Atomic Surface Structure for Unraveling the Trade-off between the Propane Dehydrogenation Activity and Anti-Deactivation of PtSn Catalysts

Mingxin Lv¹, Qiang Li^{1*}, Fan Xue¹, Zhiguo Li¹, Peixi Zhang¹, Yue Zhu¹, Longlong Fan², Jianrong Zeng³, Qiheng Li¹, Xin Chen¹, Kun Lin¹, Jinxia Deng¹, Xianran Xing^{1*}

¹ Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing 100083, China.

²Institute of High Energy Physics, CAS, Beijing100049, China.

³Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.

1 Catalyst Preparation

PtSn bimetallic catalysts were synthesized by stepwise impregnation method, 7.71, 23.14, 38.56, 57.85mg SnCl₂·2H₂O were dissolved in 2.0 mL of methanol and added dropwise to 1g silica, the obtained Sn/SiO₂ were dried overnight at 80 °C and annealing at 450°C for 4 hours, H₂PtCl₆·6H₂O was dissolved in 2.0 mL of water (45.66mg), then the solution was added dropwise to the obtained Sn/SiO₂. After the catalysts dried overnight at 80°C it was annealing at 250°C for 4 hours, and aged at room temperature for two week. The silica supported was calcined in air at 500°C for 4 hours and cooled to room temperature. The aged catalysts were used for catalytic testing and characterization after pretreatment as described below.

2 Characterization

The powder X-ray diffraction (XRD) patterns of the catalysts were measured on a Rigaku SmartLab diffractometer using Cu K α radiation (λ =1.54 Å, 40 kV and 30 mA), the scanning angle is 30 ~ 80° with 2°/min of scanning speed. X-ray photoelectron spectra were measured on Thermo Scientific K-Alpha with Al K α radiation. Charge correction was used with C 1s orbital binding energy(284.8 eV) and Pt 4f spectra were analyzed by using XPSPEAK software. The morphology and size of PtSn nanoparticles were obtained on Titan ETEM G2 microscope operated at 300 kV. The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and energy-dispersive X-ray spectroscopy (EDS) analyses were obtained from an atomic-resolution analytical microscope (JEM-ARM 200F) with an operating voltage of 200 kV. The actual loadings of Pt and Sn are obtained by inductively coupled plasma optical emission spectroscopy (Agilent ICPOES 730).

A Bruker Tensor 27 instrument with a highly sensitive MCT detector and a diffuse IR heating chamber was utilized to record in situ diffuse reflectance Infrared Fourier transform spectroscopy (DRIFTS) of CO chemisorption over different PtSn nanocatalysts at room temperature. Prior to CO chemisorption, the catalysts were pretreated by H_2 at 250 °C for 30 min and then cooled down to room temperature in N_2 , followed by the recording of a background at a resolution of 4 cm⁻¹ with 256 scans. Then the catalysts were exposed to a CO flow for 30 min and purged with N_2 before

collecting the spectra.

Thermal gravimetric analysis (TG) were measured on PerKinElmer STA 8000, sample was heated in a flux of N_2 (20ml/min), the temperature range is 100-700°C, the heating rate is 10°C/min.

CO Pulse chemisorption were measured on Micromeritics AutoChem II 2920 , Prior to CO chemisorption, the catalysts were pretreated by H_2 at 250 °C for 60 min. CO adsorption isotherms were collected at 35 °C. The dispersion was measured from the total adsorption isotherm, and the particle sizes were calculated using the inverse of the dispersion, assuming hemispherical shaped nanoparticles.

XAFS spectra were collected on the BL13SSW beamline of Shanghai Synchrotron Radiation Facility. Spectra were collected at the Pt L_3 -edge, data was acquired in transmission mode at room temperature, using Demeter package to fit data¹. Wavelet transform (WT) of Pt L_3 -edge EXAFS was implemented by using the HAMA software².

Atomic pair distribution function (PDF) was obtained from 3W1 beamline at Beijing Synchrotron Radiation Facility with the wavelength of 0.2061 Å, the atomic pair distribution function (PDF) was obtained by direct Fourier transform of reduced structure function with a Q value of 20 Å⁻¹ by PDFgetX2 software³. Small box fitting was carried out on PDFgui based on Pt₃Sn, PtSn phase. RMCprofile was used to Reverse Monte Carlo for the PDF data in big box fitting³, based on small box fitting unit cell , expanding this unit cells to a sphere with a radius of 15 Å and put it in a 50Å ×50Å × 50Å vacuum box generate the initial model of RMC⁴. DISCUS was uesd to analysis atomic spatial distribution and atom local coordination environment base model from RMC⁴. Pt-Pt coordination number was extracted by counting the number of Pt atoms in the 0-3.2Å range around Pt atoms.

RIR method with a powder specimen is as follows:

$$W_X = \frac{I_X}{K_A^X \times \sum_{i=A}^N \frac{I_i}{K_A^i}}$$

where W_x is the wt.% of the phase in the mixture, K_A is the RIR value and I_x is the

diffraction intensities.

