
Journal Name

Supporting Information: Directly Optimizing for Synthe-
sizability in Generative Molecular Design using Retrosyn-
thesis Models†

Jeff Guo,∗a,b and Philippe Schwaller∗a,b

1 Supporting Information
The Supporting Information contains details on the procedure we
took to reproduce RGFN’s1 oracle as the code is not released.
In addition, we report the computational resources used, how
Saturn was pre-trained, AiZynthFinder and Syntheseus execution
details, and example synthesis routes of generated molecules.

2 Compute Resources
All experiments were run on a single workstation with an NVIDIA
RTX A6000 GPU 48GB memory and AMD Ryzen 9 5900X 24-Core
CPU. 48GB GPU memory is not required. QuickVina2-GPU-2.12–4

with ‘thread‘ = 8,000 (following the RGFN1 work) takes up to
12GB GPU memory. We further note that Saturn’s wall times re-
ported in the main text are longer than actually required as we
always run 2-4 experiments in parallel, which share the worksta-
tion’s resources, but makes the total wall time less.

3 Saturn Pre-training Details
This section contains the exact protocol used for Saturn pre-
training on ChEMBL 335 and ZINC 250k6. The details and pre-
trained models are taken from the original Saturn7 paper and
included here.

3.1 ChEMBL 33

Each step is followed by the SMILES remaining after the filtering
step.

1. Download raw ChEMBL 33 - 2,372,674

2. Standardization (charge and isotope handling) based on
https://github.com/MolecularAI/ReinventCommunity/
blob/master/notebooks/Data_Preparation.ipynb. All
SMILES that could not be parsed by RDKit were removed -
2,312,459

3. Kept only the unique SMILES - 2,203,884

aÉcole Polytechnique Fédérale de Lausanne (EPFL)
bNational Centre of Competence in Research (NCCR) Catalysis
† Supplementary Information available: [details of any supplementary information
available should be included here]. See DOI: 00.0000/00000000.

4. Tokenize all SMILES based on REINVENT’s tokenizer:
https://github.com/MolecularAI/reinvent-models/
blob/main/reinvent_models/reinvent_core/models/
vocabulary.py

5. Keep SMILES ≤ 80 tokens - 2,065,099

6. 150 ≤ molecular weight ≤ 600 - 2,016,970

7. Number of heavy atoms ≤ 40 - 1,975,282

8. Number of rings ≤ 8 - 1,974,522

9. Size of largest ring ≤ 8 - 1,961,690

10. Longest aliphatic carbon chain ≤ 5 - 1,950,213

11. Removed SMILES containing the following tokens (due to
undesired chemistry and low token frequency): [S+], [C-
], [s+], [O], [S@+], [S@@+], [S-], [o+], [NH+], [n-],
[N@], [N@@], [N@+], [N@@+], [S@@], [C+], [S@],
[c+], [NH2+], [SH], [NH-], [cH-], [O+], [c-], [CH],
[SH+], [CH2-], [OH+], [nH+], [SH2] - 1,942,081

The final vocabulary contained 37 tokens (2 extra tokens were
added, indicating <START> and <END>).

The Mamba model has 5,265,920 parameters. The hyperpa-
rameters are the default parameters in the code base.

The pre-training parameters were:

1. Max training steps = 20 (each training step entails a full
pass through the dataset)

2. Seed = 0

3. Batch size = 512

4. Learning rate = 0.0001

5. Randomize8 every batch of SMILES

The following checkpoint was used: Epoch 18, NLL = 32.21,
Validity (10k) = 95.60%.

Journal Name, [year], [vol.],1–8 | 1

Supplementary Information (SI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2025

https://github.com/MolecularAI/ReinventCommunity/blob/master/notebooks/Data_Preparation.ipynb
https://github.com/MolecularAI/ReinventCommunity/blob/master/notebooks/Data_Preparation.ipynb
https://github.com/MolecularAI/reinvent-models/blob/main/reinvent_models/reinvent_core/models/vocabulary.py
https://github.com/MolecularAI/reinvent-models/blob/main/reinvent_models/reinvent_core/models/vocabulary.py
https://github.com/MolecularAI/reinvent-models/blob/main/reinvent_models/reinvent_core/models/vocabulary.py


Fig. 1 Saturn reward shaping functions for QuickVina2-GPU-2.1 and SA
score.

