-0.54538200	
С	2.58406600	-0.75463200	-1.07272300	
Н	2.86908600	-0.92449400	-2.13023400	
Н	2.05223400	-1.65798600	-0.74702900	
Ν	3.75275600	-0.61406700	-0.21122400	
С	4.45032400	-1.89564000	-0.04208900	

Н	4.50853100	-2.46212100	-0.99031500
Н	3.88014800	-2.50699600	0.66702300
С	4.69411500	0.41750000	-0.63021000
Н	5.23776400	0.13365500	-1.55108900
н	4.15929700	1.34268600	-0.85571000
С	5.88415400	-1.66055800	0.46638400
Н	6.58231500	-1.56986800	-0.37886500
Н	6.21726500	-2.50151400	1.07925700
С	5.66974700	0.68226200	0.52768100
Н	5.23110500	1.39166500	1.23569100
Н	6.60396800	1.11429000	0.13740000
0	5.94716000	-0.50019100	1.28364500
С	-1.60055800	2.63687300	1.22942500
Н	-0.76722200	2.97422500	1.84127100
С	-1.46700500	2.75926900	-0.14098000
С	-2.57242900	2.48163200	-1.12135900
Н	-3.35346300	1.83437600	-0.72775500
Н	-3.02737100	3.43421700	-1.42421200
Н	-2.17682500	2.01605900	-2.02862200
С	-0.30920100	3.52905400	-0.71135700
Н	0.49757900	3.66058300	0.01270700
Н	0.09141200	3.03794500	-1.60409800
Н	-0.64574200	4.52452200	-1.03033700
Si	-3.80127600	-1.59189300	-0.04941500
С	-4.52514000	-2.18144700	-1.67775200
Н	-3.78347700	-2.73262400	-2.26469900
Н	-5.37836400	-2.84564400	-1.50256200
Н	-4.87627000	-1.33813800	-2.28157400
С	-3.12691400	-3.03002600	0.95204400

Н	-2.39782900	-3.60357200	0.37016400
Н	-2.63413700	-2.67223100	1.86004900
Н	-3.93464500	-3.70985200	1.24432000
С	-5.10272000	-0.64120400	0.91584100
Н	-4.73057400	-0.33954100	1.89796700
Н	-5.42048800	0.25710300	0.37565100
Н	-5.98943300	-1.26805200	1.06402800
С	-2.56420500	1.83245500	1.84924100
Н	-2.58140000	1.76275500	2.93009600
Н	-3.51071700	1.62992100	1.36619900

anti-INT-C1

С	-1.16454800	-1.43066500	-1.20670000
С	-0.59223500	-1.86825600	0.16653300
С	0.81486100	-1.37382300	-0.28780100
С	0.28592300	-1.34589200	-1.75477200
Н	-1.79683500	-2.17270800	-1.70210000
Н	-0.63677400	-2.94856600	0.30374900
Н	-1.01165500	-1.37408500	1.04250300
Н	0.57264400	-2.24149800	-2.30854500
Н	0.54656200	-0.46783800	-2.34971800
С	1.05170100	0.02839600	0.26425700
0	0.67359000	0.39403200	1.36557400
0	1.72935700	0.83356600	-0.56727700
С	-1.85345200	-0.06567300	-1.18430900
Н	-2.14449200	0.21175200	-2.21682800
Н	-1.13404700	0.69531900	-0.86250000
Ν	-2.97739000	0.00845200	-0.26163300
С	-3.34974800	1.40084700	0.01799400
Н	-3.32489600	2.02734600	-0.89327200

Н	-2.61598600	1.81722500	0.71812700
С	-4.14673600	-0.76241300	-0.66349300
н	-4.66023400	-0.31438600	-1.53511900
н	-3.84348900	-1.76864200	-0.96185300
С	-4.77031200	1.46315900	0.60626200
н	-5.51366800	1.58362800	-0.19567500
н	-4.87072700	2.31808100	1.27914100
С	-5.09480900	-0.86830200	0.54206700
н	-4.79406100	-1.69969600	1.18640800
н	-6.12254800	-1.05331200	0.19394900
0	-5.05316200	0.29842100	1.36901000
С	2.40373000	-2.14989000	1.49285000
н	1.58777500	-2.45145300	2.14968200
С	2.08477500	-2.25881200	0.01500200
С	3.25722000	-1.81382100	-0.87382600
н	3.54951700	-0.78035700	-0.68413800
Н	4.12591300	-2.45587400	-0.70193300
Н	2.98445400	-1.89698200	-1.92947700
С	1.79590200	-3.74771000	-0.28038900
Н	1.05108200	-4.16541700	0.40085000
Н	1.44570700	-3.89798100	-1.30554500
Н	2.71755600	-4.32267000	-0.15339500
Si	2.14350200	2.46029500	-0.12920700
С	3.03001000	3.06182900	-1.66466300
н	2.37264500	3.02511900	-2.53912800
Н	3.36052100	4.09780200	-1.53471000
н	3.91284700	2.44995000	-1.87524300
С	0.56473800	3.42242600	0.17546100
Н	-0.10658200	3.34552300	-0.68632000

Н	0.03950300	3.04192400	1.05444000
Н	0.78740800	4.48317200	0.33345400
С	3.28640200	2.40638900	1.35363100
Н	2.77888600	1.97630300	2.22005500
Н	4.16972200	1.79704400	1.13644600
Н	3.62667400	3.41466600	1.61285000
С	3.54824400	-1.74035200	2.03939200
Н	3.67374300	-1.70796700	3.11747300
Н	4.39727500	-1.42147500	1.44326900

TS-A2

С	-1.55141200	0.01565500	-1.25662000
С	-0.70337800	-0.39244900	-0.01094800
С	0.46637500	0.33805700	-0.62831300
С	-0.37671600	0.92906600	-1.74269700
Н	-1.68664100	-0.83070600	-1.93552400
Н	-0.57014100	-1.46353200	0.17139400
Н	-1.08587400	0.05579300	0.91672800
Н	-0.00964400	0.75307200	-2.75853700
Н	-0.59837200	1.99831700	-1.64821900
С	1.81044300	0.06482700	-0.61341900
0	2.26673300	-0.80327900	0.35561900
0	2.66749600	0.66623200	-1.36282100
С	-2.87348600	0.71386300	-0.98009800
Н	-3.32748400	1.04979200	-1.93390900
Н	-2.67146700	1.62227600	-0.39979900
Ν	-3.79678500	-0.09522400	-0.19275400
С	-4.89223300	0.71870400	0.34996400
н	-5.26697100	1.45180500	-0.38868600
Н	-4.50781700	1.28705400	1.20507900

