Supporting Information

Precise construction of spiro stereocenters via enantioselective radical addition through modulating photocatalysis from redox to energy transfer

Fayu Liu,ª Yanqi Guo,ª Weidong Lu,ª

Xiaowei Zhao,^b Yanli Yin,^{*a} and Zhiyong Jiang^{*a,b}

^aPingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China 453007

^bCollege of Pharmacy, Henan University, Kaifeng, Henan, P. R. China 475004

E-mail: yinzihust@163.com (Y.Y.); jiangzhiyong@htu.edu.cn (Z.J.)

Table of Contents

1.	General information	
		S3-S4
2.	Optimization of reaction conditions	
		S5-S7
3.	Experimental procedures	
		S8-S25
4.	Experimental equipment	
		S26
5.	Mechanism studies	
		S27-S37
6.	Determination of the absolute configurations	
		S38-S42
7.	Characterization of adducts	
		S43-S90
8.	Copies of NMR spectra	
		S91-S166
9.	References	
		S167

1. General information

Experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccator. Reaction mixtures were stirred in 10 mL Schlenk tube with Teflon-coated magnetic stirring bars unless otherwise stated. Moisture in non-volatile reagents/compounds was removed in high vacuo by means of an oil pump and subsequent purging with nitrogen. Solvents were removed under vacuum and heated with a water bath at 35–40 °C using rotary evaporator with aspirator. The condenser was cooled with running water at 0 °C.

All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed with pre-coated TLC plates, *silica gel* 60F-254, layer thickness 0.25 mm. After elution, plate was visualized under UV illumination at 254 nm for UV active material. Further visualization was achieved by staining phosphomolybdic acid solution. For those using the aqueous stains, the TLC plates were heated on a hot plate.

Columns for flash chromatography (FC) contained silica gel 200–300 mesh. Columns were packed as slurry of silica gel in petroleum ether and equilibrated solution using the appropriate solvent system. The elution was assisted by applying pressure of about 2 atm with an air pump.

Instrumentations

NMR: ¹H NMR spectra were recorded at room temperature on a Bruker AVANCE NEO 400 (400 MHz) or Bruker AVANCE III HD 600 (600 MHz) spectrometer. ¹³C NMR spectra were recorded on a Bruker AVANCE NEO 400 (100 MHz) or Bruker AVANCE III HD 600 (151 MHz) with complete proton decoupling. ¹⁹F NMR spectra were recorded on a Bruker AVANCE NEO 400 (376 MHz) or Bruker AVANCE III HD 600 (565 MHz) spectrometer. Proton nuclear magnetic resonance (¹H NMR) and carbon NMR (¹³C NMR) were recorded in CDCl₃ or CD₃OD. Chemical shifts are reported in parts per million (ppm), using the residual solvent signal as an internal standard: CDCl₃ (¹H NMR: δ 7.26, singlet; ¹³C NMR: δ 77.16, triplet), CD₃OD (¹H NMR: δ 3.31, multiplets; ¹³C NMR: δ 48.80, multiplets). Multiplicities were given as: *s* (singlet), *d* (doublet), *t* (triplet), *q* (quartet), *quintet*, *m* (multiplets), *dd* (doublet of doublets), *dt* (doublet of triplets), and *br* (broad). Coupling constants (*J*) were recorded in hertz

(Hz). The number of proton atoms (*n*) for a given resonance was indicated by *n*H. The number of carbon atoms (*n*) for a given resonance was indicated by *n*C. High Resolution Mass Spectrometry (HRMS) analysis was obtained using Electrospray Ionization (ESI) and reported in units of mass of charge ratio (m/z). ESI was acquired using a Bruker Compact (ESI-TOF). Mass samples were dissolved in MeOH (HPLC [High Performance Liquid Chromatography] grade) unless otherwise stated. Optical rotations were determined on a INESA SGW®-2. Optical rotations were recorded on a polarimeter with a sodium lamp of wavelength 589 nm and reported as follows; $[\alpha]_{\lambda}^{T^{\circ}C}$ (c = g/100 mL, solvent). Melting points were determined on a melting point apparatus (OptiMelt MPA100). Enantiomeric excesses were determined by chiral HPLC analysis using Thermo Scientific Ultimate 3000. UV detection was monitored at 254 nm and 210 nm at the same time. HPLC samples were dissolved in HPLC grade isopropanol (IPA) unless otherwise stated.

Luminescence Measurements were performed on a Nanolog infrared fluorescence spectrometer (Nanolog FL3-2iHR, US) equipped with a continuous Xe source for steady state measurements and a Xe flashlight source for the observation of phosphorescence spectra. Fluorescence spectra were recorded at ambient conditions in 10×10 mm quartz cuvettes (Hellma, Suprasil). Luminescence spectra at cryogenic conditions (77 K) were recorded in quartz tubes (inner ø = 4 mm) in a small quartz Dewar vessel which was filled with liquid nitrogen. All solutions were handled under dry nitrogen and degassed (15 min in an ultrasound bath) to exclude oxygen as triplet quencher. A longpass filter (Schott Advanced Optics, WG300 or Hebo Spezialglass, UV280) was introduced in the emission-beam path to prevent the scattered excitation light to pass the emission monochromator at higher order wavelengths where necessary.

Materials

All commercial reagents were purchased with the highest purity grade. They were used without further purification unless specified. All solvents used, mainly petroleum ether (PE) and ethyl acetate (EA) were distilled. Anhydrous toluene, $tBuC_6H_5$ and EtC_6H_5 were freshly distilled from sodium/benzophenone before use. All compounds synthesized were stored in a -80 °C freezer and light-sensitive compounds were protected with aluminum foil.

2. Optimization of reaction conditions

Table S1. Optimization of reaction conditions^a

 $\begin{array}{l} \textbf{C4:} Ar = 1,3,5\text{-}Me_3C_6H_2\\ \textbf{C5:} Ar = 2\text{-}PhC_6H_4\\ \textbf{C6:} Ar = 2\text{-}(EtO)C_6H_4\\ \textbf{C7:} Ar = 2,4\text{-}tBu_2C_6H_3\\ \end{array}$

C8: Ar = 2-O/PrC₆H₄ **C9**: Ar = 2,3,4-(OMe)₃PhC₆ **C10**: Ar = 3,5-(OMe)₂C₆H₃ **C11**: Ar = 2,3,5,6-Me₄C₆H

entry	CPA	1-4	additive	solvent (mL)	base (equiv.)	ee (%) ^b
1	C1	1	-	CHCl ₃ (0.5)	$K_2CO_3(1.5)$	15
2	C2	1	-	CHCl ₃ (0.5)	$K_2CO_3(1.5)$	10
3	C3	1	-	CHCl ₃ (0.5)	K ₂ CO ₃ (1.5)	8
4	C4	1	-	CHCl ₃ (0.5)	K ₂ CO ₃ (1.5)	2
5	C5	1	-	CHCl ₃ (0.5)	$K_2CO_3(1.5)$	4
6	C6	1	-	CHCl ₃ (0.5)	$K_2CO_3(1.5)$	0
7	C7	1	-	CHCl ₃ (0.5)	K ₂ CO ₃ (1.5)	2
8	C8	1	-	CHCl ₃ (0.5)	K ₂ CO ₃ (1.5)	4
9	С9	1	-	CHCl ₃ (0.5)	$K_2CO_3(1.5)$	2
10	C10	1	-	CHCl ₃ (0.5)	K ₂ CO ₃ (1.5)	2
11	C11	1	-	CHCl ₃ (0.5)	K ₂ CO ₃ (1.5)	0
12	C12	1	-	CHCl ₃ (0.5)	K ₂ CO ₃ (1.5)	8
13	C13	1	-	CHCl ₃ (0.5)	$K_2CO_3(1.5)$	0

14	C14	1	-	CHCl ₃ (0.5)	$K_2CO_3(1.5)$	14
15	C15	1	-	CHCl ₃ (0.5)	K ₂ CO ₃ (1.5)	12
16	C1	1	-	⁷ BuC ₆ H ₅ (0.5)	K ₂ CO ₃ (1.5)	-
17	C1	2	-	¹ BuC ₆ H ₅ (0.5)	K ₂ CO ₃ (1.5)	31
18	C1	3	-	¹ BuC ₆ H ₅ (0.5)	K ₂ CO ₃ (1.5)	40
19	C1	4	-	¹ BuC ₆ H ₅ (0.5)	K ₂ CO ₃ (1.5)	61
20	C1	4	H ₂ O (5 μL)	¹ BuC ₆ H ₅ (0.5)	K ₂ CO ₃ (1.5)	77
21	C1	4	H ₂ O (10 µL)	⁷ BuC ₆ H ₅ (0.5)	K ₂ CO ₃ (1.5)	65
22	C1	4	H ₂ O (15 µL)	['] BuC ₆ H ₅ (0.5)	K ₂ CO ₃ (1.5)	75
23	C 1	4	H ₂ O (20 µL)	^t BuC ₆ H ₅ (0.5)	K ₂ CO ₃ (1.5)	73
25	C1	4	H ₂ O (5 μL)	¹ BuC ₆ H ₅ (0.6)	K ₂ CO ₃ (1.5)	79
26	C 1	4	H ₂ O (5 μL)	$^{\prime}{\rm BuC_{6}H_{5}(0.7)}$	K ₂ CO ₃ (1.5)	71
27	C 1	4	H ₂ O (5 μL)	^t BuC ₆ H ₅ (0.8)	K ₂ CO ₃ (1.5)	77
28	C1	4	H ₂ O (5 μL)	¹ BuC ₆ H ₅ (0.9)	K ₂ CO ₃ (1.5)	73
29	C 1	4	H ₂ O (5 μL)	ⁱ PrC ₆ H ₅ (0.6)	K ₂ CO ₃ (1.5)	25
30	C1	4	H ₂ O (5 μL)	Toluene (0.6)	K ₂ CO ₃ (1.5)	77
31	C1	4	H ₂ O (5 μL)	$1-^{t}Bu-3,5-Me_{2}C_{6}H_{3}(0.6)$	K ₂ CO ₃ (1.5)	73
32	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	K ₂ CO ₃ (1.5)	81
33	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	KHCO ₃ (1.5)	73
34	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	K ₃ PO ₄ (1.5)	65
35	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	K ₂ HPO ₄ (1.5)	53
36	C1	4	H ₂ O (5 μL)	$EtC_{6}H_{5}(0.6)$	Na ₂ CO ₃ (1.5)	69
37	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	NaHCO ₃ (1.5)	67
38	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	Na ₃ PO ₄ (1.5)	37
39	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	$Na_2HPO_4(1.5)$	49
40	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	Cs ₂ CO ₃ (1.5)	59
41	C1	4	H ₂ O (5 µL)	EtC ₆ H ₅ (0.6)	K ₂ CO ₃ (1.0)	70

42	C1	4	H ₂ O (5 μL)	$EtC_{6}H_{5}(0.6)$	K ₂ CO ₃ (2.0)	75
43	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	K ₂ CO ₃ (2.5)	79
44	C1	4	H ₂ O (5 μL)	EtC ₆ H ₅ (0.6)	K ₂ CO ₃ (3.0)	73
45	C1	4	KF (1.0 equiv.) + $H_2O(5 \mu L)$	EtC ₆ H ₅ (0.6)	K ₂ CO ₃ (1.5)	90
46	C1	4	LiF (1.0 equiv.) + $H_2O(5 \mu L)$	EtC ₆ H ₅ (0.6)	K ₂ CO ₃ (1.5)	87
47	C1	4	NH ₄ F (1.0 equiv.) + H ₂ O (5 μL)	$EtC_{6}H_{5}(0.6)$	K ₂ CO ₃ (1.5)	21

^{*a*}0.02 mmol scale and irradiation distance = 2.0 cm. ^{*b*}Determined by chiral HPLC analysis.

3. Experimental procedures

3.1 Synthesis of olefinic sulfonyl oximes

General procedure A

According to a literature procedure:¹ A solution of 1,1-dimethylallyl alcohol (1.0 equiv.), triethyl orthoacetate (10 equiv.) and cyclohexanecarboxylic acid (0.1 equiv.) was stirred under reflux conditions for 3 h. The reaction mixture was then cooled to room temperature and extracted three times with diethyl ether. The combined organic layers were washed with 10 % aqueous HCl, saturated aqueous NaHCO₃ solution, water and brine. The organic layer was dried with MgSO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using hexane/ethyl acetate (30:1) as eluent to afford the corresponding ester.

General procedure B

$$\bigcap_{R} + Br \xrightarrow{PPh_{3}} OEt \xrightarrow{I_{BuOK}} R \xrightarrow{R} OEt \xrightarrow{R} OEt$$

According to a literature procedure:² (4-Ethoxy-4-oxobutyl) triphenylphosphonium bromide (1.3 equiv.) was placed in a flame-dried round-bottom flask, and anhydrous THF (0.3 M solution for the ketone) was added under an argon atmosphere. The mixture was cooled to 0 $^{\circ}$ C and treated with *t*BuOK (1.5 equiv.). After stirring for 1 hour, the ketone (1.0 equiv.) was added dropwise. Upon complete addition, the reaction mixture was gradually warmed to room temperature and stirred for an additional 12 hours. The reaction was then quenched with water and extracted with diethyl ether. The combined organic phase was washed with brine and concentrated under reduced pressure. The residue was purified by silica gel chromatography, eluting with a hexanes/ethyl acetate mixture, to yield the desired product.

General procedure C

According to a literature procedure:¹ to a solution of ester (1.0 equiv.) in dry THF and *N*,*O*dimethylhydroxylamide hydrochloride (3.0 equiv.) was slowly added a freshly prepared solution of *i*-PrMgCl in THF (1.0 M, 4.0 equiv.) at -20 °C. The mixture was stirred for 30 min at -10 °C and then hydrolyzed with NH₄Cl solution (20 wt % in H₂O, 100 mL), followed by three times extraction with diethyl ether (100 mL). The combined organic layers were dried with MgSO₄ and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography to afford the desired Weinreb amide.

General procedure D

According to a literature procedure:^{3,4} Picolinic acid (1.0 equiv.), DMAP (0.02 equiv.), EDCI (1.2 equiv.), and *N*,*O*-dimethyl hydroxylamine hydrochloride (1.1 equiv.) were weighed into a flame-dried round-bottom flask, which was subsequently sealed with a septum. Anhydrous dichloromethane (CH₂Cl₂) was added via syringe, and the resulting solution was cooled to 0 °C using an ice bath. Triethylamine (3.0 equiv.) was then introduced through a syringe, and the mixture was stirred at 0 °C for 15 minutes. The ice bath was removed, and stirring was continued for an additional 6 hours at room temperature. The reaction was quenched by the addition of water. After separating the organic layer, the aqueous phase was neutralized with a saturated aqueous solution of sodium bicarbonate (NaHCO₃) until a pH of 7–8 was achieved. The aqueous layer was then washed with CH₂Cl₂. All organic layers were combined and washed successively with saturated aqueous NaHCO₃ and saturated aqueous solium chloride (NaCl), followed by drying over magnesium sulfate (MgSO₄). The mixture was filtered and concentrated under reduced pressure to yield the amide as a white solid.

To a flame-dried round-bottom flask equipped with a condenser and stir bar, magnesium turnings and a catalytic amount of 1,2-dibromoethane were added. A solution of 5-bromo-2-methylpent-2-ene (1.2 equiv.) in anhydrous THF was then introduced gradually, first in portions and subsequently dropwise. The reaction mixture was stirred at room temperature for 1 hour. Following this, the reaction was cooled to 0 °C, and a solution of amide (1.0 equiv.) in THF was added dropwise. The mixture was allowed to stir under a nitrogen atmosphere overnight. After completion, the reaction was cooled to 0 °C and quenched with a saturated

aqueous solution of NH₄Cl. The organic layer was extracted with diethyl ether, washed with saturated aqueous NH₄Cl and brine, and then dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to yield a clear oil. The crude product was subsequently purified by silica gel chromatography to afford the desired compound.

General procedure E

$$\begin{array}{c} & & & \\ &$$

According to a literature procedure:⁵ A dry Schlenk tube equipped with a stirring bar was charged with 2-bromopyridine (1.0 equiv.) and dry THF. The solution was cooled to 0 °C, and *i*-PrMgCl•LiCl (1 equiv., 1.3 M in THF) was added dropwise. The mixture was stirred at 0 °C for 4 hours, after which a solution of Weinreb amide (1.0 equiv.) in THF was introduced. The reaction was allowed to warm to room temperature and stirred overnight. Subsequently, 5 mL of water and diethyl ether were added to the mixture. The layers were separated, and the aqueous phase was extracted with diethyl ether. The combined organic layers were dried, filtered, and evaporated. Purification by column chromatography on silica gel yielded the ketone as an oil.