3.2 ZINC 250k
ZINC 250k6 was downloaded and used as is.

The pre-training parameters were:

1. Training steps = 50 (each training step entails a full pass
through the dataset)

2. Seed = 0

3. Batch size = 512

4. Learning rate = 0.0001

5. Train with SMILES randomization8 (all SMILES in each
batch was randomized)

The final vocabulary contained 66 tokens (2 extra tokens were
added, indicating <START> and <END>).

The Mamba model has 5,272,832 parameters (slightly larger
than ChEMBL 33 model because the vocabulary size here is
larger). The following checkpoint was used: Epoch 50, NLL =
28.10, Validity (10k) = 95.20%.

4 Saturn General Details

4.1 Saturn Reward Shaping
This section contains details on the reward shaping functions used
such that the objective functions: RRGFN ,RAll MPO,RDouble MPO ∈
[0,1]. Fig. 1 shows the functions for QuickVina2-GPU-2.12–4 and
SA score9. QED10 values were taken as is, and not subjected
to reward shaping. AiZynthFinder11–13 returns 0 for not solved
and 1 for solved. Given a molecule, all oracle evaluations are
aggregated via a weighted product and a single scalar value is
returned as the reward:

R(x) =

[
∏

i
pi(x)wi

] 1
∑i wi

(1)

x is a SMILES14, i is the index of an oracle given many oracles
(MPO objective), pi is an oracle, and wi is the weight assigned to
the oracle (1 for all oracles in this work).

4.2 GraphGA-augmented Experience Replay
Saturn7 uses experience replay to enhance sample efficiency.
GraphGA15 can be applied on the replay buffer (stores the high-
est rewarding molecules generated so far) by treating the replay
buffer as the parent population. Crossover and mutation oper-
ations then generate new molecules. For all the results in this

work, activating the GA decreases the AiZynthFinder solve rate
relative to no GA. This is because the generated molecules are not
being sampled from the model itself (which is learning to gener-
ate AiZynthFinder solvable molecules). What is gained in return
is diversity recovering (as found in the original Saturn7 work).
This can be advantageous since the RGFN1 work defines Discov-
ered Modes as the number of Modes (<-10 docking score) which
also have < 0.5 Tanimoto similarity to every other mode. By ac-
tivating the GA, more Modes are generally found, relative to no
GA.

4.3 Saturn Batch Generation

Saturn7 generates SMILES14 in batches of, at maximum, 16. We
emphasize again that the small batch size is in anticipation of
leveraging high-fidelity oracles which may necessitate a small
batch size in the event that each molecule needs to be put on
a GPU. In a follow-up work, we have shown that in fact, a larger
batch size, which makes the sampling behavior more exploratory,
can be beneficial when directly optimizing for retrosynthesis mod-
els16. Internally, there is an oracle caching mechanism such that
repeat generated SMILES are not sent for oracle evaluation, and
instead, the reward is retrieved from the cache. Saturn’s sam-
ple efficiency comes from the local exploration of chemical space,
such that, at adjacent epochs, identical SMILES can be generated.
The effect is that at each generation epoch, sometimes only a few
new (not generated before) SMILES are generated. In the main
text Fig. 4, some batches have 0% solve rate by AiZynthFinder.
These are batches that only have a few new SMILES that hap-
pen not to be solvable. If one new SMILES is generated, it being
unsolvable equates to 0% solve rate.

5 Reproducing RGFN’s Oracle

This section contains the steps we took to reproduce RGFN’s1

ATP-dependent Clp protease proteolytic subunit (ClpP) docking
case study as faithfully as we could.

Target Preparation. Following Supporting Information C.1 of
the RGFN paper, we downloaded the 7UVU ClpP crystal structure
here: https://www.rcsb.org/structure/7UVU. All molecules
(complexed inhibitors, solvents, etc.) were removed, keeping
only two monomeric units. Two structures were saved: The apo
protein (no other molecules present) and the reference ligand.
The following step differs from RGFN: the apo protein was pro-
cessed with PDBFixer17 to fix missing atoms and residues. We
performed this step because errors were thrown during docking
when using the raw apo protein structure.