С	-4.33105200	-1.25962800	-0.88839500
Н	-5.04597100	-0.97653900	-1.68392700
Н	-3.52154200	-1.80732800	-1.37568000
С	-6.06697300	-0.18107700	0.77340800
Н	-6.77533300	-0.30626400	-0.05885200
Н	-6.61398800	0.26738200	1.60613500
С	-4.99421300	-2.18065800	0.14810700
Н	-4.24280200	-2.82307900	0.61675200
Н	-5.74012200	-2.82226000	-0.34550100
0	-5.59968500	-1.44722900	1.21693300
С	3.13575000	2.38415100	-0.51493900
Н	3.73784500	1.93186200	0.26163400
Н	3.69509700	2.76149500	-1.36238900
С	1.88251600	2.93368600	-0.22088100
Н	1.41910700	3.55410200	-0.98451300
С	1.07363600	2.49434700	0.81051300
С	1.57621600	1.75010300	2.01667500
Н	1.67459200	2.45316000	2.85462300
Н	0.85690600	0.98563100	2.32410000
Н	2.53559000	1.26134200	1.86016300
С	-0.31121000	3.05535400	0.96260700
Н	-0.66318200	3.54515000	0.05217800
Н	-1.02487400	2.27467700	1.24550800
Н	-0.32531100	3.79548600	1.77370700
Si	3.76226100	-1.60651000	0.24955000
С	3.65978400	-2.86775800	1.63586000
Н	2.81794700	-3.55171600	1.48784500
Н	4.57651200	-3.46554300	1.68157100
н	3.53134800	-2.37770400	2.60662500

С	3.90657900	-2.45000500	-1.42206700
Н	3.08214900	-3.15384600	-1.57715500
Н	3.88452000	-1.71428800	-2.23048800
Н	4.84543900	-3.01005100	-1.49241800
С	5.20793300	-0.44572700	0.55287500
Н	5.33208900	0.26016700	-0.27200100
Н	5.07136100	0.12440900	1.47812700
Н	6.13516400	-1.02125700	0.65336900
syn-	INT-C2		
С	-1.35407100	0.50961600	-0.94968000
С	-0.65386600	0.50883800	0.42988700
С	0.61159700	1.11632200	-0.24866900
С	-0.28656700	1.51406700	-1.45833900
Н	-1.21938300	-0.45612400	-1.44785600
Н	-0.52876800	-0.44147500	0.95108700
Н	-1.12720800	1.22219200	1.10991200
Н	0.14224100	1.34882800	-2.44662500
Н	-0.64763400	2.54079200	-1.38639000
С	1.57074200	0.00987900	-0.68195900
0	1.97431100	-0.77109300	0.33003500
0	1.94777200	-0.16036200	-1.83021200
С	-2.80799500	0.94800100	-0.99276100
Н	-3.15568500	1.01009900	-2.04338900
Н	-2.87190800	1.96463500	-0.58427100
Ν	-3.68040300	0.10681200	-0.17936200
С	-4.98432600	0.74584300	0.04162700
Н	-5.36287600	1.23795700	-0.87378000
Н	-4.86099700	1.52559700	0.80226100
С	-3.86532400	-1.24680700	-0.68920400

Н	-4.47942500	-1.26314800	-1.60932100
н	-2.89901100	-1.68362800	-0.95008000
С	-6.02169000	-0.29903300	0.49100600
н	-6.54972600	-0.71607500	-0.37925400
н	-6.77057000	0.15798100	1.14220900
С	-4.50663700	-2.09797500	0.41847600
Н	-3.73616500	-2.47799000	1.09586100
Н	-5.03107400	-2.95704800	-0.02725800
0	-5.40227000	-1.33850600	1.23542200
С	3.91823800	2.47093000	0.13733700
Н	4.18665500	2.12788200	1.13135500
Н	4.73883100	2.73633000	-0.52228500
С	2.65162100	2.56597000	-0.26727800
Н	2.45056200	2.91387000	-1.28096500
С	1.40830200	2.23110200	0.53279200
С	1.73430500	1.75970100	1.95923800
Н	2.25645000	2.55125000	2.50477000
Н	0.81192300	1.53508400	2.50186400
Н	2.35511100	0.86445700	1.96642500
С	0.56568000	3.52138900	0.64227800
Н	0.42020500	4.00174000	-0.32814600
Н	-0.41840300	3.32402100	1.07834100
Н	1.08323300	4.23511700	1.28957800
Si	3.17795600	-2.00377000	0.13588900
С	3.39644400	-2.60341800	1.89628800
Н	2.45459400	-2.98447800	2.30353300
Н	4.13386000	-3.41199000	1.93820500
Н	3.74589700	-1.79433000	2.54563100
С	2.49263200	-3.34852100	-0.97325300

Н	1.55604900	-3.74609300	-0.56906500
н	2.29879200	-2.96384300	-1.97747200
н	3.20409400	-4.17773900	-1.05117700
С	4.74933300	-1.23007100	-0.52694100
н	4.60616500	-0.86555000	-1.54658400
н	5.05446400	-0.38418300	0.09684400
н	5.56212700	-1.96435000	-0.52789200

(E)-INT-TMS-B

С	-1.66776000	-3.37531000	-0.92785800
С	-1.02745900	-2.04589000	-0.58789000
Н	-2.59880900	-3.62458200	-0.40878000
Н	-1.82351400	-3.52790600	-2.00340800
С	-1.56135700	-0.87361400	-0.24329400
0	-2.90524900	-0.66321500	-0.28981800
0	-0.84862200	0.19903100	0.22998100
С	1.22123700	-2.29161600	0.76530600
Н	1.73427400	-3.19594800	1.14518000
Н	0.56706000	-1.94144400	1.56880500
Ν	2.18663300	-1.23493500	0.46796900
С	2.51458900	-0.42236100	1.64804400
Н	2.55352300	-1.03003200	2.56959600
Н	1.72294000	0.32396100	1.77367700
С	3.39476300	-1.73005600	-0.17828300
Н	4.01248400	-2.33649900	0.51089400
Н	3.12272100	-2.38720500	-1.00918400
С	3.88317600	0.25572000	1.47501800
Н	4.68529700	-0.39956700	1.84545300
Н	3.92288000	1.18287600	2.05159500
С	4.19035800	-0.54201900	-0.73174000

Н	3.77366600	-0.22555500	-1.69243200
н	5.23888100	-0.83731600	-0.88783300
0	4.12361000	0.60654300	0.11929400
С	0.00946400	0.84955600	-0.73687700
н	0.85457200	0.18766600	-0.94635900
н	-0.56613100	1.01270800	-1.65840600
С	0.46184800	2.14007700	-0.11706800
н	-0.10137800	2.44514300	0.76286900
С	1.46837100	2.90716400	-0.55379600
С	2.30393000	2.56895900	-1.76032600
н	3.34090500	2.39348900	-1.45458100
н	1.95313100	1.67607100	-2.28187800
н	2.30427100	3.40069800	-2.47551100
С	1.85095400	4.17706100	0.15955700
н	1.21782600	4.36213500	1.03135900
н	2.89488800	4.13052600	0.49582700
Н	1.77877900	5.04397900	-0.50957400
Si	-3.70463800	0.74206800	0.25813800
С	-5.50730500	0.30666700	-0.02691200
Н	-5.79362800	-0.58729000	0.53630100
Н	-6.15437400	1.12930300	0.29619900
Н	-5.70787600	0.11898700	-1.08671000
С	-3.37037300	1.01804100	2.08399900
Н	-3.94869700	1.87243600	2.45297800
Н	-3.65950000	0.13956400	2.67046100
Н	-2.31027900	1.21539800	2.26100500
С	-3.23926700	2.23889700	-0.77653700
н	-2.23198900	2.60087900	-0.55717300
н	-3.29466900	2.00584200	-1.84516800