General procedure F

According to a literature procedure:⁶ The freshly prepared Grignard reagent was cooled in an ice bath and a solution of 1,3-diphenylpropan-2-one (1.0 equiv) in Et₂O was added dropwise over 10 minutes, which was then stirred overnight at room temperature. After cooling to 0 °C, it was quenched by saturated NH₄Cl. The separated aqueous layer was extracted with Et₂O, and the combined organic layers were washed with water (10 mL), brine (10 mL), dried over Na₂SO₄, filtered, and concentrated. Crude product was obtained as a pale-yellow oil, which was directly used in next step without further purification. To the above crude product at room temperature was added dropwise 48% aq HBr (1.6 equiv) over 20 minutes with vigorous stirring, which was then stirred for an additional two hours. Water and Et₂O were added and the resulting mixture was stirred for 5 minutes. The separated aqueous layer was extracted with Et₂O, and the combined organic layers were washed sequentially with water and brine. It was then dried over Na₂SO₄, filtered, concentrated to give crude as a pale-yellow oil, The crude product was purified via silica gel chromatography to give the titled compound.

To a flame-dried 100-mL round bottom flask equipped with stir bar was added magnesium turnings (1.4 equiv.) and a catalytic amount of 1,2-dibromoethane. To the mixture was added (2-(3-bromopropylidene)propane-1,3-diyl)dibenzene (1.2 equiv.) dissolved in anhydrous THF, first portion-wise and then dropwise. The reaction mixture was stirred at rt for 1 hours. The reaction was cooled to room temperature and then 0 °C, after which Weinreb amide (1.0 equiv.) dissolved in THF was added dropwise. The reaction was allowed to stir under nitrogen overnight. The reaction was cooled to 0 °C and quenched with saturated aqueous NH4Cl, extracted with Et₂O, washed with saturated aqueous NH4Cl and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo to afford a clear oil. The crude product was purified via silica gel chromatography to give the titled compound.

General procedure G

According to a literature procedure:⁷ A solution of the ketone (1.0 equiv.), hydroxylamine hydrochloride (1.2 equiv.), and pyridine (1.5 equiv.) in methanol was stirred at room temperature for 6 hours. Following this reaction period, the solvent was removed under reduced pressure, and the residue was dissolved in ethyl acetate for extraction. The organic phase was washed twice with saturated sodium chloride NaCl, dried over Na₂SO₄, and concentrated under vacuum. The resulting residue was then dissolved in dry CH₂Cl₂, and triethylamine (1.5 equiv.) was added. Benzoyl chloride (1.2 equiv.) was introduced dropwise while maintaining the

temperature at 0 °C, and the mixture was stirred at this temperature for an additional 2 hours. Subsequently, the reaction mixture was extracted with CH₂Cl₂. The combined organic phases were dried over Na₂SO₄ and concentrated under vacuum. Further purification was achieved through column chromatography on silica gel, yielding the olefinic sulfonyl oximes.

Characterization data for representative olefinic sulfonyl oximes

(*E*)-5-methyl-1-(pyridin-2-yl)hex-4-en-1-one *O*-((4-(trifluoromethyl)phenyl)sulfonyl) oxime (2) was synthesized according to general procedure **A**, **C**, **E** and **G**. White solid; Mp 95.7–96.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 4.7 Hz, 1H), 8.18 (d, *J* = 8.2 Hz, 2H), 7.83 (d, *J* = 8.3 Hz, 2H), 7.76 – 7.60 (m, 2H), 7.34 (dd, *J* = 8.8, 4.7 Hz, 1H), 5.08 (t, *J* = 7.3 Hz, 1H), 3.05 (t, *J* = 7.7 Hz, 2H), 2.22 (q, *J* = 7.5 Hz, 2H), 1.59 (s, 3H), 1.48 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 151.0, 149.5, 139.4, 136.8, 135.7 (q, *J* = 33.3 Hz), 133.6, 129.6, 126.29 (q, *J* = 3.7 Hz), 125.4, 124.6 (q, *J* = 222.7 Hz), 122.4, 122.2, 26.9, 25.7, 25.2, 17.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.27; HRMS (ESI) 413.1140 m/z (M + H⁺), calc. for C₁₉H₂₀F₃N₂O₃S⁺ 413.1141.

(*E*)-5-methyl-1-(pyridin-2-yl)hex-4-en-1-one *O*-((6-methoxynaphthalen-2-yl)sulfonyl) oxime (3) was synthesized according to general procedure A, C, E and G. White solid; Mp 90.5–91.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 4.5 Hz, 1H), 8.64 (s, 1H), 8.06 (dd, *J* = 8.7, 1.5 Hz, 1H), 7.98 (dd, *J* = 13.3, 8.9 Hz, 2H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.77 (dd, *J* = 10.8, 4.5 Hz, 1H), 7.39 (dt, *J* = 11.1, 4.5 Hz, 2H), 7.29 (s, 1H), 5.20 (t, *J* = 7.1 Hz, 1H), 4.06 (s, 3H), 3.15 (t, *J* = 7.8 Hz, 2H), 2.31 (dd, *J* = 15.0, 7.4 Hz, 2H), 1.68 (s, 3H), 1.58 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃) δ 167.2, 160.5, 151.3, 149.1, 137.4, 136.7, 133.4, 131.0, 130.7, 130.1, 127.8, 127.4, 125.1, 124.2, 122.5, 122.2, 120.8, 105.9, 55.6, 26.7, 25.6, 25.1, 17.6. HRMS (ESI) 425.1531 m/z (M + H⁺), calc. for C₂₃H₂₅N₂O₄S⁺ 425.1530.

(*E*)-5-methyl-1-(pyridin-2-yl)hex-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 89.4–90.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 8.5 Hz, 1H), 8.56 – 8.50 (m, 1H), 8.44 – 8.37 (m, 2H), 7.62 – 7.53 (m, 4H), 7.23 (m, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 5.12 – 5.04 (m, 1H), 3.06 – 3.01 (m, 2H), 2.88 (s, 6H), 2.18 (m, 2H), 1.56 (s, 3H), 1.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.2, 151.2, 149.1, 136.3, 133.2, 131.8, 131.4, 130.1, 129.8, 128.7, 124.9, 123.1, 122.6, 122.1, 119.5, 115.5, 45.4, 26.6, 25.5, 25.2, 17.5; HRMS (ESI) 438.1844 (M + H⁺), calc. for C₂₄H₂₈N₃O₃S⁺ 438.1846.

(*E*)-1-(3-chloropyridin-2-yl)-5-methylhex-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4a) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 102.5 - 103.4 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.67 (d, *J* = 5.3 Hz, 1H), 8.45 (d, *J* = 7.4 Hz, 1H), 8.43 (d, *J* = 5.3 Hz, 2H), 7.62 (m, 2H), 7.54 (d, *J* = 1.8 Hz, 1H), 7.24 (dd, *J* = 5.2, 1.9 Hz, 1H), 7.22 (d, *J* = 6.6 Hz, 1H), 5.06 (t, *J* = 7.2 Hz, 1H), 3.03 – 2.97 (m, 2H), 2.90 (s, 6H), 2.16 (m, 2H), 1.56 (s, 3H), 1.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.4, 152.9, 149.9, 144.6, 133.6, 132.1, 132.0, 131.3, 130.3, 129.8, 128.8, 125.3, 123.4, 122.5, 122.4, 119.8, 115.8, 77.4, 77.2, 76.9, 45.6, 26.7, 25.6, 25.3, 17.6; HRMS (ESI) 472.1452 m/z (M +H⁺), calc. for C₂₄H₂₇ClN₃O₃S⁺ 472.1456.

(*E*)-1-(4-fluoropyridin-2-yl)-5-methylhex-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4b) was synthesized according to general procedure A, C, E and G. Kelly solid; 96.2 - 97.0 °C; ¹H NMR (400 MHz, CD₃OD) δ 8.69 (d, *J* = 8.5 Hz, 1H), 8.55 (dd, *J* = 7.9, 5.4 Hz, 1H), 8.42 (dd, *J* = 7.4, 1.2 Hz, 1H), 8.37 (d, *J* = 8.7 Hz, 1H), 7.66 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.18 (m, 2H), 5.02 - 4.93 (m, 1H), 3.00 (t, *J* = 7.6 Hz, 2H), 2.87 (s, 6H), 2.14 (q, *J* = 7.5 Hz, 2H), 1.47 (s, 3H), 1.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.6 (d, *J* = 262.7 Hz), 166.4 (d, *J* = 3.6 Hz), 154.5, 151.5 (d, *J* = 7.1 Hz), 133.5, 132.0, 131.3, 130.2, 129.9, 128.9, 123.4, 122.5, 119.6, 115.7, 113.0 (d, *J* = 16.7 Hz), 109.8 (d, *J* = 18.5 Hz), 45.6, 26.7, 25.6, 25.3, 17.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -101.67. HRMS (ESI) 456.1750 m/z (M + H⁺), calc. for C₂₄H₂₇FN₃O₃S⁺ 456.1752.

(*E*)-1-(4-chloropyridin-2-yl)-5-methylhex-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4c) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 103.3–104.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, *J* = 7.5 Hz, 1H), 8.45 (dd, *J* = 7.4, 1.2 Hz, 1H), 8.43 – 8.36 (m, 2H), 7.61 (m, 2H), 7.56 – 7.52 (m, 1H), 7.24 (dd, *J* = 5.3, 2.0 Hz, 1H), 7.21 (d, *J* = 7.3 Hz, 1H), 5.10 – 4.88 (m, 1H), 3.07 – 2.94 (m, 2H), 2.89 (s, 6H), 2.16 (m, 2H), 1.56 (s, 3H), 1.45 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.4, 152.8, 149.9, 144.5, 133.5, 132.0, 131.2, 130.2, 129.8, 128.8, 125.2, 123.4, 122.4, 122.3, 115.7, 77.3, 77.1, 76.9, 45.6, 26.6, 25.6, 25.2, 17.6; HRMS (ESI) 472.1454 m/z (M + H⁺), calc. for C₂₄H₂₇ClN₃O₃S⁺ 472.1456.

(*E*)-5-methyl-1-(4-methylpyridin-2-yl)hex-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4d) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 93.9–94.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 7.8 Hz, 1H), 8.47 – 8.39 (m, 2H), 8.38 (d, *J* = 4.9 Hz, 1H), 7.65 – 7.50 (m, 2H), 7.39 – 7.36 (m, 1H), 7.20 (d, *J* = 7.4 Hz, 1H), 7.06 (m, 1H), 5.10 – 5.05 (m, 1H), 3.06 – 2.96 (m, 2H), 2.89 (s, 6H), 2.27 (s, 3H), 2.16 (m, 2H), 1.57 (s, 3H), 1.46 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.5, 151.0, 148.8, 147.6, 133.2, 131.7, 131.5, 130.2, 129.7, 128.6, 125.9, 123.2, 122.9, 122.6, 115.6, 45.5, 26.7, 25.5, 25.2, 20.9, 17.6; HRMS (ESI) 452.2001 m/z (M + H⁺), calc. for C₂₅H₃₀N₃O₃S⁺ 452.2002.

(*E*)-1-(4-methoxypyridin-2-yl)-5-methylhex-4-en-1-one *O*-((5-(dimethylamino)naphthale n-1-yl)sulfonyl) oxime (4e) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 89.5–90.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, *J* = 8.2 Hz, 1H), 8.47 – 8.37 (m, 2H), 8.34 (d, *J* = 5.7 Hz, 1H), 7.59 (m, 2H), 7.20 (d, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 2.5 Hz, 1H), 6.76 (dd, *J* = 5.7, 2.6 Hz, 1H), 5.14 – 5.00 (m, 1H), 3.76 (s, 3H), 3.05 – 2.95 (m, 2H), 2.89 (s, 6H), 2.16 (m, 2H), 1.57 (s, 3H), 1.47 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 165.9, 152.9, 150.3, 133.3, 131.9, 131.8, 131.5, 130.3, 129.9, 128.8, 127.2, 123.2, 122.7, 115.7, 111.7, 107.7, 77.4, 77.2, 76.9, 55.4, 45.6, 26.9, 25.7, 25.3, 17.7; HRMS (ESI) 468.1956 m/z (M + H⁺), calc. for C₂₅H₃₀N₃O₄S⁺ 468.1952.

(*E*)-5-methyl-1-(5-methylpyridin-2-yl)hex-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4f) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 68.7–69.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 8.4 Hz, 1H), 8.41 (m, 2H), 8.35 (s, 1H), 7.62 – 7.52 (m, 2H), 7.46 (d, *J* = 8.1 Hz, 1H), 7.36 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 5.09 (t, *J* = 7.2 Hz, 1H), 3.00 (m, 2H), 2.88 (s, 6H), 2.29 (s, 3H), 2.16 (m, 2H), 1.58 (s, 3H), 1.47 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 149.6, 148.6, 136.9, 135.1, 133.3, 131.9, 131.8, 131.6, 130.2, 129.9, 128.8, 123.3, 122.8, 121.7, 115.6, 45.6, 26.7, 25.7, 25.4, 18.5, 17.7; HRMS (ESI) 452.2000 m/z (M + H⁺), calc. for C₂₅H₃₀N₃O₃S⁺ 452.2002.

(*E*)-5-methyl-1-(quinolin-2-yl)hex-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulf onyl) oxime (4g) was synthesized according to general procedure **D** and **G**. Yellow solid; Mp 77.3–78.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, *J* = 7.3 Hz, 1H), 8.47 (m, 2H), 8.00 (m, 2H), 7.81 – 7.48 (m, 6H), 7.19 (d, *J* = 6.7 Hz, 1H), 5.19 (m, 1H), 3.25 – 3.09 (m, 2H), 2.87 (s, 6H), 2.27 (m, 2H), 1.60 (s, 3H), 1.54 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 151.1, 147.6, 136.2, 133.4, 131.9, 131.9, 131.5, 130.2, 130.1, 129.9, 129.8, 128.8, 128.5, 127.7, 127.6, 123.3, 122.9, 119.6, 119.1, 115.6, 45.6, 26.6, 25.7, 25.6, 17.7; HRMS (ESI) 488.2004 m/z (M + H⁺), calc. for C₂₈H₃₀N₃O₃S⁺ 488.2002.

(*E*)-5-ethyl-1-(pyridin-2-yl)hept-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfo nyl) oxime (4h) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 82.9–83.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 8.5 Hz, 1H), 8.53 (d, *J* = 4.7 Hz, 1H), 8.47 – 8.32 (m, 2H), 7.61 – 7.57 (m, 2H), 7.57 – 7.52 (m, 2H), 7.23 (m, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 5.03 (t, *J* = 7.2 Hz, 1H), 3.09 – 2.99 (m, 2H), 2.21 (m, 2H), 1.92 – 1.81 (m, 4H), 0.86 (t, *J* = 6.0 Hz, 3H), 0.83 (t, *J* = 6.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 151.4, 149.2, 144.5, 136.4, 131.9, 131.9, 131.5, 130.2, 129.9, 128.8, 125.0, 123.3, 122.2, 120.7, 119.6, 115.6, 45.6, 29.1, 26.98, 24.8, 23.2, 13.3, 12.8; HRMS (ESI) 466.2160 m/z (M + H⁺), calc. for C₂₆H₃₂N₃O₃S⁺ 466.2159.

(*E*)-5-propyl-1-(pyridin-2-yl)oct-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfo nyl) oxime (4i) was synthesized according to general procedure **A**, **C**, **E** and **G**. Kelly oil; ¹**H** NMR (600 MHz, CDCl₃) δ 8.61 (d, *J* = 8.5 Hz, 1H), 8.54 – 8.51 (m, 1H), 8.45 – 8.37 (m, 2H), 7.57 (m, 4H), 7.23 – 7.20 (m, 1H), 7.18 (d, *J* = 7.5 Hz, 1H), 5.11 (t, *J* = 7.2 Hz, 1H), 3.11 – 2.98 (m, 2H), 2.86 (s, 6H), 2.22 (m, 2H), 1.91 – 1.82 (m, 4H), 1.30 (m, 4H), 0.82 (m, 6H); ¹³**C** NMR (151 MHz, CDCl₃) δ 167.3, 151.9, 151.3, 149.1, 141.1, 136.4, 131.9, 131.8, 131.5, 130.2, 129.9, 128.8, 125.0, 123.2, 122.8, 122.2, 119.5, 115.6, 45.5, 38.9, 32.1, 27.0, 25.0, 21.6, 21.2, 14.2, 14.0; **HRMS** (ESI) 494.2472 m/z (M + H⁺), calc. for C₂₈H₃₆N₃O₃S⁺ 494.2472.

(*E*)-5-benzyl-6-phenyl-1-(pyridin-2-yl)hex-4-en-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4j) was synthesized according to general procedure F and G. Kelly oil; ¹H NMR (600 MHz, CDCl₃) δ 8.45 (d, *J* = 8.5 Hz, 1H), 8.35 (d, *J* = 4.8 Hz, 1H), 8.29 (dd, *J* = 7.3, 0.8 Hz, 1H), 8.23 (d, *J* = 8.7 Hz, 1H), 7.46 – 7.35 (m, 3H), 7.33 – 7.27 (m, 1H), 7.13 – 7.02 (m, 7H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.91 (d, *J* = 7.2 Hz, 2H), 6.81 (d, *J* = 6.5 Hz, 2H), 5.20 (t, *J* = 7.3 Hz, 1H), 3.06 – 2.99 (m, 2H), 2.94 (s, 2H), 2.90 (s, 2H), 2.67 (s, 6H), 2.27 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 151.8, 150.9, 149.1, 139.7, 139.7, 139.1, 136.4, 131.9, 131.8, 131.3, 130.1, 129.8, 129.1, 128.8, 128.7, 128.4, 128.2, 126.2, 126.0, 125.9, 125.1, 123.1, 122.1, 119.3, 115.5, 77.4, 77.2, 76.9, 45.4, 42.8, 35.1, 26.6, 25.4; HRMS (ESI) 590.2470 m/z (M + H⁺), calc. for C₃₆H₃₆N₃O₃S⁺ 590.2472.