3 Catalytic Activity Tests.

Catalyst PDH tests were carried out in fixed bed reactor with loading amount of 50mg. The catalyst was packed into a steel pipe with an inner diameter of 7.5 mm. Before the reaction, the catalyst was heated at 580 °C at a rate of 2 °C /min and pre-treated with 10%H₂/N₂ gas. The 10%H₂/N₂ gas flow rate was 50ml/min. Afterwards, the catalyst was evaluated at 580 °C and before each test, the catalyst was reduced at 580 °C for 60 min with 10%H₂/N₂ gas (100 mL/min). The gas composition of the reaction gas was C_3H_8 : N₂=1:9, with a flow rate of 100ml/min and the reaction atmospheric pressure is 1atm. Long-term stability test for PDH conversion was evaluated at 550 °C, the reaction gas was C_3H_8 :H₂:N₂=2:1:17(50 mL/min). The products were analyzed online by Techcomp GC7980 equipped with a flame ionization detector. the conversion and selectivity were calculated as follows:

$$Propane\ Conversion = \frac{n(C_3H_{8in}) - n(C_3H_{8out})}{n(C_3H_{8in})}$$

$$Propylene\ Selectivity = \frac{3 \times n(C_3H_6)}{n(CH_4) + 2 \times n(C_2H_6) + 2 \times n(C_2H_4) + 3 \times n(C_3H_6)}$$

$$Deactivation\ Rate = \frac{lnici((1 - X_{final})/X_{final}) - lnici((1 - X_{initial})/X_{initial})}{t}$$

Where $n(C_3H_{8in})$ and $n(C_3H_{8out})$ are the molar of propane in the feed/exit flow, $n(C_3H_6)$, $n(C_2H_4)$, $n(C_2H_6)$, $n(CH_4)$ are the molar of hydrocarbons in the exit flow, X_{final} is final conversion of propane, $X_{initial}$ is initial conversion of propane, t is reaction time.

4 Density Functional Theory (DFT) Calculations.

First principle calculations based on the projector augmented wave (PAW)⁵ were performed using Vienna ab initio simulation package (VASP)⁶. Exchange–correlation functional of Perdew–Burke–Ernzerh within the generalized gradient approximation was adopted, the cut-off energy for the basis set was chose as 400 eV. The Brillouin zone was sampled using a $3\times3\times1$ k-mesh. The original surface models of the Pt₈₀Sn₂₀,Pt₅₃Sn₄₇ catalysts is six-layer atoms on the Pt₃Sn (1 1 1) surface, and $Pt_{42}Sn_{58}$, $Pt_{33}Sn_{67}$ is on the PtSn (0 0 1) surface. By adjusting the distribution of the outermost and second outermost atoms, the model of central Pt sites on catalysts surface with 0, 3, 6, 9 Pt-Pt coordination numbers were acquired. The vacuum layer of was set as 15 Å.

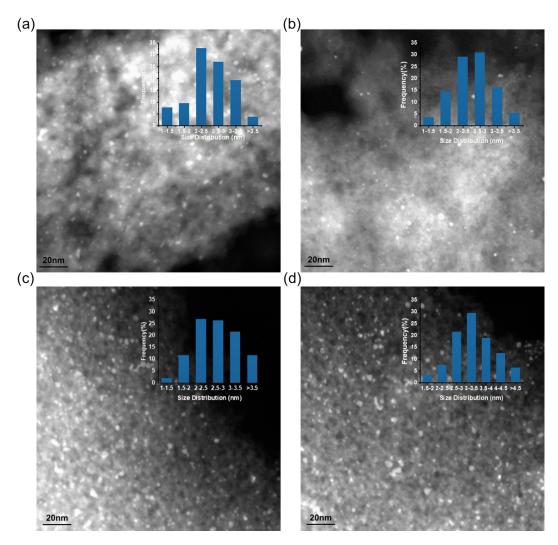


Figure S1. STEM image of PtSn catalysts. (a) $Pt_{80}Sn_{20}$, (b) $Pt_{53}Sn_{47}$, (c) $Pt_{42}Sn_{58}$, (d) $Pt_{33}Sn_{67}$.

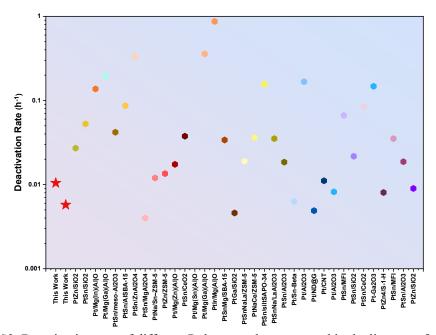


Figure S2. Deactivation rate of different Pt-base catalysts reported in the literature for propane dehydrogenation^[7-41].

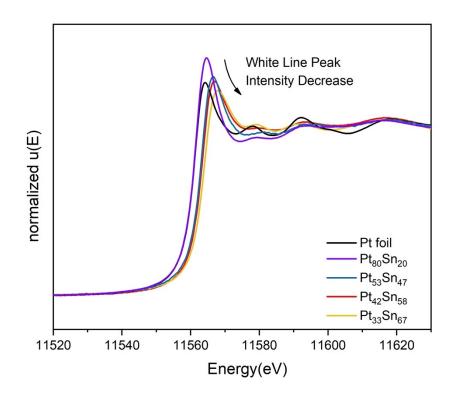


Figure S3. Normalized Pt L₃-edge XANES spectra of $Pt_{80}Sn_{20}$, $Pt_{53}Sn_{47}$, $Pt_{42}Sn_{58}$, $Pt_{33}Sn_{67}$ nanocatalysts.