Н	-3.94288000	3.05551000	-0.57850000
С	-0.36187700	-4.05518600	-0.41343600
н	-0.47552800	-4.42358400	0.61062100
Н	0.07296200	-4.84515500	-1.03112500
С	0.35516100	-2.66779200	-0.43852800
Н	0.94806500	-2.56814700	-1.35784100
TS-B	1		
С	0.34222300	1.02882000	2.24067600
С	0.35679400	0.58441400	0.79747000
Н	0.84850400	0.36574500	2.95032600
Н	0.72725900	2.04407200	2.40860900
С	1.29581500	-0.12274600	0.08761200
0	2.54903100	-0.23119200	0.64955600
0	1.11247600	-0.57030400	-1.10607800
С	-1.80537300	-0.67892300	0.17205600
Н	-1.63041400	-1.48432900	0.91413400
Н	-1.28291800	-0.97959700	-0.74138100
Ν	-3.21948300	-0.54271600	-0.15870400
С	-3.70928500	-1.73647700	-0.86070500
Н	-3.29964400	-2.66714500	-0.42512200
Н	-3.36777400	-1.68937900	-1.90161700
С	-4.08718400	-0.22605400	0.96917600
Н	-4.17985500	-1.07267100	1.67611200
Н	-3.66981000	0.60894500	1.53426900
С	-5.24417900	-1.80976500	-0.79118200
Н	-5.56274900	-2.37665900	0.09620400
Н	-5.64524800	-2.32136800	-1.66947300
С	-5.46317500	0.19213700	0.42506400
Н	-5.45572300	1.25314100	0.15792600
Н	-6.23260300	0.03495000	1.19653400
----	-------------	-------------	-------------
0	-5.81194800	-0.50761200	-0.77294600
С	1.42001600	0.91290200	-2.38534000
н	2.49500400	0.89672400	-2.26652700
н	1.04758400	0.37072100	-3.24587000
С	0.65281300	1.94720800	-1.84088800
н	-0.38343400	2.02129500	-2.16234000
С	1.01719400	2.66509200	-0.71624200
С	2.42981300	2.78415000	-0.21606100
н	3.08433100	1.98576500	-0.55986900
н	2.84593300	3.74474000	-0.54771300
н	2.45216100	2.78820100	0.87747600
С	0.06299000	3.66629400	-0.13034600
н	-0.95579700	3.53351000	-0.50004100
н	0.05355300	3.61225400	0.96348700
н	0.38879500	4.68296500	-0.38688500
Si	3.68003800	-1.40814200	0.16619400
С	5.00157800	-1.28684400	1.49334300
н	4.58863500	-1.50049800	2.48439000
н	5.80706300	-2.00391700	1.30148000
н	5.44424600	-0.28564100	1.51931700
С	2.86671000	-3.10043600	0.17314200
н	3.58980900	-3.87810600	-0.09587400
Н	2.46929300	-3.33863200	1.16533800
н	2.04159700	-3.13551900	-0.54312500
С	4.42695600	-1.01402300	-1.51180800
н	3.69736500	-1.14588000	-2.31452300
н	4.79803600	0.01595300	-1.54772900
Н	5.27622000	-1.67799400	-1.70905100

С	-1.21431300	0.94267300	2.20247700
Н	-1.61073900	0.11593500	2.79768800
Н	-1.74577200	1.85946900	2.47011100
С	-1.16112900	0.61392900	0.66995600
Н	-1.54311600	1.43471100	0.05329800
anti-	INT-D1		
С	0.60689000	0.79809800	2.23951500
С	0.50140800	0.99028600	0.69786900
Н	1.51861800	0.33237900	2.61026700
Н	0.44074300	1.73278500	2.77504400
С	1.33278500	-0.02754700	-0.07833500
0	2.35721400	-0.55234600	0.61031000
0	1.11581100	-0.32027400	-1.24364000
С	-1.63118200	-0.33373200	-0.28586300
Н	-1.21276100	-1.35709500	-0.23865300
Н	-1.34429000	0.06136500	-1.26366100
Ν	-3.09034200	-0.34635100	-0.23327600
С	-3.65058100	-0.91055900	-1.46965000
Н	-3.07408300	-1.78676900	-1.82035500
Н	-3.58974700	-0.14735600	-2.25427000
С	-3.65035400	-1.03256400	0.92603100
Н	-3.48781700	-2.12610100	0.87823400
Н	-3.16210900	-0.68333600	1.83677600
С	-5.10781100	-1.35236200	-1.24620700
Н	-5.14714900	-2.40686200	-0.93530300
Н	-5.68364100	-1.26036100	-2.17022200
С	-5.14867400	-0.69978200	1.01302700
Н	-5.29429500	0.25095200	1.53445400
н	-5.67383000	-1.48720500	1.57517800

0	-5.74275800	-0.53018600	-0.27699000
С	0.85829800	2.88098400	-2.40647400
н	1.92388900	3.08580800	-2.43140300
н	0.32584600	2.97120000	-3.34852400
С	0.22303400	2.52716700	-1.29014000
н	-0.84968500	2.34322400	-1.33809700
С	0.81166100	2.41785600	0.10179800
С	2.33033300	2.65623400	0.12216500
н	2.86240400	1.97737500	-0.54945600
н	2.56346600	3.67974200	-0.18463000
н	2.72202400	2.50987500	1.13281500
С	0.14224000	3.53036300	0.94234500
н	-0.93755200	3.38799500	1.03629800
н	0.57009400	3.59223100	1.94579900
н	0.30685000	4.49291100	0.45039200
Si	3.48715500	-1.64984100	-0.11885200
С	4.65189400	-2.00939300	1.30215200
н	4.12063400	-2.46749900	2.14243300
н	5.43957300	-2.70083200	0.98441200
н	5.13221100	-1.09334500	1.66028000
С	2.57642700	-3.19104100	-0.66858800
Н	3.28446200	-3.93516600	-1.04909300
н	2.03525500	-3.64074800	0.17028300
Н	1.85746900	-2.95859400	-1.45734100
С	4.36209000	-0.76322800	-1.51792300
н	3.65574800	-0.47430400	-2.29964000
н	4.86075800	0.14017500	-1.15185500
н	5.12552400	-1.41150600	-1.96140400
С	-0.67539100	-0.06070900	2.19513600