(*E*)-4-cyclobutylidene-1-(pyridin-2-yl)butan-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4k) was synthesized according to general procedure A, C, E and G. Grayish green solid; Mp 105.3–106.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 8.4 Hz, 1H), 8.76 (d, *J* = 4.7 Hz, 1H), 8.65 (m, 2H), 7.87 – 7.75 (m, 4H), 7.53 – 7.34 (m, 2H), 5.20 (m, 1H), 3.28 (t, *J* = 7.7 Hz, 2H), 2.68 (t, *J* = 7.5 Hz, 2H), 2.61 (t, *J* = 7.6 Hz, 2H), 2.31 (m, 2H), 2.07 – 1.96 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 167.3, 156.8, 151.4, 149.2, 141.8, 136.4, 131.9, 131.8, 131.5, 130.2, 129.9, 128.8, 125.0, 123.3, 122.2, 119.7, 118.3, 115.6, 45.6, 30.8, 29.1, 26.6, 25.2, 16.9; HRMS (ESI) 450.1848 m/z (M + H⁺), calc. for C₂₅H₂₈N₃O₃S⁺ 450.1846.

(E)-4-cyclopentylidene-1-(pyridin-2-yl)butan-1-one O-((5-(dimethylamino)naphthalen-1yl)sulfonyl) oxime (4l) was synthesized according to general procedure A, C, E and G. Grayish green solid; Mp 70.3–71.0 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.79 – 8.30 (m, 4H), 7.60 (d, J = m, 4H), 7.26 (s, 2H), 5.19 (s, 1H), 3.10 (s, 2H), 2.92 (s, 6H), 2.20 (s, 2H), 2.02 (m, 4H), 1.54 (s, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 151.9, 151.4, 149.2, 145.0, 136.4, 131.9, 131.5, 130.2, 129.9, 128.8, 125.0, 123.2, 122.2, 119.6, 118.1, 115.6, 45.6, 33.5, 28.5, 26.8, 26.5, 26.4, 26.4; **HRMS** (ESI) 464.2000 m/z (M + H⁺), calc. for $C_{26}H_{30}N_3O_3S^+$ 464.2002.

(E)-4-(1,3-dihydro-2H-inden-2-ylidene)-1-(pyridin-2-yl)butan-1-one O-((5-(dimethylami neo)naphthalen-1-yl)sulfonyl) oxime (4m) was synthesized according to general procedure A, C, E and G. White solid; Mp 122.0–122.9 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.71 (s, 1H), 8.55 (m, 1H), 8.48 (d, J = 7.1 Hz, 1H), 8.45 (d, J = 7.3 Hz, 1H), 7.62 (t, J = 8.1 Hz, 2H), 7.52 (m, 2H), 7.24 (m, 2H), 7.13 (m, 4H), 5.38 (m, 1H), 3.47 (s, 2H), 3.35 (s, 2H), 3.14 (t, *J* = 7.7 Hz, 2H), 2.93 (s, 6H), 2.30 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 151.3 149.2, 142.2, 142.0, 140.3, 136.5, 132.1, 131.8, 131.5, 130.2, 128.8, 126.4, 126.4, 125.1, 124.8, 124.5, 123.7, 122.2, 121.2, 115.9, 45.8, 39.2, 35.7, 26.8, 26.3; **HRMS** (ESI) 512.2000 m/z (M + H⁺), calc. for $C_{30}H_{30}N_3O_3S^+$ 512.2002.

(*E*)-4-cyclohexylidene-1-(pyridin-2-yl)butan-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4n) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 64.3–65.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, *J* = 8.1 Hz, 1H), 8.55 – 8.51 (m, 1H), 8.45 – 8.39 (m, 2H), 7.65 – 7.55 (m, 4H), 7.23 (m, 1H), 7.19 (d, *J* = 7.4 Hz, 1H), 5.01 (t, *J* = 7.4 Hz, 1H), 3.05 (t, *J* = 7.7 Hz, 2H), 2.88 (s, 6H), 2.20 (m, 2H), 1.93 – 1.85 (m, 4H), 1.44 (m, 2H), 1.33 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 151.4, 149.1, 141.4, 136.4, 131.9, 131.5, 130.2, 129.9, 128.8, 125.0, 123.3, 122.2, 119.7, 119.3, 115.7, 45.6, 37.0, 28.6, 28.5, 27.8, 26.9, 26.9, 24.4; HRMS (ESI) 478.2157 m/z (M + H⁺), calc. for C₂₇H₃₂N₃O₃S⁺ 478.2159.

(*E*)-4-(4,4-difluorocyclohexylidene)-1-(pyridin-2-yl)butan-1-one *O*-((5-(dimethylamino) naphthalen-1-yl)sulfonyl) oxime (40) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 103.9–104.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, *J* = 5.8 Hz, 1H), 8.53 (m, 1H), 8.44 (m, 1H), 8.42 (d, *J* = 8.6 Hz, 1H), 7.63 – 7.58 (m, 4H), 7.26 – 7.24 (m, 1H), 7.21 (d, *J* = 6.8 Hz, 1H), 5.18 (t, *J* = 7.5 Hz, 1H), 3.09 (t, *J* = 7.6 Hz, 2H), 2.90 (s, 6H), 2.27 (m, 2H), 2.05 – 2.01 (m, 2H), 2.01 – 1.97 (m, 2H), 1.69 (m, 2H), 1.61 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 151.2, 149.2, 136.5, 136.0, 132.1, 131.9, 131.4, 130.2, 128.8, 125.2, 123.4 (dd, J=249.1, 232.2 Hz), 122.8, 121.9, 115.7, 45.6, 34.9 (t, *J* = 23.2 Hz), 34.3 (t, *J* = 23.7 Hz), 32.0 (t, *J* = 5.0 Hz), 26.4, 24.8, 23.6 (t, *J* = 5.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -97.32; HRMS (ESI) 514.1972 m/z (M + H⁺), calc. for C₂₇H₃₀F₂N₃O₃S⁺ 514.1970.

(*E*)-4-(4,4-dimethylcyclohexylidene)-1-(pyridin-2-yl)butan-1-one *O*-((5-(dimethylamino) naphthalen-1-yl)sulfonyl) oxime (4p) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 118.8–119.7 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 8.3 Hz, 1H), 8.53 (d, *J* = 4.7 Hz, 1H), 8.42 (m, 2H), 7.64 – 7.51 (m, 4H), 7.32 – 7.09 (m, 2H), 5.02 (t, *J* = 7.3 Hz, 1H), 3.05 (t, *J* = 7.7 Hz, 2H), 2.88 (s, 6H), 2.20 (m, 2H), 1.93 – 1.85 (m, 4H), 1.17 – 1.04 (m, 4H), 0.85 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 167.3, 151.4, 149.1, 141.1, 136.4, 131.9, 131.9, 131.5, 130.2, 129.9, 128.8, 125.0, 123.3, 122.2, 119.6, 119.3, 115.6, 45.6, 40.8, 40.5, 32.7, 30.6, 28.3, 26.9, 24.5, 24.3; HRMS (ESI) 506.2467 m/z (M + H⁺), calc. for C₂₉H₃₆N₃O₃S⁺ 506.2472.

(*E*)-1-(pyridin-2-yl)-4-(1,4-dioxaspiro[4.5]decan-8-ylidene)butan-1-one *O*-((5-(dimethylll amino)naphthalen-1-yl)sulfonyl) oxime (4q) was synthesized according to general procedure **B**, **C**, **E** and **G**. Kelly solid; Mp 116.6–117.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, *J* = 8.2 Hz, 1H), 8.63 (d, *J* = 4.2 Hz, 1H), 8.52 (m, 2H), 7.69 (m, 4H), 7.40 – 7.25 (m, 2H), 5.19 (t, *J* = 7.1 Hz, 1H), 4.03 (s, 4H), 3.18 (m, 2H), 2.99 (s, 6H), 2.34 (m, 2H), 2.13 (s, 4H), 1.63 – 1.47 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 167.1, 151.3, 149.1 138.5, 136.5, 131.95, 131.9, 131.4, 130.2, 129.9, 128.8, 125.1, 123.3, 122.2, 120.9, 119.6, 115.7, 109.0, 64.4, 45.7, 36.1, 35.3, 33.4, 26.7, 24.9, 24.8; HRMS (ESI) 536.2213 m/z (M + H⁺), calc. for C₂₉H₃₄N₃O₅S⁺ 536.2214.

(*E*)-1-(pyridin-2-yl)-4-(tetrahydro-4*H*-pyran-4-ylidene)butan-1-one *O*-((5-(dimethylami neo)naphthalen-1-yl)sulfonyl) oxime (4r) was synthesized according to general procedure B, C, E and G. Yellow solid; Mp 74.4–75.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 8.4

Hz, 1H), 8.53 (d, J = 4.5 Hz, 1H), 8.43 (d, J = 7.2 Hz, 1H), 8.39 (d, J = 8.6 Hz, 1H), 7.65 – 7.53 (m, 4H), 7.25 – 7.21 (m, 1H), 7.19 (d, J = 7.5 Hz, 1H), 5.12 (t, J = 7.4 Hz, 1H), 3.44 (t, J = 5.4 Hz, 2H), 3.36 (t, J = 5.4 Hz, 2H), 3.08 (t, J = 7.5 Hz, 2H), 2.88 (s, 6H), 2.25 (m, 2H), 1.96 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 151.3, 149.2, 136.5, 135.9, 131.9, 131.4, 130.2, 129.9, 129.9, 128.8, 125.1, 123.3, 122.1, 121.3, 119.5, 115.6, 45.6, 36.8, 29.5, 26.6, 24.2; HRMS (ESI) 480.1956 m/z (M + H⁺), calc. for C₂₆H₃₀N₃O₄S⁺ 480.1952.

(*E*)-4-cycloheptylidene-1-(pyridin-2-yl)butan-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4s) was synthesized according to general procedure A, C, E and G. Kelly solid; Mp 88.4–89.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, *J* = 8.3 Hz, 1H), 8.53 (d, *J* = 4.7 Hz, 1H), 8.47 – 8.31 (m, 2H), 7.63 – 7.51 (m, 4H), 7.24 (dd, *J* = 8.8, 4.6 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 5.07 (t, *J* = 7.1 Hz, 1H), 3.09 – 3.01 (m, 2H), 2.88 (s, 6H), 2.21 – 2.15 (m, 2H), 2.03 (m, 4H), 1.40 (s, 8H); ¹³C NMR (151 MHz, CDCl₃) δ 167.4, 151.4, 149.2, 144.5, 136.4, 131.9, 131.9, 131.9, 130.2, 129.9, 128.8, 125.0, 123.3, 122.2, 120.7, 119.6, 115.6, 45.6, 29.1, 26.9, 24.9, 23.2, 13.3, 12.8; HRMS (ESI) 492.2314 m/z (M + H⁺), calc. for C₂₈H₃₄N₃O₃S⁺ 492.2315.

(*E*)-4-cyclododecylidene-1-(pyridin-2-yl)butan-1-one *O*-((5-(dimethylamino)naphthalen-1-yl)sulfonyl) oxime (4t) was synthesized according to general procedure **A**, **C**, **E** and **G**. White solid; Mp 81.9–82.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 8.5 Hz, 1H), 8.53 (m, 1H), 8.42 (m, 2H), 7.58 (m, 4H), 7.24 (m, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 5.17 (t, *J* = 7.2 Hz, 1H), 3.09 – 2.97 (m, 2H), 2.88 (s, 6H), 2.24 (m, 2H), 1.91 (t, *J* = 6.6 Hz, 4H), 1.41 – 1.18 (m, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 167.4, 151.4, 149.2, 139.2, 136.4, 131.9, 131.5, 130.2, 129.9, 128.8, 125.0, 123.2, 123.2, 122.2, 119.6, 115.6, 45.6, 31.6, 28.6, 26.9, 25.3, 25.2, 24.9, 24.2, 24.2, 24.0, 23.9, 23.5, 23.3, 22.4; HRMS (ESI) 584.2920 m/z (M + Na⁺), calc. for C₃₃H₄₃N₃NaO₃S⁺ 584.2917.

3.2 Synthesis of vinyl azides

Vinyl azides were synthesized following established literature procedures. To a Schlenk flask equipped with a stir bar, terminal alkyne (3.0 mmol, 1.0 equiv.), TMSN₃ (6.0 mmol, 2.0 equiv.), and H₂O (6.0 mmol, 2.0 equiv.) were added to 3 mL of dimethyl sulfoxide (DMSO) and heated to 80 °C. Subsequently, Ag₂CO₃ (10 mol%) was introduced into the mixture. After stirring, the reaction was allowed to cool to room temperature, then diluted with water and extracted with ethyl acetate three times. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was further purified by flash column chromatography on silica gel using a petroleum ether/ethyl acetate eluent, yielding the desired vinyl azide.

S23

The experimental data are in accordance with the literature reports: 5^8 , $5b^8$, $5k-5r^8$, $5v^8$, $5t^8$, $5v^8$, $5t^8$, $5v^8$, $5a^9$, $5d^9$, $5f-5j^9$, $5s^9$, $5u^9$, $5c^{10}$, $5e^{11}$

3.3 General experimental procedures for accessing enantioenriched products

An oven-dried Schlenk tube (10 mL) equipped with a stirring bar was charged with olefinic sulfonyl oximes (0.1 mmol), C1 (0.015 mmol, 15 mol%), K_2CO_3 (0.015 mmol, 1.5 equiv.), KF (0.1 mmol, 1.0 equiv.), H₂O (0.025 mL), a photocatalyst (2.0 mol%), vinyl azide (0.3 mmol, 3.0 equiv.), and ethylbenzene (3.0 mL). The reaction mixture was degassed three times using the freeze-pump-thaw method. The tube was then positioned approximately 2.0 cm from 3 W blue LEDs and stirred at room temperature for 2 hours. Upon completion, the residue was purified by flash chromatography on silica gel using a gradient elution of petroleum ether/ethyl acetate/tetrahydrofuran (15:1:1 to 10:1:1) to yield the desired product.

3.4 Application of N, N, N-ligand¹²

CuBr (0.005 mmol, 5 mol%) was added to a flask inside a glove box, which was subsequently fitted with a septum before being removed and placed under a dry nitrogen atmosphere. To this flask, a solution of compound **17** (0.0055 mmol, 5.5 mol%) in dichloromethane (1.0 mL) was added, and the mixture was stirred for 30 minutes at room temperature. Following this, the mixture was cooled to 0 °C, compound **53** (0.1 mmol, 1.0 equiv.) was introduced into the flask. During the stirring period, isobutyl chloroformate (0.1 mmol, 1.0 equiv.) was added to a solution of 7-methoxyquinoline (0.1 mmol, 1.0 equiv.) in DCM (1.0 mL) and stirred for 5 minutes at room temperature. The resulting quinolinium salt was then transferred to the flask

containing the copper catalyst and alkyne, followed by the addition of DIPEA (0.14 mmol, 1.4 equiv.) via syringe, the mixture was cooled to -20°C. The reaction mixture was stirred for the appropriate duration, as monitored by TLC. Upon completion, the reaction mixture was subjected directly to flash column chromatography on silica gel, using an eluent of ethyl acetate/petroleum ether (10:1), to yield the desired product **54**.

4. Experimental equipment

5. Mechanism studies

5.1 UV/Visible absorption spectroscopy

UV-vis absorption spectroscopy was performed on a PERSEE TU-1901 spectrophotometer, equipped with a temperature control unit at 25 °C. The samples were measured in a 3 mL quartz cuvette fitted with a PTFE stopper. **4**, **5**, **C1 and** *fac*-Ir(**ppy**)₃ were prepared as a 0.1 mM solution with fresh DCM as the solvent for measurement.

Fig. S1. UV-vis absorption spectra of 4, 5, C1, 4 + C1, 5 + C1, 4 + 5, 4 + 5 + C1 and *fac*-Ir(ppy)₃.

Comments: The results can rule out the production of new photo-sensitive species, such as EDA complexes, in the reaction system.

5.2 Cyclic voltammetry studies

Electrochemical measurements were conducted using a CHI 660E electrochemical analyzer (CH Instruments). Electrochemical potentials were determined under standardized conditions to maintain internal consistency. Cyclic voltammograms were collected with a potentiostat. Samples, consisting of 0.01 mmol of compounds 4, 5, 4 + C1, and 5 + C1, were prepared in 10 mL of 0.1 M tetrabutylammonium hexafluorophosphate dissolved in anhydrous acetonitrile. The measurements utilized a radially configured glassy carbon working electrode, a platinum wire counter electrode, and a saturated KCl silver/silver chloride reference electrode, with all values referenced to Ag/AgCl.