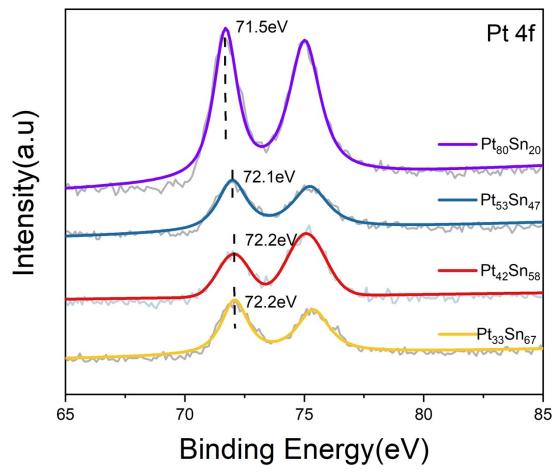


Figure S4. XPS spectra of $Pt_{80}Sn_{20}$, $Pt_{53}Sn_{47}$, $Pt_{42}Sn_{58}$, $Pt_{33}Sn_{67}$ nanocatalysts.

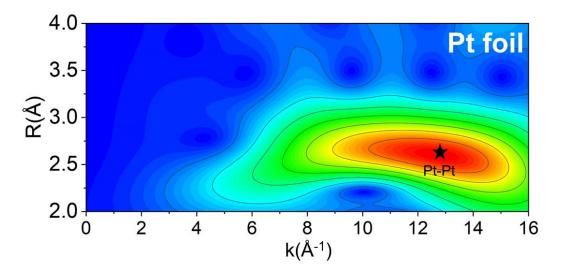


Figure S5. Wavelet transform of Pt foil Pt L3-edge EXAFS in the R-space 2.0 to 4.0 Å

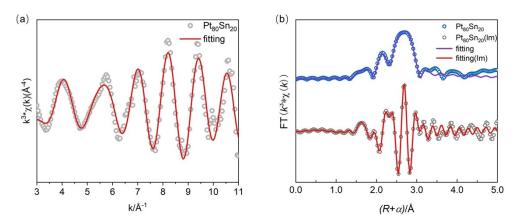


Figure S6 Fitting results of the EXAFS spectra of $Pt_{80}Sn_{20}$ catalysts. (FT range: 3.00 Å⁻¹–11.00 Å⁻¹, Fitting range: 2.00 Å–3.50 Å)

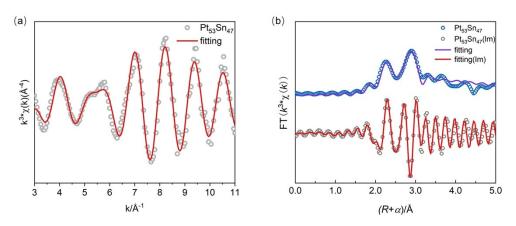


Figure S7 Fitting results of the EXAFS spectra of $Pt_{53}Sn_{47}$ catalysts. (FT range: 3.00 Å-1–11.00 Å-1, Fitting range: 2.00 Å–3.50 Å)

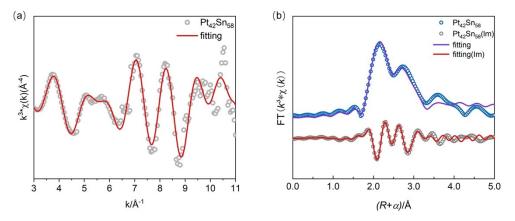


Figure S8 Fitting results of the EXAFS spectra of $Pt_{42}Sn_{58}$ catalysts. (FT range: 3.00 Å-1–11.00 Å-1, Fitting range: 2.00 Å–3.50 Å)

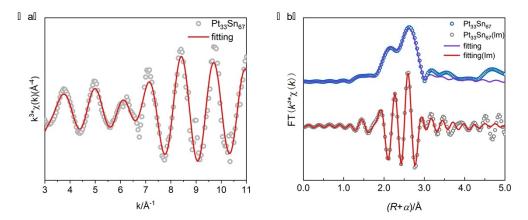


Figure S9 Fitting results of the EXAFS spectra of $Pt_{33}Sn_{67}$ catalysts. (FT range: 3.00 Å-1–11.00 Å-1, Fitting range: 2.00 Å–3.50 Å)

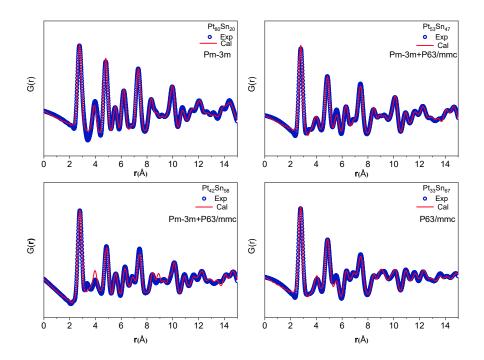


Figure S10. Atomic pair distribution functions and small-box fitting results of PtSn catalysts. (a) $Pt_{80}Sn_{20}$, (b) $Pt_{53}Sn_{47}$, (c) $Pt_{42}Sn_{58}$, (d) $Pt_{33}Sn_{67}$.