Н	-0.44953100	-1.12984900	2.12051500
н	-1.40352800	0.08972800	2.99607200
С	-1.00559800	0.53612700	0.80147900
Н	-1.63027500	1.42667100	0.91405400
TS-B	2		
С	0.70170500	2.47960200	-1.12657300
С	0.34445500	1.08319700	-0.67144100
Н	0.45594100	3.25761600	-0.39006500
Н	1.73344000	2.63878000	-1.45348500
С	1.19244600	0.04717400	-0.36656100
0	2.50760200	0.37443500	-0.09275700
0	0.82762300	-1.17476700	-0.20377200
Ν	-2.80109600	0.11078600	-0.16664100
С	-4.16940300	0.32163900	0.33968600
Н	-4.45008300	1.37187200	0.21391600
Н	-4.20727800	0.10742000	1.41687200
С	-2.63440000	-1.20547500	-0.79226800
Н	-2.91732600	-1.19998400	-1.86179800
Н	-1.58152500	-1.49852300	-0.73072800
С	-5.18901100	-0.56238300	-0.36968000
Н	-5.21325700	-0.31520900	-1.44180800
Н	-6.19305100	-0.39654300	0.03361400
С	-3.49479900	-2.22976300	-0.07198400
Н	-3.20953000	-2.26458900	0.99063700
Н	-3.33108700	-3.22561000	-0.49472300
0	-4.89582200	-1.95176200	-0.19106000
С	0.39954700	-1.36246900	1.75770700
н	0.01123800	-2.36925500	1.66265500
Si	3.79019400	-0.71188400	-0.33901000

С	3.62297400	-1.49947600	-2.03606300	
Н	4.46444900	-2.17147900	-2.23661400	
Н	2.69779700	-2.07837700	-2.10310900	
Н	3.60609100	-0.73634000	-2.82124800	
С	5.30509600	0.39350400	-0.24985400	
Н	5.37084100	0.89296000	0.72248000	
Н	6.22031200	-0.19242800	-0.38742200	
Н	5.27835400	1.16555200	-1.02552300	
С	3.88550200	-2.02015100	1.00633200	
Н	3.90473900	-1.56526500	2.00254400	
Н	3.03610400	-2.70587700	0.95741100	
Н	4.80515400	-2.60541000	0.89274500	
Н	1.43676700	-1.29598100	2.05669000	
С	-0.48566300	-0.30208100	1.96278000	
Н	-1.53456100	-0.47816900	1.75321300	
С	-0.10275900	1.02078500	2.07817700	
С	-1.15048400	2.09434400	2.15628000	
Н	-1.19975300	2.49145600	3.17946500	
Н	-0.89284600	2.94080900	1.51017200	
Н	-2.13405600	1.71836700	1.87675300	
С	1.27662800	1.47543400	2.46178800	
Н	2.04215000	0.71470300	2.32838800	
Н	1.56878600	2.35295200	1.87738400	
Н	1.26523200	1.78425700	3.51593100	
С	-0.38748700	2.34209100	-2.23286100	
Н	-1.11581200	3.15600800	-2.30001700	
Н	0.03786600	2.16235500	-3.22257200	
С	-2.32020700	1.20906200	-0.99435500	
Н	-2.97779200	1.37434400	-1.87326800	

Н	-2.36096200	2.12615100	-0.39777500
С	-0.90828300	1.02983700	-1.55398400
н	-0.90175600	0.16182400	-2.22013100
syn-	-INT-D2		
С	0.88265600	1.90534800	-1.88511600
С	0.37967900	1.12502900	-0.62828500
Н	1.35237500	2.87347500	-1.70253800
Н	1.56874400	1.30317400	-2.48308000
С	1.14582500	-0.15405700	-0.33923400
0	2.46907800	-0.05026400	-0.53796900
0	0.62402900	-1.18852000	0.04674300
Ν	-2.75750100	-0.14912500	0.03834500
С	-4.09096900	0.06800200	0.63369900
Н	-4.37837100	1.11620800	0.51325700
Н	-4.04900600	-0.12944100	1.71269200
С	-2.61764400	-1.50971700	-0.50344200
Н	-2.94609400	-1.56023600	-1.55847900
Н	-1.56625400	-1.80442600	-0.46800300
С	-5.15671500	-0.82923000	0.01446800
Н	-5.24633000	-0.61460400	-1.06126200
Н	-6.13329100	-0.64454000	0.47370100
С	-3.45319800	-2.48624500	0.30723000
Н	-3.13049700	-2.45758000	1.35889900
Н	-3.30347500	-3.50550500	-0.06070200
0	-4.85667500	-2.21501700	0.21464000
С	0.11052100	0.97386200	3.02676200
Н	-0.47125400	0.39660000	3.74010400
Si	3.57311900	-1.29554100	-0.04845900
С	3.22366200	-2.86566100	-1.00743400

Н	3.98493800	-3.62148700	-0.78553600
н	2.24300300	-3.27142900	-0.74951000
н	3.24525200	-2.67458100	-2.08534100
С	5.22862400	-0.55921500	-0.52002000
н	5.39718400	0.39188100	-0.00526000
н	6.04154400	-1.24005700	-0.24598200
н	5.28890400	-0.37977700	-1.59815400
С	3.41240100	-1.50628200	1.80696700
н	3.69536500	-0.58567600	2.32754700
н	2.38463000	-1.75356900	2.08359700
Н	4.06940600	-2.30807800	2.16053500
Н	1.06195300	1.35697700	3.38248000
С	-0.34258000	1.18220200	1.78960700
Н	-1.29374800	0.74341400	1.49216800
С	0.34848100	1.98309800	0.70031900
С	-0.43151800	3.30638000	0.50763700
Н	-0.36373300	3.88988100	1.43000500
Н	-0.00710400	3.90920400	-0.29981600
Н	-1.48915500	3.15000900	0.29915900
С	1.78376600	2.37124900	1.10706000
Н	2.38282700	1.50630300	1.39246500
Н	2.29746500	2.88187700	0.28913700
Н	1.75350200	3.05732400	1.95799200
С	-0.55278900	1.91934200	-2.45350700
Н	-1.06718700	2.86390700	-2.25439700
Н	-0.67288600	1.67387900	-3.51165300
С	-2.39086600	0.87702300	-0.93254900
Н	-3.02449400	0.81797300	-1.84218500
н	-2.59852600	1.84935200	-0.48306900