Docking Details. We implement QuickVina2-GPU-2.12–4 fol-
lowing the instructions in the GitHub repository here: https:
//github.com/DeltaGroupNJUPT/Vina-GPU-2.1. The reference
ligand structure that was saved out in the previous step is used
here to define the docking box. Specifically, the average coordi-
nates of the ligand denote the docking centroid. The following
may differ from RGFN: We define the docking box as 20 Å x 20
Å x 20 Å as it was unclear how it should be defined based on
RGFN’s protocol. This box size has worked on many other pro-
tein targets18 when docking with AutoDock Vina2 which is the

2 | 1–8Journal Name, [year], [vol.],

https://www.rcsb.org/structure/7UVU
https://github.com/DeltaGroupNJUPT/Vina-GPU-2.1
https://github.com/DeltaGroupNJUPT/Vina-GPU-2.1


predecessor of QuickVina2-GPU-2.1.
Docking Workflow. Following RGFN’s protocol, QuickVina2-

GPU-2.1 used the following parameters: ‘thread‘ = 8,000 with
‘search depth‘ = "heuristic" which is the default. Next, all ligands
were docked following RGFN’s workflow:

1. Start with batch of generated SMILES from Saturn

2. Canonicalize the SMILES

3. Convert to RDKit Mol objects

4. Protonate the Mols

5. Generate 1 (lowest energy) conformer using ‘ETKDG‘19

6. Minimize energy with the Universal Force Field (UFF)20

7. Write out the conformers as ‘PDB‘ files

8. Using Open Babel21, convert the ‘PDB‘ to ‘PDBQT‘ format

9. Execute QuickVina2-GPU-2.1 docking

Protocol Validation. We make further efforts to ensure the or-
acle is as faithful as possible to RGFN’s implementation. When
executing QuickVina2-GPU-2.1, if a seed is not specified, a ran-
dom seed is used. It is unclear if a seed was set in the RGFN1

work. In our experiments, the seed is 0. We re-dock the ref-
erence ligand and find that the pose is similar to Figure 15 in
the RGFN work. However, the docking score we obtain is -9.2
whereas the RGFN work reports -10.31. Subsequently, we execute
docking 100 times (letting QuickVina2-GPU 2.1 select the random
seed) and observed that seed = 448029751 gives a similar pose
to RGFN’s pose and yields a docking score of -10.1. We addi-
tionally found that seed = 1920393356 yields a docking score of
-10.3 but the pose is reflected. Finally seed = 673697018 yields
a docking score of -8.2 and is a completely different pose. It is
intractable to try every seed.

Therefore, we end this section by stating that it is hard to say
if we exactly re-implement RGFN’s1 docking oracle. However, we
believe it still enables us to convey the primary message of our
work: retrosynthesis models can be directly treated as an oracle
and be explicitly optimized for during generation.

6 AiZynthFinder

AiZynthFinder11–13 was used as is, without modification. The
source code was cloned from the GitHub repository here: https:
//github.com/MolecularAI/aizynthfinder. The environment
and package were installed following the README. Follow-
ing the documentation here: https://molecularai.github.
io/aizynthfinder/, we downloaded the public data and used
AiZynthFinder as is. We consider a molecule AiZynthFinder "solv-
able" if the "is_solved" flag is True. This flag denotes whether
the top scored (accounting for tree depth and fraction of building
blocks in stock)12,13 is solved.

7 Experiment 2: Directly optimizing for synthesiz-
ability using AiZynth Additional Details

7.1 AiZynthFinder Routes
The AiZynthFinder solved routes for the 8 example molecules
shown in Fig. 3 in the main text are shown here. The All MPO
routes (Fig. 2) are generally shorter than the Double MPO routes
(Fig. 3). This suggests that enforcing QED and SA score also im-
plicitly makes the predicted forward syntheses shorter. We note
that it is possible to design an objective function that also aims to
generate short paths by rewarding short paths. We do not explore
this here and leave it for future work.