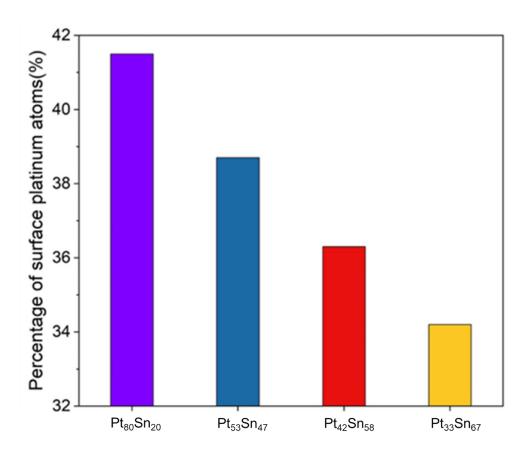


Figure S11. Proportion of surface platinum atoms among all platinum atoms (Extraction from the three-dimensional atomic distribution)

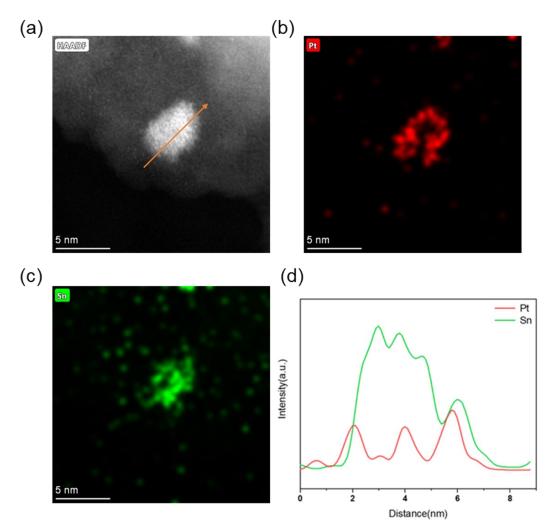


Figure S12. EDS elemental mapping and line-scanning profile of $Pt_{33}Sn_{67}$.

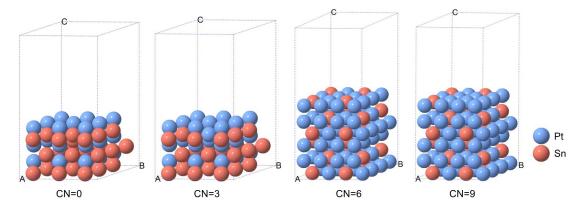


Figure S13 The constructed PtSn surface models with different Pt-Pt coordination numbers for DFT calculations.

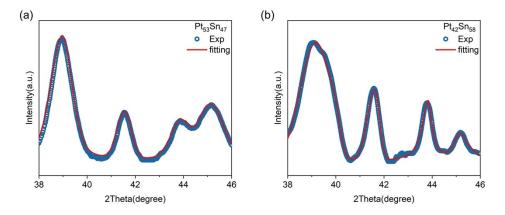


Figure S14 The strongest peaks of $Pt_{53}Sn_{47}$ and $Pt_{42}Sn_{58}$ were fitted using Jade to obtain peak shape parameters.

Sample	Molar ratios of Pt:Sn	Loading amounts of Pt(wt%)	Loading amounts of Sn(wt%)	
$Pt_{80}Sn_{20}$	80:20	1.68	0.26	
$Pt_{53}Sn_{47}$	53:47	1.92	1.07	
$Pt_{42}Sn_{58}$	42:58	1.71	1.46	
Pt33Sn67	33:67	1.58	2.00	

 Table S1 Chemical compositions and elemental loading amounts of PtSn/SiO₂ samples

 determined by ICP-OES

Table S2. Pt dispersion of PtSn catalysts

Sample	Pt dispersion%	Pt particle diameter/nm
$Pt_{80}Sn_{20}$	57.23	1.96
$Pt_{53}Sn_{47}$	57.42	1.95
$Pt_{42}Sn_{58}$	40.00	3.73
Pt ₃₃ Sn ₆₇	29.04	4.75

				and RMC				
Sample	Path	$\Delta E_0(eV)$	CN ^b	R/Å ^b	$\sigma^2/\text{ Å}^2$	R factor	CN°	R/Å ^c
Pt ₈₀ Sn	Pt-Pt	10.20	6.62±0.37	2.77 ± 0.04	$0.0078 {\pm} 0.001$	0.003	7.35	2.80
20	Pt-Sn	2.30	1.22 ± 0.62	2.75±0.01	$0.0158{\pm}0.004$	0.003	1.52	2.82
Pt ₅₃ Sn	Pt-Pt	11.20	6.05±1.13	$2.80{\pm}0.01$	$0.0110{\pm}0.002$	0.007	5.20	2.82
47	Pt-Sn	11.46	2.96 ± 2.60	$2.86{\pm}0.01$	$0.02337 {\pm} 0.018$	0.007	3.21	2.86
Pt ₄₂ Sn	Pt-Pt	12.57	2.85±0.45	$2.82{\pm}0.01$	$0.0019{\pm}0.0010$	0.003	3.36	2.78
58	Pt-Sn	3.89	3.96 ± 0.79	2.83±0.03	$0.0179 {\pm} 0.0037$	0.003	3.95	2.81
Pt ₃₃ Sn	Pt-Pt	11.50	2.31±0.74	$2.81{\pm}0.07$	0.0011 ± 0.0068	0.006	2.61	2.79
67	Pt-Sn	6.99	3.36±0.18	2.75±0.01	0.0049 ± 0.0044	0.006	3.63	2.78

Table S3 Average coordination number obtained from fitting results of Pt L₃-edge EXAFS data^a and RMC

^a S0₂ was fix as 0.795 which is obtained from the fitting for Pt-foil. Data ranges: $3.0 \le K \le 11.00$ Å⁻¹,

2.0 \leq R \leq 3.5 Å. Fitting was performed in q-space with k³ weighting.