Fig. S2 Cyclic voltammogram of 4 in MeCN.

Fig. S3 Cyclic voltammogram of 4 + C1 in MeCN.

Fig. S4 Cyclic voltammogram of 5 in MeCN.

Fig. S5 Cyclic voltammogram of **5** + **C1** in MeCN. **5.3 Phosphorescence emission spectra at 77K of 4**

Fig. S6 The phosphorescence emission data for 4 with concentration of 1.0 mM in a DCM matrix at 77 K. The maxima was obtained at 605 nm. $E_T = 47.3$ kcal/mol.

5.4 Fluorescence emission spectra of 4 and *fac*-Ir(ppy)₃

Fig. S7 The fluorescence emission spectrum for **4** and *fac*-Ir(ppy)₃ with concentration of 1.0 mM in a DCM, the maxima was obtained at 495 nm and 510 nm, respectively.

5.5 Stern-Volmer fluorescence quenching experiments and grating experiment

Emission intensities were recorded on a spectrofluorometer, *fac*-Ir(ppy)₃ solution was excited at 370 nm and the emission intensity at 510 nm was observed. A solution of *fac*-Ir(ppy)₃ (1.0×10^{-5} M) in EtPh was added to the appropriate amount of quencher in 3.0 mL volumetric flask under N₂. The solution was transferred to a 3.0 mL quartz cell and the emission spectrum of the sample was collected.

Fig. S8 Luminescence quenching experminent: Stern-Volmer plots of the photosensitizer *fac*-Ir(ppy)₃ using varying concentrations of **5** in EtPh.

5.6 Linear effect experiments

The ee value of C1 was determined by HPLC analysis: CHIRALPAK QD-AX (4.6 mm i.d. x 150 mm); methanol/acetonitrile/acetic acid/triethylamine = 50/50/2/0.2; flow 0.5 mL/min; 25 °C; 254 nm. The ee value of **6** was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 nm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 20 °C, 254 nm.

entry	1	2	3	4	5	6
ee (%) of C1	3	27	45	66	81	99
ee (%) of 6	0	18	40	60	72	90

Fig. S9 Relationship between ee values of C1 and 6.

HPLC spectra:

C1: 3% ee

Entry	Retention Time	Area	Height	%Area
1	5.458	594.8593	1313.39	51.36
2	17.456	563.3493	1064.01	48.64

C1: 27% ee

S34

Entry	Retention Time	Area	Height	%Area
1	5.443	465.1247	1017.41	63.51
2	17.326	267.2776	512.38	36.49

C1: 45% ee

Entry	Retention Time	Area	Height	%Area
1	5.448	734.9608	1624.47	72.28
2	17.416	281.8033	538.59	27.72

C1: 66% ee

Entry	Retention Time	Area	Height	%Area
1	5.450	350.5317	771.17	82.96
2	17.470	72.0007	135.99	17.04

C1: 81%

Entry	Retention Time	Area	Height	%Area
1	5.458	691.4495	1528.72	90.58
2	17.491	71.8996	140.24	9.42

C1: 99% ee

Entry	Retention Time	Area	Height	%Area
1	5.456	950.4685	2122.53	99.99
2	17.608	0.1202	0.25	0.01

6a: 0% ee

Entry	Retention Time	Area	Height	%Area
1	12.830	156.0018	364.68	50.37
2	16.967	153.7055	269.96	49.63

6a: 18% ee

Entry	Retention Time	Area	Height	%Area
1	12.783	188.6594	460.27	59.21
2	16.957	129.9564	236.20	40.79

6a: 40% ee

Entry	Retention Time	Area	Height	%Area
1	12.757	227.9025	543.68	69.65
2	16.983	99.3121	179.03	30.35

6a: 60% ee

Entry	Retention Time	Area	Height	%Area
1	12.970	121.1727	274.29	80.22
2	17.323	29.8721	51.67	19.78

6a: 72% ee

Entry	Retention Time	Area	Height	%Area
1	12.970	216.3354	514.25	86.25
2	17.387	34.4827	58.49	13.75

6a: 90% ee

1 2 2 0 -	
1,220	mAU
1,100	
1,000	
900	
800	1-13.477
700	
600	
500	
400	
300	
200	
100	2-18.070
-98	ne

Entry	Retention Time	Area	Height	%Area
1	13.477	336.3840	757.81	95.07
2	18.070	17.4559	36.80	4.93

6. Determination of the absolute configurations

Fig. S10 X-ray single-crystal structure of 29 (CCDC: 2414232).

Table S2 Crystal data and structure refinement for 29.

Identification code	29
Empirical formula	$C_{18}H_{19}N_{3}S$
Formula weight	309.42
Temperature/K	293(2)
Crystal system	monoclinic
Space group	C2
a/Å	20.1236(5)
b/Å	7.0187(3)
c/Å	12.0117(4)
α/°	90
β/°	97.820(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1680.77(9)
Z	4
$ ho_{calc}g/cm^3$	1.223
μ/mm^{-1}	1.694
F(000)	656.0
Crystal size/mm ³	0.21 imes 0.11 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2 Θ range for data collection/°	7.428 to 141.706
Index ranges	$-24 \le h \le 24, -8 \le k \le 6, -14 \le l \le 14$
Reflections collected	11325
Independent reflections	2804 [$R_{int} = 0.0345, R_{sigma} = 0.0285$]
Data/restraints/parameters	2804/1/201
Goodness-of-fit on F ²	1.071

S39

Final R indexes [I>=2 σ (I)]	$R_1 = 0.0419, wR_2 = 0.1138$
Final R indexes [all data]	$R_1 = 0.0465, wR_2 = 0.1186$
Largest diff. peak/hole / e Å ⁻³	0.17/-0.22
Flack parameter	0.025(13)

Table S3. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 29. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
S 1	7950.3(4)	4541(2)	8455.3(11)	80.9(4)
N1	5498.4(11)	4997(4)	8285(2)	42.9(6)
N2	4655.7(11)	5098(4)	6710(2)	46.7(6)
N3	3185.1(14)	2283(5)	6060(3)	57.7(7)
C1	7516(2)	3026(7)	9190(4)	69.7(11)
C2	6839.2(16)	3466(6)	9045(3)	55.8(8)
C3	6691.9(14)	5054(5)	8331(2)	43.2(7)
C4	7250.2(15)	5776(6)	7953(3)	54.6(8)
C5	6011.9(13)	5818(5)	7994(2)	41.6(7)
C6	5877.3(15)	7582(5)	7294(3)	50.6(8)
C7	5164.9(15)	8098(5)	7529(3)	51.3(8)
C8	4900.8(13)	6082(5)	7777(2)	44.4(7)
С9	4323.2(15)	5963(6)	8495(3)	53.1(8)
C10	3861.8(15)	4445(7)	7923(3)	58.4(9)
C11	4104.8(13)	4269(5)	6795(2)	43.4(7)
C12	3738.4(14)	3180(5)	5847(3)	45.1(7)
C13	3963.2(16)	3135(5)	4806(3)	50.3(8)
C14	3605.7(19)	2088(6)	3951(3)	60.3(9)
C15	3036(2)	1150(7)	4158(3)	67.1(10)
C16	2845.2(18)	1287(7)	5226(4)	68.6(11)
C17	5225(2)	9361(7)	8573(4)	69.1(10)
C18	4739.7(19)	9092(7)	6549(4)	74.0(12)

Table S4 Anisotropic Displacement Parameters (Å²×10³) for 29. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U11	U_{22}	U33	U ₂₃	U ₁₃	U12
S 1	38.1(4)	90.0(9)	114.9(8)	7.7(7)	11.7(4)	12.8(5)
N1	34.7(11)	44.4(16)	49.5(12)	4.1(12)	6.1(9)	-0.9(11)
N2	32.6(11)	59.3(19)	48.3(12)	-3.0(12)	6.2(9)	0.5(11)
N3	45.2(13)	63(2)	65.4(15)	-5.1(15)	10.7(12)	-8.2(13)
C1	59(2)	67(3)	80(2)	19(2)	0.1(17)	15(2)
C2	47.3(16)	58(2)	61.4(17)	10.8(17)	2.9(13)	4.2(16)

S40

C3	35.7(13)	44.5(19)	49.0(14)	-0.8(13)	4.0(10)	1.3(12)
C4	37.3(14)	57(2)	70.2(19)	2.2(18)	10.8(13)	0.8(15)
C5	34.4(13)	46.2(19)	44.1(13)	0.1(13)	4.5(10)	0.7(12)
C6	42.4(15)	51(2)	59.6(17)	13.1(15)	9.8(13)	-1.1(14)
C7	43.2(15)	51(2)	59.9(17)	6.5(16)	8.1(13)	5.9(15)
C8	33.8(13)	51(2)	48.4(14)	0.7(14)	7.0(11)	2.5(13)
C9	39.1(14)	67(2)	54.7(16)	-5.0(16)	11.6(12)	1.2(15)
C10	49.3(15)	73(3)	55.3(16)	-5.5(18)	16.4(13)	-14.7(19)
C11	34.7(12)	48.4(19)	47.4(14)	3.4(13)	6.9(10)	7.2(13)
C12	36.4(12)	46.5(19)	52.1(15)	3.8(14)	4.8(11)	5.2(13)
C13	48.0(15)	50(2)	53.3(16)	3.5(15)	7.2(12)	2.8(15)
C14	72(2)	57(2)	51.6(17)	-1.4(17)	6.1(15)	4.0(19)
C15	67(2)	65(3)	66(2)	-16(2)	-0.9(17)	-6(2)
C16	52.8(19)	74(3)	79(2)	-13(2)	9.8(17)	-24(2)
C17	72(2)	55(3)	83(2)	-8(2)	17.9(18)	-2(2)
C18	56.9(19)	73(3)	90(3)	26(2)	3.4(18)	16(2)

Table S5 Bond Lengths for 29.

Atom Atom		Length/Å	Atom	Atom	Length/Å	
S 1	C1	1.698(5)	C6	C7	1.542(4)	
S 1	C4	1.694(3)	C7	C8	1.555(5)	
N1	C5	1.273(4)	C7	C17	1.527(5)	
N1	C8	1.483(4)	C7	C18	1.527(5)	
N2	C8	1.481(4)	C8	C9	1.541(4)	
N2	C11	1.268(4)	С9	C10	1.515(5)	
N3	C12	1.334(4)	C10	C11	1.506(4)	
N3	C16	1.332(5)	C11	C12	1.482(4)	
C1	C2	1.384(5)	C12	C13	1.386(4)	
C2	C3	1.412(5)	C13	C14	1.383(5)	
C3	C4	1.365(4)	C14	C15	1.374(6)	
C3	C5	1.474(4)	C15	C16	1.392(6)	
C5	C6	1.501(5)				

Table S6 Bond Angles for 29.

Atom	Atom	Atom	Angle/°	Atom Aton	n Atom	Angle/°
C4	S 1	C1	92.50(19)	C18 C7	C17	110.0(4)
C5	N1	C8	107.3(3)	N1 C8	C7	105.5(2)
C11	N2	C8	109.6(2)	N1 C8	С9	111.9(3)
C16	N3	C12	117.4(3)	N2 C8	N1	105.8(2)
C2	C1	S 1	111.2(3)	N2 C8	C7	109.9(2)

C1	C2	C3	112.0(3)	N2	C8	C9	105.8(2)
C2	C3	C5	124.3(3)	C9	C8	C7	117.4(3)
C4	C3	C2	112.4(3)	C10	C9	C8	104.3(3)
C4	C3	C5	123.3(3)	C11	C10	C9	102.2(3)
C3	C4	S 1	111.9(3)	N2	C11	C10	115.4(3)
N1	C5	C3	121.2(3)	N2	C11	C12	121.6(3)
N1	C5	C6	115.8(3)	C12	C11	C10	123.0(3)
C3	C5	C6	123.0(3)	N3	C12	C11	115.9(3)
C5	C6	C7	101.1(3)	N3	C12	C13	123.1(3)
C6	C7	C8	99.9(3)	C13	C12	C11	121.0(3)
C17	C7	C6	108.4(3)	C14	C13	C12	118.8(3)
C17	C7	C8	111.2(3)	C15	C14	C13	118.9(3)
C18	C7	C6	113.8(3)	C14	C15	C16	118.4(3)
C18	C7	C8	113.2(3)	N3	C16	C15	123.5(4)

Table S7 Torsion Angles for 29.

A	B	С	D	Angle/°	Α	B	С	D	Angle/°
S 1	C1	C2	C3	-0.2(5)	C7	C8	С9	C10	138.4(3)
N1	C5	C6	C7	18.4(4)	C8	N1	C5	C3	-178.0(3)
N1	C8	C9	C10	-99.3(3)	C8	N1	C5	C6	1.8(4)
N2	C8	C9	C10	15.4(4)	C8	N2	C11	C10	-1.6(4)
N2	C11	C12	N3	176.3(3)	C8	N2	C11	C12	179.5(3)
N2	C11	C12	C13	-4.3(5)	C8	С9	C10	C11	-15.5(4)
N3	C12	C13	C14	-1.1(5)	С9	C10	C11	N2	11.5(4)
C1	S 1	C4	C3	-0.1(3)	C9	C10	C11	C12	-169.6(3)
C1	C2	C3	C4	0.1(5)	C10)C11	C12	N3	-2.6(5)
C1	C2	C3	C5	178.1(3)	C1()C11	C12	C13	176.8(3)
C2	C3	C4	S 1	0.0(4)	C11	N2	C8	N1	109.9(3)
C2	C3	C5	N1	-4.2(5)	C11	N2	C8	C7	-136.6(3)
C2	C3	C5	C6	176.0(3)	C11	N2	C8	C9	-9.0(4)
C3	C5	C6	C7	-161.8(3)	C11	C12	C13	C14	179.6(3)
C4	S 1	C1	C2	0.2(4)	C12	2 N3	C16	5C15	-0.4(6)
C4	C3	C5	N1	173.5(3)	C12	2 C 1 3	C14	C15	0.8(6)
C4	C3	C5	C6	-6.3(5)	C13	8 C14	C15	C16	-0.4(6)
C5	N1	C8	N2	95.0(3)	C14	C15	C16	5 N3	0.1(7)
C5	N1	C8	C7	-21.5(3)	C16	5 N3	C12	C11	-179.8(3)
C5	N1	C8	C9	-150.3(3)	C16	5 N3	C12	C13	0.9(6)
C5	C3	C4	S 1	-177.9(2)	C17	7 C7	C8	N1	-83.3(3)
C5	C6	C7	C8	-28.3(3)	C17	7 C7	C8	N2	163.1(3)
C5	C6	C7	C17	88.2(3)	C17	7 C7	C8	C9	42.2(4)

C5 C6	C7 C18	-149.2(3)	C18 C7	C8	N1	152.4(3)
C6 C7	C8 N1	31.0(3)	C18 C7	C8	N2	38.7(4)
C6 C7	C8 N2	-82.6(3)	C18 C7	C8	C9	-82.2(4)
C6 C7	C8 C9	156.5(3)				

Table S8 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 29.

Atom	x	у	Z.	U(eq)
H1	7708	2030	9633	84
H2	6519	2796	9377	67
H4	7246	6820	7476	66
H6A	5887	7322	6503	61
H6B	6196	8584	7538	61
H9A	4489	5599	9262	64
H9B	4092	7175	8503	64
H10A	3910	3252	8333	70
H10B	3397	4847	7844	70
H13	4347	3796	4686	60
H14	3749	2019	3247	72
H15	2784	441	3598	80
H16	2460	650	5365	82
H17A	5510	8754	9175	104
H17B	4788	9556	8791	104
H17C	5414	10569	8409	104
H18A	4940	10295	6408	111
H18B	4296	9299	6733	111
H18C	4716	8308	5890	111

7. Characterization of adducts (*R*)-4,4-dimethyl-7-(pyridin-2-yl)-2-(*p*-tolyl)-1,6-diazaspiro[4.4]nona-1,6-diene (6)

1H), 2.37 (s, 3H), 2.30 (m, 1H), 2.15 (m, 1H), 1.15 (s, 3H), 1.06 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 174.4, 153.6, 149.1, 140.9, 136.2, 132.3, 129.1, 127.9, 124.7, 122.7, 111.2, 50.1, 45.0, 35.3, 28.5, 25.1, 22.0, 21.6; **HRMS** (ESI) m/z 317.1892 (M +H⁺), calc. for C₂₁H₂₃N₃⁺ 317.1892.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.0 min (major) and 15.8 min (minor).