7.2 Supplementary Results
In this section, supplementary results are reported which aim to
address/provide evidence for three points:

1. Effect of increasing the oracle budget when optimizing
AiZynthFinder

2. Jointly optimizing QED with docking score is considerably
more difficult than just optimizing docking score

3. Optimizing SA score can be a better allocation of computa-
tional resources

Increasing the oracle budget leads to notably increased
wall times. In the main text results, RAll MPO does not find that
many Modes. We investigate the effect of increasing the oracle
budget (Table 1) with and without the GA activated (which re-
cover diversity so as to satisfy the Modes criterion that Modes
must have < 0.5 Tanimoto similarity with other Modes). Note
that we also ran the experiment with an oracle budget of 1,000
(as in the main text experiments) with the GA activated for com-
pleteness. Comparing the results with an increased oracle bud-
get of 5,000, more Modes are found but the wall time is notably
higher. With 5x the oracle budget (5,000 compared to 1,000 in
the main text), one may expect 5x the wall time (12-13 hours)
but the wall time is around 18 hours. The reason is due to Sat-
urn’s sampling behavior which locally explores chemical space7.
This leads to batches of repeat molecules which are not scored by
the oracle but means it takes more iterations to exhaust the ora-
cle budget. The parameters of Saturn could be changed to loosen
this local exploration behavior such as increasing batch size from
16 but we do not explore this. We demonstrate the application of
Saturn out-of-the-box and also in anticipation of leveraging high-
fidelity oracles which may necessitate a small batch size in the
event that each molecule needs to be put on a GPU. As a conse-
quence of this, many repeat molecules are generated, which do
not impose an oracle call as the reward is retrieved from an ora-
cle cache, but makes the sampled batch (new molecules) smaller.
Consider batches of 1 molecule and 4 molecules. This can take
a similar wall time as molecules can be chunked, thus benefiting
from multi-threading. The overhead of initializing an oracle can
also be non-negligible, such that it is the bottleneck between the
wall time to score 1 or 4 molecules. This could be mitigated, for
example, by using a faster retrosynthesis model which can come

Journal Name, [year], [vol.],1–8 | 3

https://github.com/MolecularAI/aizynthfinder
https://github.com/MolecularAI/aizynthfinder
https://molecularai.github.io/aizynthfinder/
https://molecularai.github.io/aizynthfinder/


Fig. 2 AiZynthFinder solved routes (top-2–scoring) for All MPO example molecules.

with advantages and disadvantages22,23 and/or parallelization.
Finally, we highlight that deactivating the GA will likely lead to
higher Yield and AiZynthFinder solve rate, as shown in the main
text. We reiterate that activating the GA was to satisfy the Mode
metric.

Jointly optimizing QED with docking score is considerably
more difficult than just optimizing docking score. RGFN1 re-
ports their mean and standard deviation of QED values as 0.23 ±
0.04. The relatively low QED values suggest that the model is ex-
ploiting the docking algorithm as shown in the main text. To show
that jointly optimizing QED and docking is a considerably more
difficult task, we first cross-reference the results for RDouble MPO

(Table 1) where the Modes and Yield are notably higher than
RAll MPO. Next, we cross-reference the results when QED is not
being optimized (Table 1 last row). The Yield is much higher
(molecules with docking score < -10) but the QED values are
similar to RGFN, which again, suggests the docking algorithm is
being exploited.

Optimizing SA score can be a better allocation of compu-
tational resources. SA score9 is correlated with AiZynthFinder
solve rate24. In the main text Fig. 4, we empirically demonstrate
this, as 56 seconds of fine-tuning a pre-trained model that has
never seen an AiZynthFinder solved molecule, results in a model
that generates molecules almost all solvable. The natural next
question is, would simply optimizing SA score be a better allo-
cation of computational resources (as is commonly done)? Un-
der the same wall time, many more queries to SA score can be
made because it is computationally cheap. Correspondingly, we

use the RAll MPO objective function but omit AiZynthFinder (only
docking, QED, and SA score) and run the ChEMBL and ZINC pre-
trained models for 10,000 oracle calls (Table 1). Firstly, the wall
time is about 1 hour longer than running 1,000 oracle calls of
AiZynthFinder. Next, while a smaller fraction of the Modes are
AiZynthFinder solvable, the raw number is higher than directly
optimizing AiZynthFinder. This reinforces that post-hoc retrosyn-
thesis model filtering is valid and is often what is done in prac-
tice25. Crucially, the actual percentage of AiZynthFinder solve
rate may not actually matter. What matters is that a user can
reasonably expect a generative model to generate molecules sat-
isfying the objective function within the allotted oracle budget
and/or wall time. In this specific example, it does not matter
that Saturn-ChEMBL "only" has 33% solve rate when optimizing
docking, QED, and SA score (Table 1). Running the 131 Modes
through AiZynthFinder can take less than 20 minutes. A user
would only care that in 3.5 hours, 43/131 Modes were found
that have low docking score, high QED, low SA score, and are
AiZynthFinder solvable.