^b Extract through fitting of EXAFS.

^c Extract through discussion from RMC result.

Sample	Phase	Phase ratio	a/Å ^a	b/Ū	c/Å ^a
$Pt_{80}Sn_{20}$	Pt ₃ Sn	-	3.9824	3.9824	3.9824
Dt Ca	Pt ₃ Sn	71%	3.9807	3.9807	3.9807
$Pt_{53}Sn_{47}$	Pt_1Sn_1	29%	4.1755	4.1755	5.4777
	Pt ₃ Sn	49%	3.9872	3.9872	3.9872
$Pt_{42}Sn_{58}$	Pt_1Sn_1	51%	4.1637	4.1637	5.4658
Pt ₃₃ Sn ₆₇	Pt_1Sn_1	-	4.1340	4.1340	5.4556

Table S4 Fitting results of PDF data for PtSn catalysts with PDFgui

^a lattice parameter

Sample	phase	2-Theta	plane	Area	I%	RiR	w%	mol%
Pt ₅₃ Sn ₄₇	Pt3Sn	38.97	(111)	150666	100	22.79	79.1	62.8
	PtSn	41.55	(102)	23341	15.5	13.23	20.9	37.2
$Pt_{42}Sn_{58}$	Pt3Sn	38.92	(111)	58125	100	22.79	68.2	48.8
	PtSn	41.54	(102)	15767	27.1	13.23	31.8	51.2

Table S5 Quantitative results of RIR method

				-	t-based denydr	•	liarysis	
#	Catalyst	Temp./	WHSV/ h ⁻¹	Components	Initial	Selectivity	$k_d{}^c$ /h ${}^{-1}$	Ref.
		°C	n ⁻¹	/vol./%	conversion/%	/%		This
1	PtSn/SiO ₂	580	5.9	10%C ₃ H ₈	44.3	99.3	0.0057	
				90%N ₂				work
2	PtSn/SiO ₂	580	5.9	10%C ₃ H ₈ 90%N ₂	51.8	98.5	0.0104	This work
	PtSn/meso-			-				WOIK
3	Al ₂ O ₃	590	3.0	80%C ₃ H ₈ 20%Не	30	92	0.0419	11
	PtSn/AlSBA-			80%C ₃ H ₈				
4	1 15	590	3.0	20%He	28	94.5	0.0866	12
15			23%C ₃ H ₈					
5	$PtSn/ZnAl_2O_4$	600	8.8	77%N ₂	50	98	0.3312	13
				10%C ₃ H ₈				
6	PtSn/MgAl ₂ O ₄	580	2.2	10%H ₂	46.4	96	0.004	14
0 FISH/WIgAI204	380	2.2	80%He	40.4	~~	0.001	11	
				80%C ₃ H ₈				
7	PtNa/Sn-ZSM-	tNa/Sn–ZSM- 5	3.0	20%H ₂	41.7	93	0.012	15
,	5		5.0	2070112	11.,	,,,	0.012	10
	B PtZn/ZSM-5	590		80%C ₃ H ₈				
8			3.0	20%H ₂	40.6	96	0.0135	16
	Pt/Mg(Zn)(Al) O	550		80%C ₃ H ₈	20	99.3	0.0174	17
9			8.0	20%H ₂				
		680	2.2	16.7%C ₃ H ₈	45		0.0376	
10	PtSn/CeO ₂			83.3%He		98		18
		550	14	29%C ₃ H ₈	29.5		4E-4	19
11	Pt/Mg(Sn)(Al)			14%H ₂		95		
	О			57%Ar				
10	Pt/Mg(Ga)(Al)	(00)	26	20%C ₃ H ₈	10.5	00	0.0576	20
12	0	600	26	80%N ₂	13.5	98	0.3576	20
12		(00	51.0	80%C ₃ H ₈		88	0.8695	0.1
13	PtIr/Mg(Al)O	600	51.9	20%H ₂	24.7			21
14	PtSnMg/SBA-	500	0 2	70%C ₃ H ₈	42	07.0	0.0220	
14	15	580	8.3	30%Ar	43	97.8	0.0339	22
15		550	0.0	20%C ₃ H ₈	21.0	99	0.0046	22
15	PtGa/SiO ₂	550	9.8	80%Ar	31.9		0.0046	23
16	PtSnNaLa/ZS	500	2.0	80%C ₃ H ₈	37.2	86.2	0.010	24
16	М	590	0 3.0	20%H ₂			0.019	24
17	DtNaCa/ZSM 5	500	590 3.0	80%C ₃ H ₈	42	92.6	0.0361	
17 PtNaCe/ZS	PtNaCe/ZSM-5	/ZSM-5 590		20%H ₂				25
18 PtSn/siltSAPC	DtSn/a:1+SADO	505	5.0	83%C ₃ H ₈	20.2	70	0.15(2)	26
	PtSn/siltSAPO	Sn/siltSAPO 585 5.0	5.0	17%H ₂	38.2	79	0.1562	26