С	-0.95226300	0.82165900	-1.43906700
Н	-0.80075100	-0.15533500	-1.90665700
(<i>Z</i>)-II	NT-TMS-B		
С	-0.01803900	-2.78299100	-1.13460300
С	-0.01558100	-1.26262400	-1.12271700
Н	-0.62324000	-3.29437300	-0.37927800
Н	-0.26438600	-3.22117500	-2.10954900
С	-0.92481900	-0.28508000	-1.20574900
0	-0.55330100	1.01589800	-1.31372700
0	-2.28543300	-0.41128400	-1.21444000
С	2.00159500	-0.31814700	0.17043400
Н	1.66601100	-0.77002000	1.12612000
Н	1.51417600	0.65908400	0.09976600
Ν	3.43933800	-0.07328400	0.16007200
С	3.79634400	0.97514700	1.12564400
Н	3.22224900	0.88104300	2.06647700
Н	3.54249000	1.94826700	0.68798700
С	4.26313500	-1.25797500	0.36802200
Н	4.17903200	-1.64914600	1.39997900
Н	3.93469900	-2.05791300	-0.29757700
С	5.29397500	0.90383300	1.46855200
Н	5.45941700	0.24585400	2.33458100
Н	5.67650000	1.89348100	1.72972500
С	5.72087200	-0.90681200	0.02798000
Н	5.89023200	-1.00276200	-1.04867100
Н	6.40158200	-1.59800800	0.54825800
0	6.04620500	0.44786900	0.35310700
С	-2.85376000	-1.51051600	-0.46345400
Н	-2.80422500	-2.41977500	-1.07517700

Н	-2.24827700	-1.67155700	0.43069800
С	-4.26908900	-1.15195300	-0.14897000
н	-4.89068900	-0.95519000	-1.02118100
С	-4.82620400	-1.05085300	1.06772100
С	-4.11115300	-1.29398600	2.37161000
н	-3.04763000	-1.50553000	2.25586800
н	-4.21411200	-0.42003000	3.02581200
н	-4.56810600	-2.13732400	2.90372500
С	-6.28062300	-0.68243700	1.21441200
Н	-6.75942300	-0.51350400	0.24679500
Н	-6.83194400	-1.47232000	1.73975500
Н	-6.38912800	0.22674300	1.81878100
Si	-1.30115600	2.26438900	-0.41060500
С	0.04073800	3.57052400	-0.30993500
Н	0.38540500	3.85885300	-1.30828100
Н	-0.33197400	4.47093400	0.18994300
Н	0.90514100	3.20471200	0.25385100
С	-2.80218100	2.90827500	-1.33069700
Н	-3.25062200	3.75130600	-0.79335200
Н	-2.53059400	3.25521300	-2.33306000
Н	-3.55604000	2.12282100	-1.43100300
С	-1.75222100	1.60427500	1.28769200
Н	-2.64685300	0.97861900	1.23978700
Н	-0.93534900	1.00371800	1.70179500
Н	-1.94760600	2.43022400	1.97972800
С	1.51235500	-2.73288800	-0.84067900
н	1.75772400	-3.05315900	0.17562600
н	2.14953400	-3.27424400	-1.54409000
С	1.49787000	-1.17375700	-0.99135100

H 1.99777800 -0.83538100 -1.90885900

TS-B3

С	-0.56657100	-2.27621600	1.71870300
С	-0.67639800	-1.16761100	0.68999700
Н	-0.88453700	-2.01315900	2.73240800
Н	-1.06137200	-3.21336400	1.44562900
С	-1.54600500	-0.10375600	0.66793400
0	-2.67168700	-0.10020200	1.28675900
0	-1.26091300	0.94047200	-0.18591800
С	1.61716300	-0.05268900	0.12325500
Н	1.71248000	0.42126300	1.12075800
Н	1.06357100	0.65514100	-0.49797700
Ν	2.91298900	-0.26497200	-0.51917600
С	3.89167900	-1.02075300	0.28833000
Н	4.42862700	-1.73220400	-0.35240200
Н	3.37078500	-1.60989200	1.04370200
С	3.47192200	1.01431000	-0.98074500
Н	2.97684100	1.31688800	-1.91159500
Н	3.30237900	1.82631300	-0.24984800
С	4.91089900	-0.11217000	0.96745300
Н	5.62237100	-0.69985800	1.55665300
Н	4.39672400	0.57728700	1.65416100
С	4.96968000	0.88891600	-1.20781400
Н	5.37151100	1.82091000	-1.61593600
Н	5.16534700	0.08893100	-1.93777700
0	5.67595100	0.63156200	0.01077500
С	-3.99345300	-0.99439500	0.09115400
Н	-4.79373200	-0.99852300	0.82100800
Н	-4.02154200	-0.17452000	-0.61443500

С	-3.33842500	-2.18886200	-0.21878800
н	-3.50272700	-3.03233300	0.44782800
С	-2.27812900	-2.28384100	-1.10411300
С	-2.00327800	-1.29144400	-2.19977200
Н	-2.42882000	-0.30741800	-2.01482800
н	-0.92614000	-1.16863800	-2.34593500
Н	-2.41190700	-1.67961500	-3.14237700
С	-1.55606400	-3.59220400	-1.25610400
н	-1.77147800	-4.28251100	-0.43786000
Н	-1.85496100	-4.07444200	-2.19620600
Н	-0.47272300	-3.44251400	-1.31772600
Si	-1.82881200	2.52355200	0.06411300
С	-0.75812100	3.53217500	-1.10160600
Н	-1.01793500	4.59498800	-1.05224500
Н	0.30137500	3.42966800	-0.84490600
Н	-0.88748600	3.20279500	-2.13786400
С	-3.63948200	2.68313600	-0.40736700
Н	-3.81413200	2.31538400	-1.42423500
Н	-4.27495500	2.11506100	0.27688600
Н	-3.95194700	3.73293200	-0.37525900
С	-1.53594100	3.01385900	1.85277300
Н	-2.10608400	2.37128400	2.52909300
Н	-0.47531800	2.92560600	2.11086800
Н	-1.84042900	4.05174400	2.02538900
С	0.97026600	-2.28698100	1.45886500
Н	1.42175600	-3.25714700	1.23658600
Н	1.52587600	-1.81168700	2.27200700
С	0.76944600	-1.31788700	0.24311300
н	0.84910100	-1.85947100	-0.71144800

anti-INT-B3

С	0.74076000	-2.32616800	-1.77492400
С	0.90947900	-1.46741000	-0.48658500
Н	1.37769300	-2.05011700	-2.61488000
Н	0.84196600	-3.39150000	-1.57382000
С	1.38690000	-0.06981300	-0.88046600
0	1.77662700	0.23580800	-1.99645600
0	1.32040200	0.81706900	0.11981700
С	-1.40709600	-0.26771600	0.17879900
Н	-1.29540000	0.57310000	-0.53142900
Н	-0.93304300	0.05816000	1.10807000
Ν	-2.81085100	-0.54146600	0.48232100
С	-3.67327200	-0.69107900	-0.70947600
Н	-4.35159000	-1.54284400	-0.57184400
Н	-3.06026700	-0.91350600	-1.58395700
С	-3.34720100	0.46493800	1.41052700
Н	-2.99558700	0.24846100	2.42636000
Н	-3.00119000	1.48497800	1.16196400
С	-4.50311500	0.55807500	-0.98582900
Н	-5.13405700	0.41444600	-1.86873800
Н	-3.83653200	1.41057500	-1.18665200
С	-4.86666400	0.45622200	1.37797700
Н	-5.26667100	1.15220800	2.12117500
Н	-5.23236100	-0.55140200	1.62690900
0	-5.37821200	0.86639300	0.10494400
С	4.07905700	-0.99712200	1.08262200
Н	5.10517300	-0.85734000	0.75607100
Н	3.78771900	-0.49377800	1.99887100
С	3.23043000	-1.75095100	0.38358900