Finally, we wish to be prudent with making definitive state-
ments about whether just optimizing SA score is strictly better
than including a retrosynthesis model in the objective function.
In this section alone, we have highlighted that different retrosyn-
thesis models can have a large impact on wall time22,23, where
faster wall times would narrow the gap between SA score’s wall
time. Moreover, molecules deemed difficult to synthesize by SA
score may actually be straightforward to synthesize. Retrosynthe-
sis models have much more flexibility as the building block stock

4 | 1–8Journal Name, [year], [vol.],



Fig. 3 AiZynthFinder solved routes (top-2-scoring) for Double MPO example molecules.

Journal Name, [year], [vol.],1–8 | 5



Table 1 Synthesizability metrics across various Saturn experiments. Metrics are reported for however many Modes are found. For these supplemental
results, only the experiments with an oracle budget of 1,000 were run across 10 seeds (0-9 inclusive). Other experiments were only run for one replicate
(seed = 0). For the experiments run across seeds, the number after the configuration denotes the number of successful replicates out of 10 (Modes
≥ 1). Note that the means and standard deviations are only reported for the experiments with an oracle budget of 1,000 as these were performed in
replicates.

Method Modes (Yield) Mol. weight (↓) QED (↑) SA score (↓) AiZynth (↑) Oracle calls
(Wall time)

RAll MPO 4 objectives (Docking, QED, SA, AiZynth)

Saturn-GA-ChEMBL (9) 6 ± 3 (7 ± 4) 390.4 ± 22.9 0.66 ± 0.10 2.23 ± 0.19 0.81 ± 0.21 1,000 (2h 37m ± 12m)

Saturn-GA-ZINC (10) 7 ± 4 (11 ± 8) 368.7 ± 19.3 0.71 ± 0.11 2.01 ± 0.15 0.94 ± 0.08 1,000 (2h 17m ± 8m)

Saturn-ChEMBL 31 (52) 379.6 0.75 2.18 0.81 5,000 (18h 37m)

Saturn-ZINC 88 (252) 366.2 0.85 2.33 0.89 5,000 (14h 58m)

RDouble MPO 2 objectives (Docking, AiZynth)

Saturn-GA-ChEMBL (10) 53 ± 10 (119 ± 40) 422.3 ± 16.8 0.41 ± 0.05 2.30 ± 0.09 0.78 ± 0.06 1,000 (2h 51m ± 13m)

Saturn-GA-ZINC (10) 26 ± 9 (62 ± 33) 413.8 ± 21.3 0.48 ± 0.06 2.28 ± 0.15 0.86 ± 0.07 1,000 (2h 30m ± 10m)

Saturn-ChEMBL 320 (3131) 446.1 0.36 2.37 0.86 5,000 (17h 41m)

Saturn-GA-ChEMBL 350 (2783) 441.0 0.37 2.62 0.68 5,000 (16h 29m)

Saturn-ZINC 228 (3722) 432.9 0.30 2.45 0.71 5,000 (18h 51m)

Saturn-GA-ZINC 351 (2138) 452.0 0.48 2.69 0.67 5,000 (18h 10m)

RAll MPO (but without AiZynth) 3 objectives (Docking, QED, SA)

Saturn-ChEMBL 131 (1738) 350.6 0.88 2.49 0.33 10,000 (3h 37m)

Saturn-ZINC 204 (980) 364.6 0.83 2.64 0.17 10,000 (3h 38m)

RRGFN - Results also shown in the main text 1 objective (Docking)

Saturn-ChEMBL 369 (8544) 551.5 0.27 2.82 0.28 10,000 (2h 57m)

and reactions can be changed, whereas SA score was designed
based on the fixed PubChem corpus9. One could even constrain
the retrosynthesis model to only include building blocks and re-
actions that are available in-house, similar to what was done in
a collaborative work involving Pfizer26. Finally, in the main text,
we have shown that the specific drug discovery case study per-
formed in this work benefits more from optimizing SA score in
place of retrosynthesis models but this should not be taken as a
general result. We conversely showed that in a semiconductor
case study27, SA score led to very few synthesizable molecules
compared to a retrosynthesis model. Therefore, the only conclu-
sion we make is that optimizing retrosynthesis models explicitly
can mitigate out-of-distribution challenges associated with syn-
thesizability heuristics scores.