Entry	Retention Time	Area	Height	%Area
1	12.003	23.6889	68.55	50.02
2	15.820	23.6721	52.20	49.98
200				

Entry	Retention Time	Area	Height	%Area
1	11.953	38.6644	115.39	95.00
2	15.853	2.0343	4.55	5.00

(*R*)-methyl-4-(4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-dien-2-yl) benzo ate (7)

Yellow solid; Mp 116.3–117.1 °C; 19.6 mg, 54% yield, 90% ee; $[\alpha]_{D}^{22}$ +218.9 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CD₂Cl₂) δ 8.62 (d, *J* = 4.8 Hz, 1H), 8.13 (d, *J* = 7.9 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 2H), 7.93 (d, *J* = 8.3

Hz, 2H), 7.72 (td, J = 7.7, 1.7 Hz, 1H), 7.36 – 7.28 (m, 1H), 3.90 (s, 3H), 3.28 (m, 2H), 3.23 (d, J = 15.8 Hz, 1H), 2.90 (d, J = 16.1 Hz, 1H), 2.31 – 2.22 (m, 1H), 2.13 (m, 1H), 1.17 (s, 3H), 1.06 (s, 3H); ¹³**C NMR** (101 MHz, CD₂Cl₂) δ 170.4, 168.6, 161.8, 148.7, 144.4, 134.3, 131.4, 127.2, 124.8, 123.0, 120.1, 117.4, 106.7, 47.4, 45.2, 40.1, 30.5, 23.6, 20.1, 16.8; **HRMS** (ESI) m/z 362.1862 (M +H⁺), calc. for C₂₂H₂₄N₃O₂⁺ 362.1863.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 16.5 min (minor) and 23.6 min (major).

Entry	Retention Time	Area	Height	%Area
1	16.553	79.95	52.3562	50.05
2	23.621	63.52	52.2507	49.95
MU MU 102 105 106 107 108 109 109 109 109 109 109 109 109	1-16616		2 - 23 505	

Entry	Retention Time	Area	Height	%Area
1	16.616	6.0873	10.00	4.97
2	23.526	116.4727	144.26	95.03

(*R*)-4,4-dimethyl-7-(pyridin-2-yl)-2-(4-(trifluoromethyl)phenyl)-1,6-diazaspiro[4.4]nona-1,6-diene (8)

2H), 2.87 (d, J = 16.1 Hz, 1H), 2.36 – 2.27 (m, 1H), 2.15 (m, 1H), 1.17 (s, 3H), 1.07 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.4, 173.6, 153.3, 149.2, 138.3, 136.3, 132.4 (q, J = 32.7 Hz), 128.3, 125.4 (q, J = 3.6 Hz), 124.9, 124.1 (q, J = 270.7 Hz), 111.5, 107.8,50.1, 45.2, 35.4, 28.4, 25.1, 21.8; ¹⁹F NMR (376 MHz, CD₃OD) δ -64.33; HRMS (ESI) 372.1680 m/z (M +H⁺), calc. for C₂₁H₂₁F₃N₃⁺ 372.1682.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.2 min (major) and 12.9 min (minor).

Entry	Retention Time	Area	Height	%Area
1	9.231	203.7416	570.71	50.05
2	12.911	203.3037	472.14	49.95
	1-9.001	,	2-12.985	m

Entry	Retention Time	Area	Height	%Area

1	9.061	158.7658	489.03	95.00
2	12.965	8.3636	22.14	5.00

(*R*)-2-(3-fluorophenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (9)

Yellow solid; Mp 149.3–150.1 °C; 26.4 mg, 82% yield, 91% ee; $[\alpha]_D^{22}$ +51.6 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.70 (td, *J* = 7.8, 1.6 Hz, 1H), 7.60 (m, 2H), 7.35 (m, 1H), 7.33 – 7.27

(m, 1H), 7.11 (td, J = 8.3, 2.3 Hz, 1H), 3.38 (m, 1H), 3.29 – 3.20 (m, 2H), 2.84 (d, J = 16.0 Hz, 1H), 2.30 (m, 1H), 2.21 – 2.08 (m, 1H), 1.17 (s, 3H), 1.07 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.1, 173.6 (d, J = 2.6 Hz), 163.7, 162.1, 153.5, 149.2, 137.4 (d, J = 7.5 Hz), 136.3, 129.9 (d, J = 7.8 Hz), 124.9, 123.7 (d, J = 2.3 Hz), 122.7, 117.6 (d, J = 21.7 Hz), 114.7 (d, J = 22.2 Hz), 111.4, 50.2, 45.2, 35.4, 28.5, 25.2, 21.9; ¹⁹F NMR (376 MHz, CD₃OD) δ -114.24; HRMS (ESI) 322.1714 m/z (M +H⁺), calc. for C₂₀H₂₁FN₃⁺ 322.1714.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.2 min (major) and 13.6 min (minor).

Entry	Retention Time	Area	Height	%Area
1	9.246	71.2050	236.37	50.35
2	13.621	70.2168	165.42	49.65

Entry	Retention Time	Area	Height	%Area
1	9.340	110.5999	360.89	95.63
2	13.941	5.0538	11.71	4.37

(*R*)-2-(2-fluorophenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (10)

White solid; Mp 145.1–145.9 °C; 20.0 mg, 62% yield, 99% ee; $[\alpha]_{D}^{22}$ +54.7 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, J = 4.2 Hz, 1H), 8.18 (d, J = 7.9 Hz, 1H), 7.98 (td, J = 7.7, 1.6 Hz, 1H), 7.73 – 7.65 (m, 1H), 7.40 – 7.33 (m, 1H), 7.31 – 7.26

(m, 1H), 7.13 (t, J = 7.6 Hz, 1H), 7.06 (dd, J = 11.2, 8.4 Hz, 1H), 3.39 - 3.30 (m, 2H), 3.24 (m, 1H), 2.92 (dd, J = 16.7, 3.5 Hz, 1H), 2.28 (m, 1H), 2.15 (m, 1H), 1.15 (s, 3H), 1.06 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.0, 172.1 (d, *J* = 1.8 Hz), 161.9 (d, *J* = 252.8 Hz), 153.5, 149.1, 136.2, 132.2 (d, *J* = 8.7 Hz), 130.1 (d, *J* = 3.5 Hz), 124.8, 124.2 (d, *J* = 3.3 Hz), 123.3 (d, *J* = 1.8 Hz), 122.7, 116.2 (d, *J* = 22.6 Hz), 110.2, 53.23 (d, *J* = 6.0 Hz), 45.1 (d, *J* = 1.4 Hz), 35.3, 28.3, 24.9, 21.8; ¹⁹**F NMR** (565 MHz, CDCl₃) δ -112.7; **HRMS** (ESI) 322.1714 m/z (M + H⁺), calc. for C₂₀H₂₁FN₃⁺ 322.1714.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.0 min (major) and 11.2 min (minor).

Entry	Retention Time	Area	Height	%Area
1	8.970	115.8794	408.87	99.07
2	11.223	1.0863	3.19	0.93

(*R*)-2-(3-chlorophenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (11)

Yellow solid; Mp 61.2–62.0 °C; 18.3 mg, 54% yield, 91% ee; $[\alpha]_{D}^{22}$ +315.5 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 4.1 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.88 (s, 1H), 7.76 – 7.65 (m, 2H), 7.38 (d, *J* = 7.9 Hz, 1H),

7.33 – 7.27 (m, 2H), 3.38 (dd, J = 17.4, 8.7 Hz, 1H), 3.25 (m, 2H), 2.83 (d, J = 16.0 Hz, 1H), 2.34 – 2.25 (m, 1H), 2.14 (m, 1H), 1.16 (s, 3H), 1.06 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.1, 173.6, 153.5, 149.2, 136.3, 134.6, 130.75, 129.7, 127.9, 126.2, 124.9, 122.7, 111.4, 50.1, 45.2, 35.4, 28.4, 25.2, 21.9; **HRMS** (ESI) 338.1419 m/z (M + H⁺), calc. for C₂₀H₂₁ClN₃⁺ 338.1419.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.5 min (major) and 14.8 min (minor).

Entry	Retention Time	Area	Height	%Area
1	9.490	23.4172	76.86	50.32
2	14.811	23.1219	47.97	49.68
98.5 au 99.5 au 90.5 au 174.5 au 174.5 au 175.5 au	- 0.441		2.1480	

Entry	Retention Time	Area	Height	%Area
1	9.441	35.5181	118.01	95.35
2	14.851	1.7321	3.78	4.65

(*R*)-2-(3-bromophenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (12)

White solid; Mp 140.0–140.9 °C; 20.2 mg, 53% yield, 91% ee; $[\alpha]_{D}^{22}$ +236.3 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, *J* = 4.4 Hz, 1H), 8.18 (d, *J* = 7.9 Hz, 1H), 8.06 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 1H), 7.71 (td, *J* = 7.8, 1.5

Hz, 1H), 7.56 (d, J = 7.9 Hz, 1H), 7.32 (dd, J = 6.5, 5.1 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 3.41 (m, 1H), 3.31 – 3.21 (m, 2H), 2.85 (d, J = 16.0 Hz, 1H), 2.35 – 2.27 (m, 1H), 2.16 (m, 1H), 1.18 (s, 3H), 1.08 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.1, 173.4, 153.4, 149.2, 137.1, 136.2, 133.6, 130.8, 129.9, 126.5, 124.8, 122.7, 122.7, 111.3, 50.0, 45.1, 35.3, 28.4, 25.1, 21.9; HRMS (ESI) 382.0915 m/z (M + H⁺), calc. for C₂₀H₂₁BrN₃⁺ 382.0913.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.9 min (major) and 15.7 min (minor).

Entry	Retention Time	Area	Height	%Area
		S50		

1	9.903	16.9639	53.04	49.22
2	15.763	17.4990	33.57	50.78
105 mAU 600 600 600 600 600 600 600 600 600 60	, 1 - 9.946			12-15910
-10.0				min

Entry	Retention Time	Area	Height	%Area
1	9.945	14.8335	44.40	95.58
2	15.910	0.6852	1.31	4.42

(*R*)-2-(2-bromophenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (13)

White solid; Mp 128.4–129.2 °C; 30.9 mg, 81% yield, 95% ee; $[\alpha]_{D}^{22}$ –27.1 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 4.4 Hz, 1H), 8.21 (d, *J* = 7.9 Hz, 1H), 7.72 (td, *J* = 7.7, 1.6 Hz, 1H), 7.57 (d, *J* = 7.9 Hz, 1H), 7.50 (dd, *J* = 7.6, 1.5 Hz, 1H),

7.34 – 7.26 (m, 2H), 7.20 (td, J = 7.8, 1.6 Hz, 1H), 3.40 – 3.27 (m, 3H), 2.98 (d, J = 16.4 Hz, 1H), 2.37 – 2.27 (m, 1H), 2.13 (m, 1H), 1.17 (s, 3H), 1.15 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.2, 174.3, 152.5, 148.1, 136.9, 135.3, 132.3, 129.6, 129.5, 126.4, 123.8, 121.7, 120.3, 109.9, 76.4, 76.2, 75.9, 52.2, 44.6, 34.2, 27.2, 23.8, 20.7; HRMS (ESI) 382.0912 m/z (M + H⁺), calc. for C₂₀H₂₁BrN₃⁺ 382.0913.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.4 min (minor) and 12.1 min (major).

Entry	Retention Time	Area	Height	%Area
		051		

Entry	Retention Time	Area	Height	%Area
1	10.635	1.1155	3.59	2.14
2	12.150	51.0606	139.65	97.86

(R)-4,4-dimethyl-2-phenyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (14)

White solid; Mp 99.8–100.6 °C; 26.5 mg, 87% yield, 90% ee; $[\alpha]_{D}^{22}$ +169.6 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 4.4 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.87 (d, *J* = 7.0 Hz, 2H), 7.68 (td, *J* = 7.7, 1.7 Hz, 1H), 7.43 – 7.36 (m, 3H), 7.31 –

7.26 (m, 1H), 3.40 (m, 1H), 3.24 (m, 2H), 2.88 (d, J = 15.9 Hz, 1H), 2.36 – 2.27 (m, 1H), 2.15 (m, 1H), 1.17 (s, 3H), 1.07 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 174.8, 174., 153.5, 149.1, 136.2, 135.0, 130.7, 128.4, 127.9, 124.7, 122.7, 111.3, 50.1, 45.0, 35.3, 28.5, 25.1, 21.9; **HRMS** (ESI) 304.1808 m/z (M +H⁺), calc. for C₂₀H₂₂N₃⁺ 304.1808.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.1 min (major) and 15.6 min (minor).

Entry	Retention Time	Area	Height	%Area
1	11.118	109.6161	324.15	50.02
2	15.580	109.5438	236.12	49.98

Entry	Retention Time	Area	Height	%Area
1	11.248	133.0498	378.38	94.72
2	15.976	7.4211	17.13	5.28

(R)-2-(4-(tert-butyl)phenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-

diene (15)

Yellow solid; Mp 87.0–87.9 °C; 25.9 mg, 72% yield, 87% ee; $[\alpha]_{D}^{22}$ +347.9 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 4.0 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.68 (t, *J* = 7.1 Hz, 1H), 7.41 (d, *J*

= 8.2 Hz, 2H), 7.31 – 7.26 (m, 1H), 3.43 – 3.33 (m, 1H), 3.28 – 3.15 (m, 2H), 2.87 (d, J = 15.9 Hz, 1H), 2.33 – 2.26 (m, 1H), 2.15 (m, 1H), 1.32 (s, 9H), 1.16 (s, 3H), 1.06 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.6 174.4, 154.2, 153.6, 149.1, 136.2, 132.2, 127.7, 125.4, 124.7, 122.7, 111.2, 50.0, 45.0, 35.3, 34.9, 31.3, 28.4, 25.0, 22.0; HRMS (ESI) 360.2434 m/z (M + H⁺), calc. for C₂₄H₃₀N₃⁺ 360.2434.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 13.1 min (major) and 16.5 min (minor).

Entry	Retention Time	Area	Height	%Area
1	13.120	22.8950	46.56	50.78
2	16.500	22.1930	35.61	49.22

- 44 X -	
	AU
40.0	
-	
35.0	
- 1	1 - 13.490
30.0	\wedge
- 1	
25.0	
- 1	
20.0	
- 1	
15.0 -	
- 1	
10.0	
e 0 1	
-	
-	12-17.013
0.0	
- 1	min
-4.1	

Entry	Retention Time	Area	Height	%Area
1	13.490	16.3046	31.99	93.73
2	17.073	1.0906	1.75	6.27

 $(\it R)-4, 4-dimethyl-7-(pyridin-2-yl)-2-(4-(trimethylsilyl)phenyl)-1, 6-diaza spiro[4.4] nona-interval and the second se$

1,6-diene (16)

Yellow solid; Mp 121.2–122.0 °C; 16.9 mg, 45% yield, 86% ee; $[\alpha]_{D}^{22}$ +27.3 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.69 (td, *J* = 7.7, 1.7 Hz, 1H), 7.55

(d, J = 8.1 Hz, 2H), 7.29 (m, 1H), 3.39 (m, 1H), 3.30 – 3.18 (m, 2H), 2.88 (d, J = 15.9 Hz, 1H), 2.30 (m, 1H), 2.16 (m, 1H), 1.16 (s, 4H), 1.06 (s, 4H), 0.27 (s, 9H); ¹³C NMR (151 MHz, CDCl₃) δ 174.8, 174.7, 153.5, 149.1, 144.0, 136.2, 135.2, 133.4, 127.0, 124.8, 122.7, 111.2, 50.0, 45.0, 35.3, 28.4, 25.0, 22.0, -1.1; HRMS (ESI) 376.2204 m/z (M + H⁺), calc. for C₂₃H₃₀N₃Si⁺ 376.2204.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.3 min (major) and 10.6 min (minor).

Entry	Retention Time	Area	Height	%Area
1	8.268	90.9800	339.35	50.15
2	10.633	90.4203	272.18	49.85

Entry	Retention Time	Area	Height	%Area
1	8.253	226.2281	842.65	93.08
2	10.693	16.8216	55.07	6.92

(R)-4,4-dimethyl-7-(pyridin-2-yl)-2-(o-tolyl)-1,6-diazaspiro[4.4]nona-1,6-diene (17)

White solid; Mp 117.9–118.7 °C; 23.2 mg, 73% yield, 90% ee; $[\alpha]_{D}^{22}$ –33.7 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.61 – 8.44 (m, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.63 (td, *J* = 7.7, 1.7 Hz, 1H), 7.37 (d, *J* = 7.4 Hz, 1H), 7.22 (m, 1H), 7.20 – 7.15 (m, 1H),

7.12 (m, 2H), 3.29 - 3.15 (m, 3H), 2.66 (d, J = 16.1 Hz, 1H), 2.42 (s, 3H), 2.30 - 2.19 (m, 1H), 2.05 (m, 1H), 1.10 (s, 3H), 1.02 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 177.2, 174.9, 153.7, 149.1, 137.0, 136.2, 135.7, 131.1, 129.2, 128.7, 125.6, 124.8, 122.7, 111.5, 53.7, 44.8, 35.2, 28.5, 25.1, 21.5, 21.2; **HRMS** (ESI) 318.1965 m/z (M + H⁺), calc. for C₂₁H₂₄N₃⁺ 318.1965. The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 8.3 min (minor) and 9.2 min (major).