Н	3.58426100	-2.22518500	-0.53279900
С	1.77538700	-2.03405200	0.70578100
С	1.33824200	-1.43595700	2.05356200
Н	1.42380600	-0.35101200	2.07339100
Н	0.29867900	-1.70280600	2.26359000
Н	1.95260200	-1.85009400	2.85868300
С	1.61960100	-3.56783500	0.81351800
Н	2.05866500	-4.08996300	-0.03968700
Н	2.13328200	-3.91790200	1.71348400
Н	0.56820900	-3.86139200	0.89251200
Si	1.80747800	2.46930100	-0.03931700
С	1.55363900	3.10168200	1.70478900
Н	1.80660500	4.16484200	1.77365200
Н	0.51121500	2.98107500	2.01653700
Н	2.18582600	2.55721700	2.41354100
С	3.60882700	2.53845300	-0.54583100
Н	4.21525100	1.91786300	0.12142100
Н	3.74289000	2.17260000	-1.56636100
Н	3.98264700	3.56643100	-0.49003700
С	0.65755400	3.30941300	-1.25662600
Н	0.74633700	2.85968600	-2.24873100
Н	-0.38345600	3.21813600	-0.92960800
Н	0.89388300	4.37586800	-1.33706000
С	-0.74314600	-1.90237100	-1.83403800
Н	-1.47620100	-2.66516000	-2.10736500
Н	-0.88352400	-1.02693300	-2.47615200
С	-0.66168000	-1.49404900	-0.33956700
Н	-0.93231200	-2.34439000	0.29371400

TS-B4

С	-0.19189800	2.88340900	1.48774500
С	-0.22223000	1.48016500	0.91400200
н	0.36979700	3.61172300	0.89221200
н	-1.16721900	3.32055700	1.72194400
С	-1.33241900	0.81753300	0.43051800
0	-2.38401400	1.39833400	-0.00821100
0	-1.24430800	-0.55751000	0.35235800
С	2.22790100	0.66804300	1.50627700
н	2.81383600	0.44676500	2.42232600
н	2.66525700	1.57804500	1.07973200
Ν	2.37241600	-0.38600100	0.51215500
С	3.76469000	-0.51187900	0.07247500
н	4.47204400	-0.46301600	0.92211700
Н	3.99657200	0.33048200	-0.59033000
С	1.83446900	-1.68665900	0.89264400
н	2.44297200	-2.17389400	1.67804100
Н	0.82429400	-1.56449400	1.28134800
С	3.97250200	-1.85152300	-0.65678700
Н	4.29896200	-2.62760300	0.05143800
н	4.74615800	-1.75733700	-1.42264900
С	1.75083500	-2.56139600	-0.36856400
Н	0.80813100	-2.36960300	-0.88556400
Н	1.79062700	-3.62598600	-0.09135700
0	2.78150000	-2.25825400	-1.31462000
С	-0.80623300	2.63462400	-1.79158800
Н	-0.76818400	3.68935700	-1.52852000
С	0.37231200	1.90977500	-1.69142000
С	0.51271100	0.48526300	-2.14325000
Н	1.22393900	-0.03496800	-1.49906100

Н	-0.42631200	-0.06615400	-2.13793400
Н	0.91095500	0.47829600	-3.16813600
С	1.67023700	2.64407900	-1.50815300
Н	1.54189900	3.58522000	-0.96781000
Н	2.40286800	2.02523600	-0.98981700
Н	2.09226900	2.88409000	-2.49427400
Si	-2.60462300	-1.56207500	0.17943700
С	-3.87358700	-1.14998300	1.50163100
Н	-4.22944900	-0.12277500	1.38848900
Н	-4.73472000	-1.82394300	1.43583100
Н	-3.44069500	-1.25432800	2.50221700
С	-3.34406500	-1.44483100	-1.54350400
Н	-3.82994400	-0.47898400	-1.70149200
Н	-2.57355200	-1.57357900	-2.31129200
Н	-4.09152600	-2.23296300	-1.68883900
С	-1.89733500	-3.28027100	0.45346300
Н	-1.18228100	-3.54827200	-0.33044900
Н	-1.38186800	-3.34492900	1.41715300
Н	-2.69593200	-4.03008100	0.44723600
С	-2.05941400	2.04740800	-1.91901300
Н	-2.94679100	2.66783400	-1.94384200
Н	-2.17551500	1.05617500	-2.33447300
С	0.63812800	2.32025100	2.68315900
Н	0.05674600	2.23271800	3.60353200
Н	1.57530500	2.84074600	2.90287900
С	0.79000100	0.95528100	1.93176900
Н	0.40413000	0.10042200	2.49751000
syn-INT-B4			

С	-0.45353900	-2.71002200	-1.48708700

С	-0.29646600	-1.47199100	-0.55707800
н	0.17261300	-3.54842200	-1.17891000
Н	-1.47723400	-3.06456200	-1.61169000
С	-1.61698500	-0.70390800	-0.50253700
0	-2.72098900	-1.21338600	-0.59554300
0	-1.44411200	0.61601500	-0.32587800
С	2.12118300	-0.67530000	-1.54634200
н	2.49391300	-0.37946300	-2.54884400
н	2.56637700	-1.65071200	-1.32900400
Ν	2.55111400	0.26344800	-0.52231000
С	3.98962000	0.28025400	-0.30327500
Н	4.53423200	0.77581300	-1.12855100
Н	4.36144600	-0.74773900	-0.25508100
С	2.04100500	1.62428700	-0.72929100
Н	2.10810300	1.93033100	-1.79070300
Н	0.98549600	1.64923300	-0.44541200
С	4.26502500	0.98021500	1.03892500
Н	5.28172000	1.40191800	1.04141000
Н	4.18467100	0.26438700	1.86188200
С	2.84799400	2.61936400	0.12309500
Н	2.22113900	3.46384900	0.41926700
Н	3.69953100	3.02054100	-0.44620500
0	3.30413800	2.00201900	1.31929900
С	-0.91382700	-2.70337300	1.50545400
Н	-1.02803400	-3.64170300	0.96340600
С	0.14357400	-1.77005900	0.93720700
С	0.30112400	-0.50308800	1.79370100
н	1.05955700	0.14563500	1.35652100
н	-0.62940500	0.05512100	1.89650800