8 Experiment 3: Directly optimizing for synthesiz-
ability using AiZynth starting from an unsuitable
training distribution Additional Details

8.1 AiZynthFinder purged ZINC 250k Pre-training Details.

In Experiment 3, we pre-train Saturn on a sub-set of ZINC 250k6

that is not AiZynthFinder11–13 solvable. The goal is to show that
Saturn can still optimize for generating molecules that are AiZyn-
thFinder solvable despite being trained on no molecules that can
be.

Purged Dataset. We first run AiZynthFinder on the entirety of
ZINC 250k on a single workstation with an NVIDIA RTX A6000
GPU 48GB memory and AMD Ryzen 9 5900X 24-Core CPU. The
process was run using multi-threading across 12 workers and
took 62 hours. We save the unique SMILES (98,110) of all the

molecules that are not AiZynthFinder solvable. This is the dataset
used for pre-training.

Pre-training. Following the same pre-training parameters used
in the original Saturn7 work:

1. Training steps = 100 (each training step entails a full pass
through the dataset)

2. Seed = 0

3. Batch size = 512

4. Learning rate = 0.0001

5. Train with SMILES randomization8 (all SMILES in each
batch was randomized)

The final vocabulary contained 57 tokens (2 extra tokens were
added, indicating <START> and <END>). This is less than the
normal ZINC 250k model (66 tokens) because some tokens are
not present in the purged dataset.

The Mamba model has 5,271,040 parameters (less than the
normal 250k model because the vocabulary size is smaller). The
following checkpoint was used: Epoch 100, NLL = 27.78, Validity
(10k) = 92.27% and the training time was 4.7 hours.

9 Experiment 4: Directly optimizing for synthesiz-
ability using any retrosynthesis model Additional
Details

9.1 Syntheseus
In Experiment 4 in the main text, we extended the retrosynthesis
model from AiZynthFinder to RetroKNN28, Graph2Edits29, and

6 | 1–8Journal Name, [year], [vol.],



RootAligned30. We ran these models through the Syntheseus23

package to show that any retrosynthesis model can be directly
optimized for. The main difference, other than the model, when
compared to AiZynthFinder, is the commercial building blocks set
used. For AiZynthFinder, we used the default ZINC6 building
blocks provided in the AiZynthFinder installation. For Synthe-
seus, we used the ‘Fragment‘ and ‘Reactive‘ sub-sets of ZINC6

(17,721,980 building blocks).

10 Experiment 5: Generating out-of-distribution of
synthesizability heuristics Additional Details

10.1 Wall times

In this section, we report the wall times for all configurations used
in the drug discovery and semiconductor case study. The exper-
iment in this section contrasts optimizing for SA score compared
to directly incorporating a retrosynthesis model directly in the
optimization loop. In addition to reporting the raw compute time
values, we also want to convey that we increased the SA score ex-
periments’ oracle budgets so that the total wall time of the SA
score (with 3,000 oracle calls budget) experiments were com-
parable to 1,000 oracle calls involving the retrosynthesis model
for fairness. Moreover, we note that in the semiconductors case
study, we used xTB31 to compute electronic properties. Tech-
nically, after a single-point calculation, both the HOMO-LUMO
gap and dipole values we use are obtained but due to an exist-
ing sub-optimal implementation, we re-ran xTB to compute the
other property. This effectively doubles the xTB time but affects
all configurations so the wall time comparisons are valid. In the
future, this will be replaced by another module that better han-
dles information flow and extraction. Tables 2 and 3 show the
wall times for the drug discovery and semiconductor case studies,
respectively. We increased the oracle budget accordingly for the
SA score configurations to match the retrosynthesis model config-
urations. Finally, ZINC runs took longer due to the much larger
building block stock (17.7 million).