Entry	Retention Time	Area	Height	%Area
1	8.325	24.2549	99.23	49.59
2	9.190	24.6521	91.11	50.41

230 -	
220-	mAU
200.	
180.	2 - 9 280
160	
140	
120.	
100.	
80	
60	
40.	
20-	1.4431
-	
.20]	

Entry	Retention Time	Area	Height	%Area
1	8.431	2.5219	9.68	4.83
2	9.280	49.7100	173.08	95.17

(*R*)-2-(2-isopropylphenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (18)

White solid; Mp 113.3 - 114.2 °C; 19.4 mg, 56% yield, 86% ee; $[\alpha]_{D}^{22}$ -32.7 (*c* 1.0, CH₃OH); ¹**H NMR** (600 MHz, CDCl₃) δ 8.75 - 8.50 (m, 1H), 8.19 (d, *J* = 7.9 Hz, 1H), 7.71 (td, *J* = 7.7, 1.7 Hz, 1H), 7.36 - 7.27 (m, 4H), 7.22 - 7.11 (m, 1H), 3.56 - 3.45

(m, 1H), 3.32 - 3.28 (m, 2H), 2.70 (d, J = 16.3 Hz, 1H), 2.33 (m, 1H), 2.11 (m, 1H), 1.24 (d, J = 6.9 Hz, 3H), 1.20 (d, J = 6.9 Hz, 3H), 1.18 (s, 3H), 1.13 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 177.8, 174.9, 153.7, 149.1, 147.1 136.3, 135.6, 129.3, 128.1, 125.7, 125.5, 124.8, 122.6, 111.6, 54.9, 44.8, 35.1, 29.5, 28.3, 25.0, 24.1, 24.2, 21.5; HRMS (ESI) 346.2278 m/z (M + H⁺), calc. for C₂₃H₂₈N₃⁺ 346.2278.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.6 min (minor) and 8.7 min (major).

Entry	Retention Time	Area	Height	%Area
1	7.627	13.8441	49.31	49.08
2	8.720	14.3635	47.91	50.92

308-14	
	nau
300	2 - 8707
250	\wedge
200-	
150	
100-	
50.	1.7657
0	
.31	rion

Entry	Retention Time	Area	Height	%Area
1	7.657	6.0145	23.50	7.10
2	8.707	78.6801	276.98	92.90

(*R*)-2-([1,1'-biphenyl]-4-yl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diaene (19)

White solid; Mp 173.3–174.1 °C; 23.2 mg, 61% yield, 90% ee; $[\alpha]_{D}^{22}$ +83.2 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, *J* = 4.7 Hz, 1H), 8.18 (d, *J* = 7.9 Hz, 1H), 7.95 (d, *J* = 8.3 Hz, 2H), 7.70 (td, *J* = 7.7, 1.7 Hz, 1H), 7.63 (dd, *J* =

10.1, 7.9 Hz, 4H), 7.44 (t, J = 7.7 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 7.30 (m, 1H), 3.42 (m, 1H), 3.32 – 3.21 (m, 2H), 2.92 (d, J = 15.9 Hz, 1H), 2.38 – 2.27 (m, 1H), 2.17 (m, 1H), 1.19 (s, 3H), 1.09 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.8, 174.3, 153.5, 149.1, 143.5, 140.5, 136.3, 133.9, 128.9, 128.5, 127.8, 127.2, 127.1, 124.8, 122.7, 111.3, 50.1, 45.1, 35.3, 28.5, 25.2, 22.0; HRMS (ESI) 380.2121 (M + H⁺), calc. for C₂₆H₂₆N₃⁺ 380.2121.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 19.7 min (major) and 24.5 min (minor).

Entry	Retention Time	Area	Height	%Area
1	19.723	28.7281	39.27	49.67
2	24.498	29.1076	33.33	50.33

Entry	Retention Time	Area	Height	%Area
1	20.148	39.9711	52.74	95.17
2	25.298	2.0290	2.28	4.83

(*R*)-2-([1,1'-biphenyl]-2-yl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro [4.4] nona-1,6-diene (20)

White solid; Mp 122.9–123.8 °C; 28.9 mg, 76% yield, 88% ee; $[\alpha]_{D}^{22}$ +288.3 (*c* 1.0, CH₃OH); ¹**H NMR** (400 MHz, CDCl₃) δ 8.65 (d, *J* = 4.8 Hz, 1H), 8.22 (d, *J* = 7.9 Hz, 1H), 7.74 (t, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 7.4 Hz, 1H), 7.45 – 7.31 (m, 9H), 3.38 – 3.17

(m, 2H), 2.58 (d, J = 16.5 Hz, 1H), 2.31 – 2.22 (m, 1H), 2.10 – 1.98 (m, 2H), 0.94 (s, 3H), 0.85 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 178.5, 174.7, 153.6, 149.1, 141.2, 141.1, 136.2, 130.1, 129.5, 129.3, 128.3, 127.5, 127.4, 124.8, 122.6, 110.8, 52.8, 45.1, 35.1, 28.2, 24.6, 21.8; **HRMS** (ESI) 380.2121 m/z (M + H⁺), calc. for C₂₆H₂₆N₃⁺ 380.2121.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.6 min (minor) and 12.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	10.558	12.4890	31.25	50.90
2	12.911	12.0471	26.50	49.10

Entry	Retention Time	Area	Height	%Area
1	10.713	3.0019	8.60	5.93
2	13.003	47.5936	110.74	94.07

(*R*)-2-(4-methoxyphenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (21)

White solid; Mp 123.0–123.9 °C; 21.4 mg, 64% yield, 83% ee; $[\alpha]_{D}^{22}$ –167.4 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 8.63 (d, *J* = 4.4 Hz, 1H), 8.11 (d, *J* = 7.9 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.46 (dd,

J = 6.7, 5.5 Hz, 1H), 6.98 (d, J = 8.8 Hz, 2H), 3.83 (s, 3H), 3.41 (m, 1H), 3.33 – 3.21 (m, 3H), 2.98 (d, J = 16.5 Hz, 1H), 2.30 – 2.15 (m, 2H), 1.16 (s, 3H), 1.07 (s, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 177.5, 177.0, 163.7, 153.5, 150.1, 138.0, 130.7, 127.6, 126.5, 123.5, 114.8, 112.1, 55.7, 50.7, 45.3, 36.2, 28.6, 25.3, 21.5; HRMS (ESI) 334.1914 m/z (M + H⁺), calc. for C₂₁H₂₄N₃O⁺ 334.1914.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 70/30; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 13.8 min (major) and 19.2 min (minor).

Entry	Retention Time	Area	Height	%Area
1	13.841	161.3460	356.58	49.91
2	19.225	161.9124	248.36	50.09

Entry	Retention Time	Area	Height	%Area
1	13.755	104.4886	231.01	91.20
2	19.431	10.0825	16.98	8.80

(*R*)-2-(3-methoxyphenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (22)

White solid; Mp 87.2–88.1 °C; 31.4 mg, 94% yield, 92% ee; $[\alpha]_{D}^{22}$ –108.4 (*c* 1.0, CH₃OH); ¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.67 (m, 1H), 7.45 (m, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.45 (m, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.45 (m, 1H), 7.38 (d, *J* = 7.7 Hz, 1H), 7.31 – 7.25 (m, 1H), 7.45 (m, 1H), 7.38 (m, 1H)

2H), 6.96 (dd, J = 8.1, 2.5 Hz, 1H), 3.81 (s, 3H), 3.44 – 3.31 (m, 1H), 3.26 – 3.15 (m, 2H), 2.85 (d, J = 16.0 Hz, 1H), 2.28 (m, 1H), 2.13 (m, 1H), 1.14 (s, 3H), 1.05 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 174.4, 159.6, 153.5, 149.1, 136.5, 136.2, 129.3, 124.7, 122.6, 120.6, 117.2, 112.2, 111.2, 77.5, 77.1, 76.8, 55.4, 50.2, 45.0, 35.2, 28.5, 25.0, 22.0; HRMS (ESI) 334.1914 m/z (M + H⁺), calc. for C₂₁H₂₄N₃O⁺ 334.1914.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 15.8 min (major) and 24.8 min (minor).

Entry	Retention Time	Area	Height	%Area
1	15.818	67.8241	126.64	49.66
2	24.811	68.7576	83.09	50.34

320-	
300-	mAU
250	
200	∫ ^{1 - 15.440}
150	
100	
50	
	2 - 24 536
-50	n na
10	o 110 120 130 140 150 150 170 180 190 200 210 220 230 240 250 270 280 280 280 280 10 10 10 10 10 10 10 10 10 10

Entry	Retention Time	Area	Height	%Area
1	15.440	108.1700	207.79	96.30
2	24.535	4.1587	5.38	3.70

(*R*)-2-(3-(allyloxy)phenyl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (23)

White solid; Mp 129.3–130.1 °C; 18.7 mg, 52% yield, 87% ee; $[\alpha]_{\rm D}^{22}$ –38.1 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.68 (td, *J* = 7.7, 1.7 Hz, 1H), 7.47 (s, 1H), 7.40

(d, J = 7.6 Hz, 1H), 7.28 (m, 2H), 6.98 (dd, J = 8.1, 2.4 Hz, 1H), 6.04 (m, 1H), 5.40 (dd, J = 17.3, 1.5 Hz, 1H), 5.26 (dd, J = 10.5, 1.3 Hz, 1H), 4.56 (d, J = 5.3 Hz, 2H), 3.38 (m, 1H), 3.23 (m, 2H), 2.85 (d, J = 15.9 Hz, 1H), 2.29 (m, 1H), 2.14 (m, 1H), 1.15 (s, 3H), 1.06 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 174.8, 174.5, 158.7, 153.5, 149.1, 136.4, 136.2, 133.2, 129.3, 124.8, 122.7, 120.8, 117.8, 117.7, 113.3, 111.2, 68.9, 50.2, 45.0, 35.3, 28.5, 25.1, 22.0; **HRMS** (ESI) 360.2070 m/z (M + H⁺), calc. for C₂₃H₂₆N₃O⁺ 360.2070.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.2 min (major) and 25.1 min (minor).

Entry	Retention Time	Area	Height	%Area
1	12.237	70.7692	187.85	50.95
2	25.123	68.1214	90.70	49.05

1,000	All	
	~~	
500-		
800	Λ	
700		
- 1		
600-		
500		
400		
300-		
200		
1		
0		\neg
-100		
-200-		min
7	a'a lo 11'a 11'a 12'a 13'a 14'a 13'a 14'a 13'a 14'a 14'a 14'a 14'a 14'a 14'a 14'a 14	30

Entry	Retention Time	Area	Height	%Area
1	11.927	324.5224	838.10	93.79
2	24.890	21.4765	30.67	6.21

(*R*)-4,4-dimethyl-7-(pyridin-2-yl)-2-(4-(trifluoromethoxy)phenyl)-1,6-diazaspiro[4.4] nona-1,6-diene (24)

White solid; Mp 118.0–119.0 °C; 16.7 mg, 43% yield, 87% ee; $[\alpha]_{D}^{22}$ +47.3 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 4.6 Hz, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.90 (d, *J* = 8.7 Hz, 2H), 7.68 (td, *J* = 7.7, 1.6 Hz, 1H), 7.34

-7.27 (m, 1H), 7.22 (d, J = 8.3 Hz, 2H), 3.38 (m, 1H), 3.29 -3.16 (m, 2H), 2.84 (d, J = 15.9 Hz, 1H), 2.29 (m, 1H), 2.20 -2.03 (m, 1H), 1.16 (s, 3H), 1.06 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 175.1, 173.3, 153.4, 151.0, 149.2, 136.3, 133.6, 129.6, 124.8, 123.0, 120.64, 120.5 (q, J = 257.8 Hz), 111.4, 50.1, 45.2, 35.3, 28.4, 25.1, 21.9; ¹⁹F NMR (565 MHz, CDCl₃) δ -57.7; HRMS (ESI) 388.1631 m/z (M + H⁺), calc. for C₂₁H₂₁F₃N₃O⁺ 388.1631.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 6.2 min (major) and 7.9 min (minor).

Entry	Retention Time	Area	Height	%Area
1	6.215	31.7399	225.18	49.68
2	7.958	32.1456	162.76	50.32

300.		_
	mAU	1
275		
250		
225		
200		
175	Å ^{1 - 0,215}	
150	\wedge	
125		
100		
75		
50		
25	2-7.675	
0-		4
		1
-20		1
		- 14

Entry	Retention Time	Area	Height	%Area
1	6.215	24.2024	167.93	93.73
2	7.975	1.6196	8.47	6.27

(*R*)-2-(benzo[*d*][1,3]dioxol-5-yl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (25)

White solid; Mp 146.7–147.5 °C; 29.6 mg, 85% yield, 86% ee; $[\alpha]_{D}^{22}$ –48.7 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 8.70 – 8.50 (m, 1H), 8.12 (d, J = 7.9 Hz, 1H), 7.93 – 7.81 (m, 1H), 7.48 (m, 1H), 7.41 (m, 1H), 7.41 – 7.37 (m,

1H), 6.89 (d, J = 8.0 Hz, 1H), 6.02 (m, 2H), 3.40 (m, 1H), 3.30 (d, J = 3.1 Hz, 1H), 3.27 (t, J = 5.9 Hz, 1H), 2.97 (d, J = 16.5 Hz, 1H), 2.25 (dd, J = 8.2, 6.4 Hz, 2H), 1.16 (s, 3H), 1.08 (s, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 177.3, 177.1, 153.5, 151.8, 150.1, 149.4, 138.0, 129.4, 126.5, 124.7, 123.5, 112.1, 108.8, 107.9, 102.9, 50.9, 45.4, 36.2, 28.6, 25.3, 21.5; HRMS (ESI) 348.1706 m/z (M +H⁺), calc. for C₂₁H₂₁F₃N₃O⁺ 348.1707.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2-propanol = 70/30; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time:14.1 min (major) and 22.5 min (minor).

Entry	Retention Time	Area	Height	%Area
1	14.090	25.0992	45.92	50.77
2	22.490	24.3365	31.18	49.23

15.7		
	a mau	
14.0		
-		
12.0 -		
	1 - 14.835	
10.0-		
8.0		
- 1		
6.0		
4.0-		
2.0-		
	2/20.14D	
		min
-1.2 -		

Entry	Retention Time	Area	Height	%Area
1	14.835	4.9381	10.11	93.22
2	23.745	0.3589	0.52	6.78

(*R*)-4,4-dimethyl-2-(naphthalen-2-yl)-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (26)

White solid; Mp 155.9–156.8 °C; 31.5 mg, 89% yield, 87% ee; $[\alpha]_{D}^{22}$ –29.6 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 8.64 (d, *J* = 4.6 Hz, 1H), 8.34 (s, 1H), 8.13 (d, *J* = 8.0 Hz, 1H), 8.03 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.98 (d, *J* =

7.6 Hz, 1H), 7.92 – 7.88 (m, 2H), 7.86 (dd, J = 7.8, 1.5 Hz, 1H), 7.55 (m, 2H), 7.50 – 7.42 (m, 1H), 3.49 – 3.40 (m, 2H), 3.31 – 3.27 (m, 1H), 3.17 (d, J = 16.4 Hz, 1H), 2.30 (m, 2H), 1.22 (s, 3H), 1.13 (s, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 178.1, 177.3, 153.5, 150.2, 138.1, 136.1, 134.2, 132.6, 130.3, 129.8, 129.2, 128.6, 128.5, 127.6, 126.6, 124.8, 123.5, 112.4, 50.9, 45.4, 36.3, 28.7, 25.3, 21.5; HRMS (ESI) 354.1965 m/z (M + H⁺), calc. for C₂₄H₂₄N₃⁺ 354.1965. The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 14.6 min (major) and 20.0 min (minor).