Н	0.63252100	-0.78796400	2.79775600
С	1.48927400	-2.53076000	1.00558100
н	1.52349100	-3.39830700	0.34222400
н	2.31485100	-1.86214400	0.76504700
н	1.63508200	-2.89378200	2.02748600
Si	-2.73356600	1.72193100	-0.00406800
С	-3.88708900	1.78036800	-1.47809000
Н	-4.37256800	0.81334600	-1.62975700
Н	-4.66205500	2.53941900	-1.32612200
Н	-3.33856500	2.03748800	-2.39010300
С	-3.58480800	1.18096300	1.57534700
Н	-3.97012200	0.16293300	1.47811000
Н	-2.88866900	1.20479500	2.41990000
Н	-4.42158600	1.84764100	1.80941700
С	-1.80186000	3.33099200	0.21810100
Н	-1.08041700	3.25196500	1.03766100
Н	-1.25392300	3.59469500	-0.69222400
Н	-2.48925200	4.15144000	0.44923100
С	-1.67042200	-2.50042000	2.58376100
Н	-2.38450300	-3.24905100	2.91417600
Н	-1.61386700	-1.59187100	3.17436500
С	0.16838500	-1.91438800	-2.65691100
Н	-0.56797400	-1.57368100	-3.38928300
Н	0.98270400	-2.41159100	-3.19196900
С	0.60836300	-0.79391400	-1.67453400
Н	0.21727300	0.18677200	-1.94657600

12. NMR spectrum

¹³C NMR of compound **S1** (101 MHz, CDCl₃)

 ^{13}C NMR of compound S2 (101 MHz, CDCl_3)

 ^{13}C NMR of compound 1a (101 MHz, CDCl_3)

 ^{13}C NMR of compound 1b (101 MHz, CDCl_3)

 ^{13}C NMR of compound 1c (101 MHz, CDCl_3)

 ^{13}C NMR of compound 1d (101 MHz, CDCl_3)

 ^{13}C NMR of compound 1e (101 MHz, CDCl_3)

 ^{13}C NMR of compound **1f** (101 MHz, CDCl₃)

 ^{13}C NMR of compound 4a (101 MHz, CDCl_3)

 ^{13}C NMR of compound 4b (101 MHz, CDCl_3)

6.834 6.821 6.821 6.821 4.955 4.955 4.955 4.9456 4.9456 4.9456 4.9456 4.9456 4.94566 4.94566 4.9456666666666666666

 ^{13}C NMR of compound 4d (101 MHz, CDCl_3)

$\begin{array}{c} 7,7,246\\ 6,667\\ 7,7,120\\ 6,666$

 ^{13}C NMR of compound $\boldsymbol{3}$ (101 MHz, CDCl_3)

 ^{13}C NMR of compound **5** (101 MHz, CDCl_3)

 ^{19}F NMR of compound 5 (376 MHz, CDCl_3)

$\begin{array}{c} 7.7.247\\ 7.1.116\\ 6.5.57\\ 7.1.116\\ 6.5.58\\ 6.5.546\\ 6.5.58\\ 6.5$

 ^{13}C NMR of compound $\boldsymbol{6}$ (101 MHz, CDCl_3)

¹³C NMR of compound **7** (101 MHz, CDCl₃)

 ^{13}C NMR of compound **8** (101 MHz, CDCl_3)

7.0267 7.0267 7.0267 6.0012 6.

 ^{13}C NMR of compound $\boldsymbol{9}$ (101 MHz, CDCl_3)

¹³C NMR of compound **10** (101 MHz, CDCl₃)

$\begin{array}{c} & 7.104 \\ & 7.104 \\ & 6.632 \\$

146

77,7247
77,1029
77,1020
77,1020
72,1020
72,1020
72,1020
72,1020
72,020
72,020
72,020
72,020
72,020
72,020
72,020
72,020
73,020
74,027
74,027
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,028
75,038
75,038
75,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,038
76,04

 ^{13}C NMR of compound 12 (101 MHz, CDCl_3)

[77] 150
[77] 151
[77] 151
[77] 171
[77] 171
[77] 171
[77] 171
[77] 171
[77] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171
[70] 171</p

¹³C NMR of compound **13** (101 MHz, CDCl₃)

¹³C NMR of compound **14** (101 MHz, CDCl₃)

¹³C NMR of compound **15** (101 MHz, CDCl₃)

¹³C NMR of compound **16** (101 MHz, CDCl₃)

 $\begin{array}{c} & 7.2266 \\ & 7.2272 \\ & 7.2272 \\ & 7.2272 \\ & 7.2272 \\ & 7.2272 \\ & 6.963 \\ & 6.962 \\ & 6.929 \\ & 6.929 \\ & 6.929 \\ & 6.914 \\ & 6.922 \\ & 6.9216 \\ & 6.922 \\ & 6.922 \\ & 6.923 \\ & 6.922 \\ & 6.922 \\ & 6.922 \\ & 6.922 \\ & 6.923 \\ & 6.922 \\ &$

¹³C NMR of compound **17** (101 MHz, CDCl₃)

 $\begin{array}{c} 7.7581\\ 7.7581\\ 7.7570\\ 7.7570\\ 7.7557\\ 7.7557\\ 7.7557\\ 7.7557\\ 7.7557\\ 7.7557\\ 7.7557\\ 7.7557\\ 7.7557\\ 7.7557\\ 7.7532\\ 7.7532\\ 7.7532\\ 7.7532\\ 7.7532\\ 7.7532\\ 7.7532\\ 7.7532\\ 7.7532\\ 7.7522\\$

 ^{13}C NMR of compound 18 (101 MHz, CDCl_3)

88,8100 88,8100 88,8099 88,8099 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 88,8094 89,8094 17,745 17,7455 17,7555 17,7

 ^{13}C NMR of compound **19** (101 MHz, CDCl_3)

 ^{13}C NMR of compound **20** (101 MHz, CDCl_3)

$\begin{array}{c} 7.282\\ 7.227\\ 7.258\\ 7.228\\ 7.228\\ 6.005\\ 5.956\\ 5.925\\ 5.925\\ 5.925\\ 5.925\\ 5.925\\ 5.925\\ 5.925\\ 5.925\\ 5.925\\ 5.925\\ 5.912\\ 5.912\\ 5.912\\ 5.912\\ 5.912\\ 5.912\\ 5.912\\ 5.922\\ 1.2372\\ 1.2008\\$

¹³C NMR of compound **21** (101 MHz, CDCl₃)

 ^{13}C NMR of compound **22** (101 MHz, CDCl_3)

 ^{13}C NMR of compound 23 (101 MHz, CDCl_3)

¹³C NMR of compound **24** (101 MHz, CD₃OD)

 ^{13}C NMR of compound 25 (major diastereomer, 101 MHz, CDCl_3)

 ^{13}C NMR of compound 25 (minor diastereomer, 101 MHz, CDCl_3)

 ^{13}C NMR of compound 26 (101 MHz, CDCl_3)

¹⁹F NMR of compound **26** (376 MHz, CDCl₃)