Drug Discovery Case Study

Configuration Wall time (seconds)

SA (1000) 590±71
SA (3000) 3473±348
Direct Enamine EU (1000) 3664±770
Direct Enamine US (1000) 3171±268
Direct Sigma-Aldrich (1000) 4938±931
Direct ZINC (1000) 19690±3942

Table 2 Average wall times across 10 seeds for Drug Discovery Case
Study. The oracle budget is in parentheses.

Semiconductor Case Study

10.2 Semiconductor Case Study SA Score Distribution

Fig. 4 shows the SA score distribution of various experiment con-
figurations. There is minimal difference between the SA scores of
synthesizable and non-synthesizable molecules.

Configuration Wall time (seconds)

SA (1000) 2684±568
SA (2000) 9557±3958
Direct Enamine EU (1000) 8556±1693
Direct Enamine US (1000) 8310±1185
Direct Sigma-Aldrich (1000) 9960±3315
Direct ZINC (1000) 22792±4225

Table 3 Average wall times across 10 seeds for Semiconductor Case Study.
The oracle budget is in parentheses.

10.3 Point-Biserial Correlation
We use point-biserial correlation to measures the correlation be-
tween SA scores and synthesizability assessed across all stocks.
Synthesizability is given as a binary variable: 0 or 1. A more neg-
ative correlation indicates that SA score decreases when synthe-
sizability is 1, i.e., synthesizable. Table 4 shows the correlations.
In the drug discovery case study, lower SA scores tend to equate
to more synthesizable molecules while in the semiconductor case
study, the variables are almost completely uncorrelated.

Stock Drug Discovery Semiconductor
(SA 3000) (SA 2000)

Enamine EU −0.378±0.068 −0.072±0.100
Enamine US −0.397±0.077 −0.040±0.116
Sigma Aldrich −0.455±0.053 −0.145±0.088
ZINC −0.512±0.080 −0.013±0.146

Table 4 Average point-biserial correlation across 10 seeds for Drug Dis-
covery (SA 3000) and Semiconductor (SA 2000) Case Studies. The
oracle budget is in parentheses.

Notes and references
1 M. Koziarski, A. Rekesh, D. Shevchuk, A. van der Sloot,

P. Gaiński, Y. Bengio, C.-H. Liu, M. Tyers and R. A. Batey,
arXiv preprint arXiv:2406.08506, 2024.

2 O. Trott and A. J. Olson, Journal of computational chemistry,
2010, 31, 455–461.

3 A. Alhossary, S. D. Handoko, Y. Mu and C.-K. Kwoh, Bioinfor-
matics, 2015, 31, 2214–2216.

4 S. Tang, J. Ding, X. Zhu, Z. Wang, H. Zhao and J. Wu, bioRxiv,
2023, 2023–11.

5 A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies,
A. Hersey, Y. Light, S. McGlinchey, D. Michalovich, B. Al-
Lazikani et al., Nucleic acids research, 2012, 40, D1100–
D1107.

6 T. Sterling and J. J. Irwin, Journal of chemical information and
modeling, 2015, 55, 2324–2337.

7 J. Guo and P. Schwaller, arXiv preprint arXiv:2405.17066,
2024.

8 E. J. Bjerrum, arXiv preprint arXiv:1703.07076, 2017.
9 P. Ertl and A. Schuffenhauer, Journal of cheminformatics,

2009, 1, 1–11.
10 G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan and A. L.

Hopkins, Nature chemistry, 2012, 4, 90–98.

Journal Name, [year], [vol.],1–8 | 7



Fig. 4 Semiconductor case study: SA scores distribution. The experimental configurations that optimize for low SA score do successfully generate
molecules with low SA score. There is also minimal difference between the SA scores of synthesizable and non-synthesizable molecules.

11 A. Thakkar, T. Kogej, J.-L. Reymond, O. Engkvist and E. J.
Bjerrum, Chemical science, 2020, 11, 154–168.

12 S. Genheden, A. Thakkar, V. Chadimová, J.-L. Reymond,
O. Engkvist and E. Bjerrum, Journal of cheminformatics, 2020,
12, 70.