Table S6 Summary of the catalytic data of Pt-based dehydrogenation catalysts

19	PtSnNa/LaAl ₂ O ₃	590	3.0	80%C ₃ H ₈ 20%H ₂	41	96.2	0.0352	27
				16%C ₃ H ₈				
20	20 PtSn/Al ₂ O ₃	590	5.2	20%H ₂	49	97	0.0185	28
				64%He				
	21 Pt/Al ₂ O ₃			80%C ₃ H ₈			0.1671	30
21		550	4, 0	20%H ₂	33	35		
				5%C ₃ H ₈				31
22	Pt/ND@G	600	1.6	95%N ₂	16.4	88	0.0049	
		<0.0		5%C ₃ H ₈			0.0111	
23	Pt/CNT	600	1.6	95%Ar	10.4	75	0.0111	32
				16%C ₃ H ₈			0.0082	33
24	Pt/Al ₂ O ₃	590	9.4	20%H ₂	48.7	98		
				64%Ar				
25	25 PtSn/CeO ₂	(90	2.2	16.7%C ₃ H ₈	45	78.0	0.0845	26
23		680	2.2	83.3%He	45			36
26	26 Pt-Ga ₂ O ₃	620	5.4	20%C ₃ H ₈	50 5	98	0.1473	27
20		620	5.4	80%He	58.5	70	0.14/5	37
27	27 D49/MEL	450	1.7	$24\%C_3H_8$	70	90	0.0352	39
21	PtSn/MFI			76%He	70			39
28	PtSn/SiO ₂	580	4.7	$16\%C_3H_8$	62	99	0.0087	40
20	1131/3102	580	4.7	84%He	02		0.0087	
				$16\%C_3H_8$			0.009	41
29	PtZn/SiO ₂	550	4.0	16%H ₂	58.9	99		
				68%N ₂				
				$2\%C_{3}H_{8}$				42
30	PtSn/SiO ₂	550	3.9	5%H ₂	11.2	99	0.0652	
				93%N ₂				
31	Pt-Ge-	580	4.8	100%C ₃ H ₈	45	95	0.0363	43
	d4r@UTL	200		1007003118		,,,	0.0000	.5
		Ga/Al ₂ O ₃ 450 0.59		$2.5\%C_{3}H_{8}$		90		44
32	SiPtGa/Al ₂ O ₃		0.59	2.5%H ₂	22		0.007	
				95%N ₂				
33	PtZnSn/	500	0.15	$5\%C_3H_8$	47.6	99	0.0275	45
		1 12/15/1/ JUU		95%N ₂				

5 References

(1) Ravel, B, Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. *Journal of synchrotron radiation* **2005**, 12, 537-541.

(2) Funke, H, Scheinost, A. C, Chukalina, M. Wavelet analysis of extended x-ray absorption fine structure data *Phys. Rev. B* **2005**, 71, 94110-1-7.

(3) Qiu, X, Thompson, J. W, Billinge, S. J., PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. *J. Appl. Crystallogr* 2004, 37, 678-678.

(4) Tucker, M, Dove, M, Goodwin, A, Keen, D, Playford, H, Slawinski, W. A., RMCProfile User Manual. *Code version* **2014**, 6, 0-155.

(5) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.**1996**, 6, 15–50.

(6) Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

(7) Rochlitz, L, Searles, K, Alfke, J, Zemlyanov, D, Safonova, O. V, Copéret, C., Silicasupported, narrowly distributed, subnanometric Pt–Zn particles from single sites with high propane dehydrogenation performance. *Chem. Sci.* **2020**, 11, 1549-1555.

(8) Deng, L, Miura, H, Shishido, T, Wang, Z, Hosokawa, S, Teramura, K, Tanaka, T., Elucidating strong metal-support interactions in Pt–Sn/SiO₂ catalyst and its consequences for dehydrogenation of lower alkanes. *J.Catal.* **2018**, 365, 277-291.

(9) Sun, P, Siddiqi, G, Vining, W. C, Chi, M, Bell, A. T., Novel Pt/Mg (In)(Al) O catalysts for ethane and propane dehydrogenation. *J. Catal.* **2011**, 282, 165-174.

(10) Zhu, Y, An, Z, Song, H, Xiang, X, Yan, W, He, J., Lattice-Confined Sn (IV/II) Stabilizing Raft-Like Pt Clusters: High Selectivity and Durability in Propane Dehydrogenation. *ACS Catal.*2017, 7, 6973-6978.

(11) Motagamwala, A. H, Almallahi, R, Wortman, J, Igenegbai, V. O, Linic, S., Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. *Science* **2021**, 373, 217-222.

(12) Jang, E. J, Lee, J, Jeong, H. Y, Kwak, J. H., Controlling the acid-base properties of alumina for stable PtSn-based propane dehydrogenation catalysts. *Appl. Catal. A.* **2019**, 572, 1-8.