Entry	Retention Time	Area	Height	%Area
1	14.640	266.4490	568.46	50.06
2	20.030	265.8514	418.78	49.94

470	
450	mAU
400	
350	
300	x ^{(+ + 4 633}
250	\wedge
200-	
150	
100	
50	
•	
.50	in the second
- 9	0 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 25

Entry	Retention Time	Area	Height	%Area
1	14.633	134.8512	281.58	93.13
2	20.245	9.9473	15.63	6.87

(*R*)-4,4-dimethyl-2-(naphthalen-1-yl)-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (27)

White solid; Mp 147.1–147.9 °C; 30.1 mg, 85% yield, 95% ee; $[\alpha]_D^{22}$ –41.6 (*c* 1.0, CH₃OH); ¹**H** NMR (400 MHz, CDCl₃) δ 8.86 (d, *J* = 8.2 Hz, 1H), 8.66 (dd, *J* = 4.8, 0.7 Hz, 1H), 8.25 (d, *J* = 7.5 Hz, 1H), 7.90 – 7.79 (m, 2H), 7.77 – 7.66 (m, 2H),

7.56 – 7.41 (m, 3H), 7.32 (m, 1H), 3.57 (d, J = 16.0 Hz, 1H), 3.48 – 3.29 (m, 2H), 2.93 (d, J = 16.0 Hz, 1H), 2.52 – 2.42 (m, 1H), 2.21 (m, 1H), 1.24 (s, 3H), 1.19 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 175.1 153.6, 149.2, 136.3, 134.0, 133.0, 131.0, 130.5, 128.3, 127.5, 127.2, 126.5, 126.1, 124.8, 124.8, 122.8, 112.1, 53.9, 44.6, 35.3, 28.6, 25.2, 21.6; HRMS (ESI) 354.1965 m/z (M + H⁺), calc. for C₂₄H₂₄N₃⁺ 354.1965.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 95/5; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 21.6 min (minor) and 23.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	21.650	12.7943	18.12	49.59
2	23.977	13.0052	16.49	50.41

Entry	Retention Time	Area	Height	%Area
1	21.817	1.3686	2.03	2.40
2	23.847	55.6272	71.54	97.60

(*R*)-2-(benzo[*b*]thiophen-5-yl)-4,4-dimethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (28)

Yellow solid; Mp 117.2–118.0 °C; 20.9 mg, 58% yield, 90% ee; $[\alpha]_{D}^{22}$ –49.6 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 8.68 – 8.60 (m, 1H), 8.33 (s, 1H), 8.12 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.96 (dd, *J* = 8.5, 2.6 Hz, 1H), 7.90 (dd, *J* =

8.5, 1.2 Hz, 1H), 7.89 – 7.83 (m, 1H), 7.64 (dd, J = 5.4, 2.6 Hz, 1H), 7.46 (dd, J = 5.3, 1.6 Hz, 2H), 3.48 – 3.38 (m, 2H), 3.31 – 3.26 (m, 1H), 3.10 (dd, J = 16.4, 4.9 Hz, 1H), 2.28 (m, 2H), 1.20 (s, 3H), 1.11 (s, 3H); ¹³**C NMR** (151 MHz, CD₃OD) δ 178.3, 177.2, 153.5, 150.2, 143.9, 141.0, 138.0, 131.6, 128.7, 126.6, 125.2, 124.8, 123.9, 123.5, 123.4, 112.3, 51.0, 45.4, 36.2, 28.7, 25.3, 21.5; **HRMS** (ESI) 360.1528 m/z (M + H⁺), calc. for C₂₂H₂₂N₃S⁺ 360.1529. The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2-

propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time:16.4 min (major) and 22.7 min (minor).

Entry	Retention Time	Area	Height	%Area
1	16.396	60.8735	120.13	50.05

	2	22.743	60.7590	89.83	49.95
600 mAU					
500-					
450-					
400		A 10.275			
350-					
300					
250-					
200-					
150-					
50.					
				2 - 22.865	
.50	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	min

Entry	Retention Time	Area	Height	%Area
1	16.275	422.31	205.9780	94.88
2	22.865	18.89	11.1160	5.12

(*R*)-4,4-dimethyl-7-(pyridin-2-yl)-2-(thiophen-3-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (29)

White solid; Mp 147.5–148.3 °C; 23.3 mg, 75% yield, 95% ee; $[\alpha]_{D}^{22}$ –292.0 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 3.8 Hz, 1H), 8.17 (d, *J* = 7.8 Hz, 1H), 7.78 – 7.64 (m, 2H), 7.59 (d, *J* = 4.2 Hz, 1H), 7.30 (m, 2H), 3.37 (m, 1H), 3.22 (d, *J* =

15.7 Hz, 2H), 2.81 (d, J = 15.8 Hz, 1H), 2.29 (m, 1H), 2.19 – 2.06 (m, 1H), 1.15 (s, 3H), 1.07 (s, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 175.9, 172.1, 152.3, 148.9, 137.0, 136.8, 129.9, 126.5, 125.8, 125.3, 122.3, 110.9, 50.3, 44.0, 35.0, 27.4, 24.1, 20.2; HRMS (ESI) 310.1372 m/z (M + H⁺), calc. for C₁₈H₂₀N₃S⁺ 310.1372.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 17.9 min (major) and 27.4 min (minor).

Entry	Retention Time	Area	Height	%Area
1	17.943	74.7485	121.69	50.12
2	27.405	74.3949	81.12	49.88

300 -		
	mu .	
300	.1 - 17 000	
250		
200		
150		
100		
50		
	2-28.146	
50		min
-304	3 140 150 160 170 180 190 200 210 220 230 240 250 250 270 280 290 300	31.0 33

Entry	Retention Time	Area	Height	%Area
1	17.990	272.29	166.2436	97.63
2	28.146	4.01	4.0311	2.37

(*R*)-2-(2-bromophenyl)-7-(3-fluoropyridin-2-yl)-4,4-dimethyl-1,6-diazaspiro[4.4]nona-1,6-diene (30)

Yellow solid; Mp 87.3–88.1 °C; 26.6 mg, 64% yield, 92% ee; $[\alpha]_{D}^{22}$ –30.3 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, *J* = 5.3 Hz, 1H), 8.18 (dd, *J* = 48.8, 1.9 Hz, 1H), 7.62 – 7.51 (m, 1H), 7.54 – 7.44 (m, 1H), 7.32 – 7.27 (m, 2H), 7.20 (td, *J* =

7.8, 1.7 Hz, 1H), 3.34 (d, J = 16.4 Hz, 1H), 3.31 – 3.19 (m, 2H), 2.98 (d, J = 16.4 Hz, 1H), 2.32 (m, 1H), 2.11 (m, 1H), 1.16 (s, 3H), 1.14 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 177.4, 174.4, 154.9, 149.9, 144.4, 137.8, 133.3, 130.7, 130.4, 127.4, 125.0, 122.9, 121.3, 110.9, 53.3, 45.6, 35.2, 28.2, 24.8, 21.6; **HRMS** (ESI) 416.0521 m/z (M + H⁺), calc. for C₂₀H₂₀BrClN₃⁺ 416.0524. The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.3 min (minor) and 9.1 min (major).

Entry	Retention Time	Area	Height	%Area
1	7.277	102.8317	439.58	49.12
2	9.073	106.5133	376.68	50.88

Entry	Retention Time	Area	Height	%Area
1	7.317	4.9989	21.38	3.79
2	9.113	126.9549	445.04	96.21

(*R*)-2-(2-bromophenyl)-7-(4-fluoropyridin-2-yl)-4,4-dimethyl-1,6-diazaspiro[4.4]nona-1,6-diene (31)

Yellow solid; Mp 120.7–121.5 °C; 22.4 mg, 56% yield, 92% ee; $[\alpha]_{D}^{22}$ –42.3 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 8.66 (dd, *J* = 8.3, 5.7 Hz, 1H), 7.92 (dd, *J* = 9.8, 2.5 Hz, 1H), 7.67 (dd, *J* = 8.0, 0.6 Hz, 1H), 7.46 – 7.39 (m, 2H), 7.36 – 7.34

(m, 1H), 7.33 – 7.29 (m, 1H), 3.37 (d, J = 16.9 Hz, 1H), 3.30 (d, J = 8.6 Hz, 2H), 3.01 (d, J = 16.9 Hz, 1H), 2.28 (t, J = 7.3 Hz, 2H), 1.21 (s, 3H), 1.20 (s, 3H); ¹³C NMR (101 MHz, CD₃OD) δ 180.5, 176.7(d, J = 3.6 Hz), 170.2 (d, J = 261.7 Hz), 156.9 (d, J = 7.0 Hz), 153.0 (d, J = 7.2 Hz), 138.2, 134.2, 132.1, 130.7, 128.6, 121.4, 114.1 (d, J = 17.1 Hz), 111.9, 110.8 (d, J = 18.4 Hz), 54.3, 46.3, 36.1, 28.6, 24.9, 21.4; ¹⁹F NMR (565 MHz, CD₃OD) δ -103.67; HRMS (ESI) 400.0819 m/z (M + H⁺), calc. for C₂₀H₂₀BrFN₃⁺ 400.0819.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.1 min (minor) and 8.5 min (major).

Entry	Retention Time	Area	Height	%Area
1	7.088	58.9000	268.46	49.22

2	8.473	60.7684	245.01	50.78
743 700-				
600		^ ²⁻⁶	3.441	
500			١	
400-				
200-				
100-				
	1-7.100			min
573	6.50 7.00	7.50 8.00 8.5	9.00 9.50	10.00 10.50 10.6

Entry	Retention Time	Area	Height	%Area
1	7.100	6.1243	30.97	4.00
2	8.441	147.0176	592.42	96.00

(*R*)-2-(2-bromophenyl)-7-(4-chloropyridin-2-yl)-4,4-dimethyl-1,6-diazaspiro[4.4]nona-1,6-diene (32)

Yellow solid; Mp 126.0–126.8 °C; 29.9 mg, 72% yield, 92% ee; $[\alpha]_{D}^{22}$ –16.8 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 5.3 Hz, 1H), 8.23 (d, *J* = 1.9 Hz, 1H), 7.57 (dd, *J* = 7.9, 0.8 Hz, 1H), 7.50 (dd, *J* = 7.6, 1.6 Hz, 1H),

7.35 – 7.27 (m, 2H), 7.21 (td, J = 7.7, 1.7 Hz, 1H), 3.39 – 3.32 (m, 1H), 3.26 (m, 2H), 2.99 (d, J = 16.4 Hz, 1H), 2.33 (m, 1H), 2.12 (m, 1H), 1.16 (s, 3H), 1.14 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.5, 174.4, 154.9, 150.0, 144.5, 137.8, 133.4, 130.7, 130.5, 127.4, 125.0, 122.9, 121.3, 110.9, 53.3, 45.7, 35.2, 28.2, 24.8, 21.6; HRMS (ESI) 416.0520 m/z (M + H⁺), calc. for C₂₀H₂₀BrClN₃⁺ 416.0524.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm);

hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 7.0 min (minor) and 8.6 min (major).

Entry	Retention Time	Area	Height	%Area
1	6.980	15.9218	82.76	49.85

Entry	Retention Time	Area	Height	%Area
1	6.980	4.5374	22.63	3.91
2	8.603	111.5857	427.89	96.09

(*R*)-2-(2-bromophenyl)-4,4-dimethyl-7-(4-methylpyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (33)

White solid; Mp 96.4–97.2 °C; 28.1 mg, 71% yield, 93% ee; $[\alpha]_{D}^{22}$ –20.3 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 8.49 (d, *J* = 5.0 Hz, 1H), 8.01 (s, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.46 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.42 (m, 1H), 7.34 (m, 2H), 3.37

(d, J = 16.9 Hz, 1H), 3.33 - 3.26 (m, 2H), 3.01 (d, J = 16.9 Hz, 1H), 2.44 (s, 3H), 2.31 - 2.22 (m, 2H), 1.21 (s, 3H), 1.20 (s, 3H); ¹³**C** NMR (151 MHz, CD₃OD) δ 180.3, 177.7, 153.3, 149.9, 138.2, 134.2, 132.1, 130.8, 128.5, 127.5, 124.4, 121.4, 111.9, 54.2, 46.2, 36.1, 28.6, 25.0, 21.5, 20.8; HRMS (ESI) 396.1070 m/z (M + H⁺), calc. for C₂₁H₂₃BrN₃⁺396.1070.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.1 min (minor) and 16.9 min (major).

Entry	Retention Time	Area	Height	%Area
1	12.057	36.0942	88.60	50.77

Entry	Retention Time	Area	Height	%Area
1	12.213	2.1926	4.99	3.68
2	16.990	57.3287	102.46	96.32

(*R*)-2-(2-bromophenyl)-7-(4-methoxypyridin-2-yl)-4,4-dimethyl-1,6-diazaspiro[4.4]nona-1,6-diene (34)

White solid; Mp 106.4–107.2 °C; 27.6 mg, 67% yield, 91% ee; $[\alpha]_{D}^{22}$ –26.5 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 5.7 Hz, 1H), 7.74 (d, *J* = 2.6 Hz, 1H), 7.57 (dd, *J* = 8.0, 0.9 Hz, 1H), 7.52 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.30 (td,

J = 7.5, 1.0 Hz, 1H), 7.21 (td, J = 7.7, 1.7 Hz, 1H), 6.85 (dd, J = 5.7, 2.6 Hz, 1H), 3.89 (s, 3H), 3.34 (d, J = 16.4 Hz, 1H), 3.31 – 3.22 (m, 2H), 2.97 (d, J = 16.4 Hz, 1H), 2.35 – 2.23 (m, 1H), 2.13 (m, 1H), 1.16 (s, 3H), 1.14 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 177.1, 175.3, 165.9, 155.3, 150.3, 137.9, 133.4 130.7, 130.5, 127.4, 121.3, 111.9, 110.9, 107.87, 55.5, 53.3, 45.8, 35.4, 28.3, 24.8, 21.8; **HRMS** (ESI) 412.1019 m/z (M + H⁺), calc. for C₂₁H₂₃BrN₃O⁺ 412.1019. The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 17.8 min (minor) and 22.6 min (major).

26.4 m	
25.0	mAU
- 1	
22.5	
20.0	
17.5	
15.0	
	1-17.777
12.5	
7.5	
0.01	
2.5	
0.0	
-2.0]	

Entry	Retention Time	Area	Height	%Area
1	17.777	7.9726	13.73	49.17
2	22.587	8.2432	10.82	50.83

S72

Entry	Retention Time	Area	Height	%Area
1	17.867	1.3272	2.53	4.36
2	22.563	29.1262	37.86	95.64

(*R*)-2-(2-bromophenyl)-4,4-dimethyl-7-(5-methylpyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (35)

White solid; Mp 96.7–97.5 °C; 29.7 mg, 75% yield, 90% ee; $[\alpha]_{D}^{22}$ –36.9 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 8.48 (dd, *J* = 1.4, 0.7 Hz, 1H), 8.05 (d, *J* = 8.0 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.45 (dd, *J* = 7.7,

1.8 Hz, 1H), 7.41 (td, J = 7.5, 1.0 Hz, 1H), 7.33 (m, 1H), 3.35 (d, J = 16.9 Hz, 1H), 3.32 – 3.27 (m, 2H), 2.99 (d, J = 16.9 Hz, 1H), 2.40 (s, 3H), 2.27 – 2.21 (m, 2H), 1.19 (s, 3H), 1.19 (s, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 178.9, 176.3, 149.7, 149.3, 137.2, 137.1, 136.0, 133.0, 130.8, 129.5, 127.3, 122.1, 120.2, 110.7, 53.0, 45.0, 34.9, 27.4, 23.8, 20.3, 17.0; HRMS (ESI) 396.1069 m/z (M + H⁺), calc. for C₂₁H₂₃BrN₃⁺ 396.1070.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.0 min (minor) and 11.2 min (major).

Entry	Retention Time	Area	Height	%Area
1	11.987	86.3239	239.32	49.83

Entry	Retention Time	Area	Height	%Area
1	12.117	9.6115	29.11	5.19
2	16.657	175.6218	328.41	94.81

(*R*)-2-(2-bromophenyl)-4,4-dimethyl-7-(6-methylpyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (36)

White solid; Mp 98.4–99.3 °C; 25.7 mg, 65% yield, 91% ee; $[\alpha]_D^{22}$ -38.0 (*c* 1.0, CH₃OH); ¹**H** NMR (600 MHz, CD₃OD) δ 7.92 (d, *J* = 7.7 Hz, 1H), 7.76 (t, *J* = 7.7 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.47 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.42 (m, 1H), 7.35 (d, *J* = 7.6 Hz,

2H), 3.36 (d, J = 16.9 Hz, 1H), 3.32 – 3.30 (m, 1H), 3.01 (d, J = 16.9 Hz, 1H), 2.59 (s, 3H), 2.56 (d, J = 5.6 Hz, 1H), 2.26 (t, J = 7.0 Hz, 2H), 1.21 (s, 3H), 1.20 (s, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 180.2, 178.3, 159.6, 153.1, 138.3, 138.0, 134.2, 132.1, 130.8, 128.5, 126.0, 121.4, 120.6, 111.9, 54.2, 46.2, 36.2, 28.6, 25.1, 24.0, 21.5; HRMS (ESI) 396.1070 m/z (M + H⁺), calc. for C₂₁H₂₃BrN₃⁺ 396.1070.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 13.3 min (minor) and 18.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	13.941	5.0326	11.15	4.60
2	19.718	104.2851	150.57	95.40

(*R*)-2-(7-(2-bromophenyl)-9,9-dimethyl-1,6-diazaspiro[4.4]nona-1,6-dien-2-yl)quinoline (37)

White solid; Mp 96.3–97.1 °C; 29.4 mg, 68% yield, 77% ee; $\left[\alpha\right]_{D}^{22}$ +30.7 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.5 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.82 (dd, *J* = 8.1, 1.1 Hz, 1H), 7.72 (m, 1H), 7.62 – 7.50 (m, 3H), 7.31 (td, *J* = 7.5, 1.2 Hz, 1H), 7.25 – 7.18 (m, 1H), 3.55 – 3.42 (m, 2H),

3.42 - 3.33 (m, 1H), 3.01 (d, J = 16.4 Hz, 1H), 2.37 (m, 1H), 2.19 (m, 1H), 1.20 (s, 3H), 1.18 (s, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 177.2, 175.9, 153.8, 147.9, 137.9, 135.9, 133.4, 130.6, 130.5, 130.1, 129.5, 128.7, 127.7, 127.4, 127.4, 121.3, 120.2, 111.2, 53.4, 45.8, 35.2, 28.3, 24.8, 21.8; **HRMS** (ESI) 432.1070 m/z (M + H⁺), calc. for C₂₄H₂₃BrN₃⁺ 432.1070.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.0 min (major) and 11.2 min (minor).