¹³C NMR of compound **27** (major diastereomer, 101 MHz, CDCl₃)

5.995 5.995 5.952 5.952 5.952 5.955 5.952 5.955 5.953 4.951 4.850 4.951 4.850 4.951 4.850 4.951 4.850 4.951 4.951 4.951 4.952 5.952 4.951 4.071 4.951 4.071</t

 ^{13}C NMR of compound 27 (minor diastereomer, 101 MHz, CDCl_3)

6.127 6.005 6.0087 6.0087 6.0087 6.0087 6.0087 5.962 5.935 5.935 5.935 5.935 5.935 5.907 5.905 5.505 5

¹³C NMR of compound **28** (101 MHz, CDCl₃)

(6.08) (6.05)

 ^{13}C NMR of compound 29 (101 MHz, CDCl_3)

 ^{13}C NMR of compound 30 (101 MHz, CDCl_3)

¹³C NMR of compound **31** (101 MHz, CDCl₃)

 ^{13}C NMR of compound 32 (101 MHz, CDCl_3)

 ^{13}C NMR of compound 33 (101 MHz, CDCl_3)

 ^{13}C NMR of compound 34 (101 MHz, CDCl_3)

 ^{13}C NMR of compound **35** (101 MHz, CDCl_3)

 ^{13}C NMR of compound 36 (101 MHz, CDCl_3)

7249 5,5050 5,887 5,897 5,817 5,9175

 ^{13}C NMR of compound 37 (101 MHz, CDCl_3)

 ^{13}C NMR of compound 38 (101 MHz, CDCl_3)

 ^{13}C NMR of compound **39** (101 MHz, CDCl_3)

¹⁹F NMR of compound **39** (376 MHz, CDCl₃)

10 0 -10

-20 -30

-40

-50

-60 -70 -80 -50 -100 -110 -120 -130 -140 -150 -160 -170 -186 -190 -200 -210 11 (ppm)

¹³C NMR of compound **40** (101 MHz, CDCl₃)

8,8,8,8,67 8,8,8,67 17,77 17,77 17,77 17,77 17,77 17,77 17,77 17,77 17,73 17,93 17,73 17,93 17,73 17,93 17,73 17,93 17,73 17,93 17,73 17,93 17,73 17,93 17,73 17,93 1

¹H NMR of compound **41** (400 MHz, CDCl₃)

 ^{13}C NMR of compound **41** (101 MHz, CDCl_3)
7,432 6,660 6,580 6,580 6,580 6,580 6,580 6,580 6,597 6,508 6,510 5,509

¹³C NMR of compound **42** (101 MHz, CDCl₃)

(5) 247 (6) 000 (6)

 ^{13}C NMR of compound **43** (101 MHz, CDCl_3)

 ^{13}C NMR of compound **45** (101 MHz, CDCl_3)

¹³C NMR of compound **46** (101 MHz, CDCl₃)

 $<^{^{+115.00}}_{^{-115.05}}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -200 -210 -110 (ppm)

¹⁹F NMR of compound **46** (376 MHz, CDCl₃)

R 88.838 **8**.8536 **8**.8537 **7**.777 **7**.777 **7**.777 **7**.777 **7**.777 **7**.775 **1**.7777 **1**.7777 **1**.7777 **1**.77

¹³C NMR of compound **47** (101 MHz, CDCl₃)

¹³C NMR of compound **48** (101 MHz, CDCl₃)

44,011 44,011 44,012 44,774 44,774 44,774 44,774 44,774 44,774 44,774 44,774 44,774 44,774 44,774 44,774 44,774 44,774 5,255 5

 ^{13}C NMR of compound **49** (101 MHz, CDCl_3)

¹⁹F NMR of compound **49** (376 MHz, CDCl₃)

¹³C NMR of compound **50** (101 MHz, CDCl₃)

5,5776 5,5776 5,57754 5,57754 5,57754 5,57754 5,5795 5,519

 ^{13}C NMR of compound 51 (101 MHz, CDCl_3)

 ^{19}F NMR of compound **51** (376 MHz, CDCl_3)

¹³C NMR of compound **52** (101 MHz, CDCl₃)

¹³C NMR of compound **53** (101 MHz, CDCl₃)

¹⁹F NMR of compound **53** (376 MHz, CDCl₃)

¹³C NMR of compound **54** (101 MHz, CDCl₃)

¹³C NMR of compound **55** (101 MHz, CDCl₃)

¹³C NMR of compound **56** (101 MHz, CDCl₃)

 ^{13}C NMR of compound **57** (101 MHz, CDCl_3)

 ^{13}C NMR of compound 58 (101 MHz, CDCl_3)

 ^{13}C NMR of compound 59 (101 MHz, CDCl_3)

7,7364 7,727 7,727 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,729 7,229 3,349 7,224 2,347 7,225 3,349 7,224 2,328 3,317 5,328 3,328 3,349 2,347 2,328 3,317 5,225 3,317 5,225 3,317 5,225 3,317 5,225 3,317 5,225 3,317 5,225 3,317 5,225 3,317 5,225 3,317 5,225 3,317 5,225 2,225

¹³C NMR of compound **60** (101 MHz, CDCl₃)

¹³C NMR of compound **61** (101 MHz, CDCl₃)

¹³C NMR of compound **62** (101 MHz, CDCl₃)

7,247 7,247 7,247 7,258 7,2568 7,25689 7,25589 7,4558 7,45589 7,45

¹³C NMR of compound **63** (101 MHz, CDCl₃)

13. References

- [1] Chang, X. X.; Zhang, F. Q; Zhu, S. B.; Yang, Z.; Feng, X. M.; Liu, Y. B. Photoredox-Catalyzed Diastereoselective Dearomative Prenylation and Reverse-Prenylation of Electron-Deficient Indole Derivatives. *Nat. Commun.* **2023**, *14*, 3876.
- [2] Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery Jr J. A.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas Ö.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J. Gaussian09, Revision D.01, Gaussian, Inc., Wallingford, CT, **2013**.
- [3] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396.
- [4] Mardirossian, N.; Head-Gordon, M. ωB97M-V: A Combinatorially Optimized, Range-Separated Hybrid, Meta-GGA Density Functional with VV10 Nonlocal Correlation. J. Chem. Phys. 2016, 144, 214110.
- [5] Vydrov, O. A.; Van Voorhis, T. Nonlocal van Der Waals Density Functional: The Simpler the Better. J. Chem. Phys. 2010, 133, 244103.
- [6] Hujo, W.; Grimme, S. Performance of the van Der Waals Density Functional VV10 and (Hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7, 3866–3871.
- [7] Neese, F. Software Update: The ORCA Program System, Version 4.0. WIRES Comput. Mol. Sci. 2018, 8, e1327.
- [8] Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592.
- [9] Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol.

Graph. **1996**, *14*, 33–38.

[10] CYLview Visualization Software. https://www.cylview.org/ (accessed 2024-09-24).