(13) Redekop, E. A, Galvita, V. V, Poelman, H, Bliznuk, V, Detavernier, C, Marin, G. B., Delivering a Modifying Element to Metal Nanoparticles via Support: Pt–Ga Alloying during the Reduction of Pt/Mg(Al, Ga)O_x Catalysts and Its Effects on Propane Dehydrogenation. *ACS Catal.*2014, 4, 1812-1824.

(14) Li, J, Li, J, Zhao, Z, Fan, X, Liu, J, Wei, Y, Duan, A, Xie, Z, Liu, Q., Size effect of TS-1 supports on the catalytic performance of PtSn/TS-1 catalysts for propane dehydrogenation. *J. Catal.*2017, 352, 361-370.

(15) Zhang, H, Wan, H, Zhao, Y, Wang, W., Effect of chlorine elimination from Pt-Sn catalyst on the behavior of hydrocarbon reconstruction in propane dehydrogenation. *Catal. Today* 2019, 330, 85-91.

(16) Wang, P, Yao, J, Jiang, Q, Gao, X, Lin, D, Yang, H, Wu, L, Tang, Y, Tan, L., Stabilizing the isolated Pt sites on PtGa/Al₂O₃ catalyst via silica coating layers for propane dehydrogenation at low temperature. *Appl. Catal. B* **2022**, 300.

(17) Zhu, H, Anjum, D. H, Wang, Q, Abou-Hamad, E, Emsley, L, Dong, H, Laveille, P, Li, L, Samal, A. K, Basset, J.-M., Sn surface-enriched Pt–Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. *Journal of Catalysis* **2014**, 320, 52-62.

(18) Liu, L, Lopez-Haro, M, Lopes, C. W, Li, C, Concepcion, P, Simonelli, L, Calvino, J. J, Corma, A., Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. *Nat. Mater.* **2019**, 18 (8), 866-873.

(19) Wan, H, Qian, L, Gong, N, Hou, H, Dou, X, Zheng, L, Zhang, L, Liu, L., Size-Dependent Structures and Catalytic Properties of Supported Bimetallic PtSn Catalysts for Propane Dehydrogenation Reaction. *ACS Catal.* **2023**, 13 (11), 7383-7394.

(20) Werghi, B, Wu, L, Ebrahim, A. M, Chi, M, Ni, H, Cargnello, M, Bare, S. R., Selective Catalytic Behavior Induced by Crystal-Phase Transformation in Well-Defined Bimetallic Pt-Sn Nanocrystals. *Small* **2023**, 19 (20), 2207956.

(21) Iglesias-Juez, A, Beale, A. M, Maaijen, K, Weng, T. C, Glatzel, P, Weckhuysen, B. M., A combined in situ time-resolved UV–Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. *J. Catal.* **2010**, 276 (2), 268-279.

(22) Shi, L, Deng, G. M, Li, W. C, Miao, S, Wang, Q. N, Zhang, W. P, Lu, A. H., Al2O3 Nanosheets Rich in Pentacoordinate Al3+ Ions Stabilize Pt-Sn Clusters for Propane Dehydrogenation. *Angew. Chem. Int. Ed.* **2015**, 54 (47), 13994-13998

(23) Zhu, J, Yang, M.-L, Yu, Y, Zhu, Y.-A, Sui, Z.-J, Zhou, X.-G, Holmen, A, Chen, D., Size-Dependent Reaction Mechanism and Kinetics for Propane Dehydrogenation over Pt Catalysts. *ACS Catalysis* **2015**, 5 (11), 6310-6319.

(24) Im, J, Choi, M., Physicochemical Stabilization of Pt against Sintering for a Dehydrogenation Catalyst with High Activity, Selectivity, and Durability. *ACS Catalysis* **2016**, 6 (5), 2819-2826.

(25) Liu, J, Yue, Y, Liu, H, Da, Z, Liu, C, Ma, A, Rong, J, Su, D, Bao, X, Zheng, H., Origin of the Robust Catalytic Performance of Nanodiamond–Graphene-Supported Pt Nanoparticles Used in the Propane Dehydrogenation Reaction. *ACS Catal.* **2017**, 7 (5), 3349-3355

(26) Xiong, H, Lin, S, Goetze, J, Pletcher, P, Guo, H, Kovarik, L, Artyushkova, K, Weckhuysen,
B. M, Datye, A. K., Thermally Stable and Regenerable Platinum-Tin Clusters for Propane
Dehydrogenation Prepared by Atom Trapping on Ceria. *Angew. Chem. Int. Ed.* 2017, 56 (31), 8986-8991.

(27) Searles, K, Chan, K. W, Mendes Burak, J. A, Zemlyanov, D, Safonova, O, Coperet, C.,
Highly Productive Propane Dehydrogenation Catalyst Using Silica-Supported Ga-Pt Nanoparticles
Generated from Single-Sites. J. Am. Chem. Soc. 2018, 140 (37), 11674-11679.

(28) Zhao, S, Xu, B, Yu, L, Fan, Y., Catalytic dehydrogenation of propane to propylene over highly active PtSnNa/γ-Al₂O₃ catalyst. *Chinese Chem. Lett.* **2018**, 29 (3), 475-478

(29) Nakaya, Y, Hirayama, J, Yamazoe, S, Shimizu, K. I, Furukawa, S., Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. *Nat. Commun.* **2020**, 11 (1), 2838.