13 L. Saigiridharan, A. K. Hassen, H. Lai, P. Torren-Peraire, O. En-
gkvist and S. Genheden, Journal of Cheminformatics, 2024,
16, 57.

14 D. Weininger, Journal of chemical information and computer
sciences, 1988, 28, 31–36.

15 J. H. Jensen, Chemical science, 2019, 10, 3567–3572.
16 J. Guo and P. Schwaller, arXiv preprint arXiv:2410.11527,

2024.
17 P. Eastman, M. S. Friedrichs, J. D. Chodera, R. J. Radmer,

C. M. Bruns, J. P. Ku, K. A. Beauchamp, T. J. Lane, L.-P. Wang,
D. Shukla et al., Journal of chemical theory and computation,
2013, 9, 461–469.

18 J. Guo, J. P. Janet, M. R. Bauer, E. Nittinger, K. A. Giblin,
K. Papadopoulos, A. Voronov, A. Patronov, O. Engkvist and
C. Margreitter, Journal of cheminformatics, 2021, 13, 1–21.

19 S. Riniker and G. A. Landrum, Journal of chemical information
and modeling, 2015, 55, 2562–2574.

20 A. K. Rappé, C. J. Casewit, K. Colwell, W. A. Goddard III and
W. M. Skiff, Journal of the American chemical society, 1992,
114, 10024–10035.

21 N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Van-
dermeersch and G. R. Hutchison, Journal of cheminformatics,
2011, 3, 1–14.

22 B. Chen, C. Li, H. Dai and L. Song, International conference
on machine learning, 2020, pp. 1608–1616.

23 K. Maziarz, A. Tripp, G. Liu, M. Stanley, S. Xie, P. Gaiński,
P. Seidl and M. Segler, arXiv preprint arXiv:2310.19796, 2023.

24 G. Skoraczyński, M. Kitlas, B. Miasojedow and A. Gambin,
Journal of Cheminformatics, 2023, 15, 6.

25 J. D. Shields, R. Howells, G. Lamont, Y. Leilei, A. Madin, C. E.
Reimann, H. Rezaei, T. Reuillon, B. Smith, C. Thomson et al.,
RSC Medicinal Chemistry, 2024, 15, 1085–1095.

26 A. K. Hassen, M. Sicho, Y. J. van Aalst, M. C. Huizenga, D. N.
Reynolds, S. Luukkonen, A. Bernatavicius, D.-A. Clevert, A. P.
Janssen, G. J. van Westen et al., ChemRxiv, 2024.

27 Q. Yuan, A. Santana-Bonilla, M. A. Zwijnenburg and K. E.
Jelfs, Nanoscale, 2020, 12, 6744–6758.

28 S. Xie, R. Yan, J. Guo, Y. Xia, L. Wu and T. Qin, Proceedings
of the AAAI Conference on Artificial Intelligence, 2023, pp.
5330–5338.

29 W. Zhong, Z. Yang and C. Y.-C. Chen, Nature Communications,
2023, 14, 3009.

30 Z. Zhong, J. Song, Z. Feng, T. Liu, L. Jia, S. Yao, M. Wu, T. Hou
and M. Song, Chemical Science, 2022, 13, 9023–9034.

31 C. Bannwarth, S. Ehlert and S. Grimme, Journal of chemical
theory and computation, 2019, 15, 1652–1671.

8 | 1–8Journal Name, [year], [vol.],


	Supporting Information
	Compute Resources
	Saturn Pre-training Details
	ChEMBL 33
	ZINC 250k

	Saturn General Details
	Saturn Reward Shaping
	GraphGA-augmented Experience Replay
	Saturn Batch Generation

	Reproducing RGFN's Oracle
	AiZynthFinder
	Experiment 2: Directly optimizing for synthesizability using AiZynth Additional Details
	AiZynthFinder Routes
	Supplementary Results

	Experiment 3: Directly optimizing for synthesizability using AiZynth starting from an unsuitable training distribution Additional Details
	AiZynthFinder purged ZINC 250k Pre-training Details.

	Experiment 4: Directly optimizing for synthesizability using any retrosynthesis model Additional Details
	Syntheseus

	Experiment 5: Generating out-of-distribution of synthesizability heuristics Additional Details
	Wall times
	Semiconductor Case Study SA Score Distribution
	Point-Biserial Correlation