(30) Sun, Q, Wang, N, Fan, Q, Zeng, L, Mayoral, A, Miao, S, Yang, R, Jiang, Z, Zhou, W, Zhang, J, Zhang, T, Xu, J, Zhang, P, Cheng, J, Yang, D. C, Jia, R, Li, L, Zhang, Q, Wang, Y, Terasaki, O, Yu, J., Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. *Angew. Chem. Int. Ed.* **2020**, 59 (44), 19450-19459.

(31) Ye, C, Peng, M, Wang, Y, Zhang, N, Wang, D, Jiao, M, Miller, J. T., Surface Hexagonal Pt1Sn1 Intermetallic on Pt Nanoparticles for Selective Propane Dehydrogenation. *ACS Appl. Mater. Interfaces* **2020**, 12 (23), 25903-25909.

(32) Chen, S, Zhao, Z.-J, Mu, R, Chang, X, Luo, J, Purdy, S. C, Kropf, A. J, Sun, G, Pei, C,
Miller, J. T, Zhou, X, Vovk, E, Yang, Y, Gong, J., Propane Dehydrogenation on Single-Site [PtZn₄]
Intermetallic Catalysts. *Chem* 2021, 7 (2), 387-405.

(33) Han, S. W, Park, H, Han, J, Kim, J.-C, Lee, J, Jo, C, Ryoo, R., PtZn Intermetallic Compound Nanoparticles in Mesoporous Zeolite Exhibiting High Catalyst Durability for Propane Dehydrogenation. ACS *Catal.* **2021**, 11 (15), 9233-9241.

(34) Nakaya, Y, Xing, F, Ham, H, Shimizu, K. i, Furukawa, S., Doubly Decorated Platinum– Gallium Intermetallics as Stable Catalysts for Propane Dehydrogenation. *Angew. Chem. Int. Ed.* **2021**, 60 (36), 19715-19719.

(35) Wang, J, Chang, X, Chen, S, Sun, G, Zhou, X, Vovk, E, Yang, Y, Deng, W, Zhao, Z.-J, Mu,
R, Pei, C, Gong, J., On the Role of Sn Segregation of Pt-Sn Catalysts for Propane Dehydrogenation.
ACS Catal. 2021, 11 (8), 4401-4410

(36) Ma, S, Liu, Z.-P., Zeolite-confined subnanometric PtSn mimicking mortise-and-tenon joinery for catalytic propane dehydrogenation. *Nat. Commun.* **2022**, 13 (1).

(37) Ye, C, Peng, M, Li, Y, Wang, D, Chen, C, Li, Y., Atomically dispersed Pt in ordered PtSnZn intermetallic with Pt–Sn and Pt–Zn pairs for selective propane dehydrogenation. *Sci. China Mater.* **2022**, 66 (3), 1071-1078.

(38) Brack, E, Plodinec, M, Willinger, M.-G, Copéret, C., Implications of Ga promotion and metal–oxide interface from tailored PtGa propane dehydrogenation catalysts supported on carbon. *Chem. Sci.* **2023**, 14 (44), 12739-12746.

(39) Zhang, Y, Zhou, Y, Tang, M, Liu, X, Duan, Y., Effect of La calcination temperature on catalytic performance of PtSnNaLa/ZSM-5 catalyst for propane dehydrogenation. *Chem. Eng. J.* **2012**, 181, 530-537.

(40) Motagamwala, A. H.; Almallahi, R.; Wortman, J.; Igenegbai, V. O.; Linic, S., Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 2021, 373 (6551), 217-222.

(41) Wei, P, Chen, S, Luo, R, Sun, G, Wu, K, Fu, D, Gong, J., Stable and homogeneous intermetallic alloys by atomic gas-migration for propane dehydrogenation. Nature Commun. **2024**,15(1), 8157.

(42) Ye, C.; Peng, M.; Wang, Y.; Zhang, N.; Wang, D.; Jiao, M.; Miller, J. T., Surface Hexagonal Pt1Sn1 Intermetallic on Pt Nanoparticles for Selective Propane Dehydrogenation. ACS Appl. Mater. Interfaces **2020**, 12 (23), 25903-25909.

(43) Ma, Y.; Song, S.; Liu, C.; Liu, L.; Zhang, L.; Zhao, Y.; Wang, X.; Xu, H.; Guan, Y.; Jiang, J., Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation. Nat. Catal. **2023**, 6 (6), 506-518.

(44) Wang, P.; Yao, J.; Jiang, Q.; Gao, X.; Lin, D.; Yang, H.; Wu, L.; Tang, Y.; Tan,
L., Stabilizing the isolated Pt sites on PtGa/Al2O3 catalyst via silica coating layers for propane dehydrogenation at low temperature. Appl. Catal. B: Environ. 2022, 300, 120731.

(45) 1. Ye, C.; Peng, M.; Li, Y.; Wang, D.; Chen, C.; Li, Y., Atomically dispersed Pt in ordered PtSnZn intermetallic with Pt– Sn and Pt– Zn pairs for selective propane dehydrogenation. Sci. China Mater. **2023**, 66 (3), 1071-1078.