Entry	Retention Time	Area	Height	%Area
1	7.220	89.8899	382.99	49.43

2	8.560	91.9658	293.54	50.57
1.200 mALI 1.100 800 800 800 800 800 800 800 800 800	,1-7.127			
100		,2-8.500		
-100-				min
5.89 6.00 6.50	7.00 7.50 8.	00.8.50 9.00	9.50 10.00	10.50 11.00 11.4

Entry	Retention Time	Area	Height	%Area
1	7.127	255.8833	1020.00	88.31
2	8.500	33.8698	108.37	11.69

(R)-1-(7-(2-bromophenyl)-9,9-dimethyl-1,6-diazaspiro[4.4]nona-1,6-dien-2-yl) isoquinoli

ne (38)

White solid; Mp 132.4–133.2 °C; 26.8 mg, 62% yield, 80% ee; $[\alpha]_{D}^{22}$ +57.3 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 9.04 (d, *J* = 8.6 Hz, 1H), 8.55 (d, *J* = 5.6 Hz, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 5.6 Hz, 1H), 7.81 – 7.74 (m, 1H),

7.72 – 7.64 (m, 2H), 7.46 – 7.42 (m, 2H), 7.35 (m, 1H), 3.49 (m, 1H), 3.45 - 3.37 (m, 2H), 3.01 (d, J = 17.0 Hz, 1H), 2.35 – 2.28 (m, 2H), 1.31 (s, 3H), 1.27 (s, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 180.7, 178.3, 154.1, 142.2, 138.5, 138.1, 134.2, 132.0, 131.7, 130.5, 129.2, 128.6, 128.4, 127.9, 127.7, 123.7, 121.3, 113.4, 54.4, 46.1, 39.2, 28.2, 24.9, 21.7; HRMS (ESI) 432.1069 m/z (M + H⁺), calc. for C₂₄H₂₃BrN₃⁺ 432.1070.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.6 min (minor) and 12.5 min (major).

Entry	Retention Time	Area	Height	%Area
		876		

Entry	Retention Time	Area	Height	%Area
1	9.570	11.0719	47.11	10.03
2	12.370	99.3123	287.15	89.97

(*R*)-2-(2-bromophenyl)-4,4-diethyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (39)

White solid; Mp 89.0–89.9 °C; 22.9 mg, 56% yield, 93% ee; $[\alpha]_D^{22}$ -32.9 (*c* 1.0, CH₃OH); ¹**H** NMR (600 MHz, CD₃OD) δ 8.71 – 8.50 (m, 1H), 8.17 (d, *J* = 7.9 Hz, 1H), 7.94 – 7.80 (m, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.40 (m, 1H), 7.36 –

7.24 (m, 1H), 3.32 (m, 2H), 3.25 (d, J = 17.3 Hz, 1H), 3.09 (d, J = 17.3 Hz, 1H), 2.38 – 2.26 (m, 2H), 1.84 (m, 1H), 1.79 – 1.71 (m, 2H), 1.59 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H), 0.83 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 179.2, 177.1, 153.6, 150.1, 138.0, 137.9, 134.3, 132.1, 131.0, 128.5, 126.6, 123.6, 121.5, 112.2, 52.7, 50.5, 35.9, 30.1, 26.1, 25.8, 9.6, 9.5; HRMS (ESI) 410.1226 m/z (M + H⁺), calc. for C₂₂H₂₅BrN₃⁺410.1226.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 15.3 min (minor) and 16.8 min (major).

Entry	Retention Time	Area	Height	%Area
1	15.297	61.2781	132.23	50.42

Entry	Retention Time	Area	Height	%Area
1	15.297	4.0545	9.71	3.74
2	16.630	104.3055	211.15	96.26

(*R*)-2-(2-bromophenyl)-4,4-dipropyl-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (40)

White solid; Mp 109.8–110.6 °C; 26.1 mg, 60% yield, 90% ee; $[\alpha]_{D}^{22}$ –36.6 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 8.64 (dd, *J* = 4.8, 0.7 Hz, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.90 (m, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.41 (m, 1H), 7.36 – 7.29 (m, 1H), 3.43 – 3.31 (m, 1H), 3.27 (d, *J* = 17.3 Hz, 1H),

3.11 (d, J = 17.2 Hz, 1H), 2.42 – 2.29 (m, 2H), 1.79 – 1.62 (m, 3H), 1.56 – 1.46 (m, 1H), 1.38 – 1.24 (m, 3H), 1.22 – 1.11 (m, 1H), 0.96 (t, J = 7.2 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CD₃OD) δ 179.3, 177.1, 153.6, 150.2, 138.1, 137.9, 134.4, 132.1, 131.1, 128.5, 126.6, 123.6, 121.5, 112.3, 52.5, 51.2, 36.9, 36.8, 35.9, 30.0, 19.4, 19.0, 15.2, 15.2; HRMS (ESI) 438.1539 m/z (M + H⁺), calc. for C₂₄H₂₉BrN₃⁺ 438.1539.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 10.4 min (minor) and 13.4 min (major).

Entry	Retention Time	Area	Height	%Area
1	10.467	3.2124	7.92	4.63
2	13.323	66.1171	144.97	95.37

(*R*)-4,4-dibenzyl-2-(2-bromophenyl)-7-(pyridin-2-yl)-1,6-diazaspiro[4.4]nona-1,6-diene (41)

Yellow oil; 30.4 mg, 57% yield, 90% ee; $[\alpha]_{D}^{22}$ +47.2 (*c* 1.0, CH₃OH); ¹**H** NMR (600 MHz, CD₃OD) δ 8.68 – 8.64 (m, 1H), 8.28 (d, *J* = 7.9 Hz, 1H), 7.93 (m, 1H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.28 (d, *J* = 7.7 Hz, 2H), 7.25 – 7.20 (m,

4H), 7.16 – 7.13 (m, 4H), 7.10 (d, J = 7.1 Hz, 2H), 6.52 (dd, J = 7.7, 1.4 Hz, 1H), 3.84 (d, J = 16.8 Hz, 1H), 3.38 – 3.33 (m, 1H), 3.27 (d, J = 13.1 Hz, 1H), 3.24 (s, 1H), 3.05 (d, J = 16.8 Hz, 1H), 2.93 (d, J = 14.0 Hz, 1H), 2.90 – 2.83 (m, 2H), 2.56 – 2.49 (m, 1H), 2.38 – 2.31 (m, 1H); ¹³C NMR (151 MHz, CD₃OD) δ 179.1, 176.8, 153.7, 150.2, 140.2, 139.8, 138.1, 137.3, 134.1, 132.0, 131.6, 131.4, 129.2, 128.9, 127.9, 127.2, 126.6, 123.8, 121.3, 112.5, 56.0, 40.9, 40.9, 36.2, 30.7, 29.5; HRMS (ESI) 534.1539 m/z (M + H⁺), calc. for C₃₂H₂₉BrN₃⁺ 534.1539. The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.7 min (minor) and 13.1 min (major).

Entry	Retention Time	Area	Height	%Area
1	11.758	12.3496	33.99	50.14
2	13.096	12.2806	30.38	49.86

Entry	Retention Time	Area	Height	%Area
1	11.875	1.2308	3.00	4.96
2	13.156	23.5759	56.66	95.04

(*R*)-11-(2-bromophenyl)-7-(pyridin-2-yl)-6,10-diazadispiro [3.0.4⁵.3⁴] dodeca-6,10-diene (42)

∕∕Ń

42

White solid; Mp 102.5–103.3 °C; 24.0 mg, 61% yield, 63% ee; $[\alpha]_D^{22}$ –70.7 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 8.66 (dd, *J* = 4.8, 0.6 Hz, 1H), 8.20 (d, *J* = 7.9 Hz, 1H), 7.90 (td, *J* = 7.8, 1.7 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.45 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.42 (m, 1H), 7.33 (td, *J* = 7.9, 1.8

Hz, 1H), 3.54 (d, J = 17.2 Hz, 1H), 3.41 (d, J = 17.2 Hz, 1H), 3.39 – 3.29 (m, 2H), 2.47 (m, 1H), 2.37 – 2.26 (m, 1H), 2.26 – 2.19 (m, 1H), 2.16 (m, 1H), 2.04 – 1.93 (m, 3H), 1.76 (m, 1H); ¹³C NMR (151 MHz, CD₃OD) δ 178.9, 178.7, 153.3, 150.2, 138.2, 138.1, 134.1, 132.1, 130.6, 128.6, 126.7, 123.7, 121.4, 110.7, 53.4, 52.9, 36.5, 30.4, 29.6, 28.5, 16.8; HRMS (ESI) 394.0914 m/z (M + H⁺), calc. for C₂₁H₂₁BrN₃⁺ 394.0913.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 15.1 min (major) and

Entry	Retention Time	Area	Height	%Area
1	15.140	28.3819	65.65	50.19
2	17.310	28.1718	58.35	49.81
AU 102 103 104 105 105 106 107 108 109 109 100 100 101 102 103 104 105 105 106 107 108 109 109 100 <	, (-15347	2.1	7 690	

Entry	Retention Time	Area	Height	%Area
1	15.347	64.4327	140.21	81.58
2	17.660	14.5477	29.29	18.42

(*R*)-12-(2-bromophenyl)-2-(pyridin-2-yl)-1,13-diazadispiro [4.0.4⁶.3⁵]trideca-1,12-diene (43)

White solid; Mp 110.2–111.0 °C; 28.1 mg, 69% yield, 90% ee; $[\alpha]_{D}^{22}$ –78.7 (*c* 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 8.65 (d, *J* = 4.8 Hz, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.90 (m, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.49 (m, 1H), 7.47 – 7.38 (m, 2H), 7.33 (m,

1H), 3.31 (m, 3H), 3.13 (d, J = 16.9 Hz, 1H), 2.35 – 2.17 (m, 2H), 1.76 (m, 8H); ¹³C NMR (151 MHz, CD₃OD) δ 180.1, 177.9, 153.5, 150.2, 138.3, 138.1, 134.2, 132.1, 130.7, 128.6, 126.6, 123.7, 121.4, 111.6, 58.5, 53.1, 36.0, 35.3, 33.2, 29.9, 24.9, 24.9; HRMS (ESI) 408.1072 m/z (M + H⁺), calc. for C₂₂H₂₃BrN₃⁺ 408.1070.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 20.2 min (minor) and 22.6 min (major).

Entry	Retention Time	Area	Height	%Area	
1	20.233	37.2799	63.74	49.71	
2	22.628	37.7167	52.49	50.29	
MAU 440 550 550 550 550 500 500 500 500 500	22.628 37.7167 52.49 50.29				

Entry	Retention Time	Area	Height	%Area
1	20.558	1.1840	2.01	4.69
2	22.633	24.0835	35.05	95.31

(*R*)-5'-(2-bromophenyl)-5''-(pyridin-2-yl)-1,3,3'',4''-tetrahydro-4'H-dispiro[indene-2,3'-pyrrole-2',2''-pyrrole] (44)

White solid; Mp 144.4–145.2 °C; 26.4 mg, 58% yield, 85% ee; $[\alpha]_{D}^{22}$ -41.0 (c 1.0, CH₃OH); ¹H NMR (400 MHz, CD₃OD) δ 8.64 (d, J = 4.7 Hz, 1H), 8.16 (d, J = 7.9 Hz, 1H), 7.91 (td, J = 7.8, 1.6 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.53 – 7.46 (m, 2H), 7.43 (t, J = 7.1 Hz, 1H), 7.34 (td, J = 7.7, 1.8 Hz, 1H), 7.24 – 7.13 (m, 2H),

7.13 – 7.05 (m, 2H), 3.46 (d, J = 17.0 Hz, 1H), 3.41 – 3.32 (m, 1H), 3.27 – 3.16 (m, 4H), 3.07 (d, J = 16.3 Hz, 1H), 3.02 (d, J = 15.8 Hz, 1H), 2.38 – 2.28 (m, 2H); ¹³C NMR (101 MHz, CD₃OD) δ 180.2, 178.4, 153.4, 150.2, 143.1, 142.6, 138.1, 134.2, 132.2, 130.8, 128.6, 127.5, 127.4, 126.7, 125.3, 125.3, 123.8, 121.5, 111.1, 59.0, 53.5, 42.6, 39.8, 36.2, 30.2; **HRMS** (ESI) 456.1070 m/z (M + H⁺), calc. for C₂₆H₂₃BrN₃⁺ 456.1070.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 85/15; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 25.8 min (minor) and 30.1 min (major).

(*R*)-13-(2-bromophenyl)-2-(pyridin-2-yl)-1,14-diazadispiro[4.0.5⁶.3⁵]tetradeca-1,13-diene (45)

White solid; Mp 120.8–121.6 °C; 32.9 mg, 78% yield, 94% ee; $[\alpha]_{D}^{22}$ –36.0 (*c* 1.0, CH₃OH); ¹**H NMR** (400 MHz, CD₃OD) δ 8.64 (m, 1H), 8.14 (dt, *J* = 7.9, 1.0 Hz, 1H), 7.90 (td, *J* = 7.8, 1.7 Hz, 1H), 7.69 – 7.62 (m, 1H), 7.48 (m, 1H), 7.44 – 7.40 (m, 2H), 7.33 (m, 1H), 3.35 (d, *J* = 17.1 Hz, 1H), 3.30 (m, 2H), 3.19 (dd, *J* =

17.1, 1.1 Hz, 1H), 2.31 (m, 1H), 2.21 (m, 1H), 1.75 – 1.70 (m, 3H), 1.58 – 1.19 (m, 7H); ¹³C NMR (151 MHz, CD₃OD) δ 180.2, 177.6, 153.6, 150.2, 138.4, 138.1, 134.2, 132.1, 130.8, 128.6, 126.6, 123.6, 121.4, 112.5, 50.7, 35.8, 31.8, 31.5, 30.7, 28.7, 27.2, 25.0, 23.7; HRMS (ESI) 422.1222 m/z (M + H⁺), calc. for C₂₃H₂₅BrN₃⁺ 422.1226.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 12.0 min (minor) and 14.7 min (major).

Entry	Retention Time	Area	Height	%Area
1	12.037	33.0808	83.71	50.04
2	14.657	33.0324	68.30	49.96
	1 - 11 587	2-14.453		mp

Entry	Retention Time	Area	Height	%Area
1	11.987	1.9936	5.78	2.64
2	14.453	73.6515	147.46	97.36

(*R*)-13-(2-bromophenyl)-9,9-difluoro-2-(pyridin-2-yl)-1,14-diazadispiro[4.0.5⁶.3⁵]tetrade ca-1,13-diene (46)

White solid; Mp 131.8–132.6 °C; 20.6 mg, 45% yield, 99% ee; $[\alpha]_{D}^{22}$ –34.1 (*c* 1.0, CH₃OH); ¹H NMR (600 MHz, CDCl₃) δ 8.65 (m, 1H), 8.16 (d, *J* = 7.9 Hz, 1H), 7.72 (td, *J* = 7.7, 1.8 Hz, 1H), 7.58 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.47 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.25 – 7.18 (m, 1H), 3.37 – 3.29 (m, 3H), 3.21

(dd, J = 16.5, 1.0 Hz, 1H), 2.32 (m, 1H), 2.15 – 2.11 (m, 2H), 2.09 – 2.04 (m, 1H), 1.92 (m, 1H), 1.79 (m, 2H), 1.71 (m, 2H), 1.57 (td, J = 13.8, 3.7 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 176.4, 175.9 153.3, 149.3, 137.5, 136.3, 133.3, 130.9, 130.6, 127.6, 125.0, 123.5 (dd, J = 242.5, 239.4 Hz), 122.7, 121.2), 110.8, 48.6, 46.5, 35.1, 32.3 (dd, J = 25.5, 22.4 Hz), 30.9 (dd, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz, CD₃OD) δ -92.21 (d, J = 25.1, 23.3 Hz), 28.5, 27.29 (d, J = 9.6 Hz); ¹⁹F NMR (565 MHz), 20.5 MHz) + 2.50, 20.5 Hz) + 2.50, 20.5 Mz) + 2.50, 20.5 Mz) + 2.50, 20.5 Hz) + 2.50, 20.5 Mz) + 2.50, 20.5 Hz) + 2.50, 20.5 Mz) + 2.50, 20.5

236.3 Hz), -104.90 (d, J = 236.6 Hz); HRMS (ESI) 458.1038 m/z (M + H⁺), calc. for $C_{23}H_{23}BrF_2N_3^+$ 458.1038.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); hexane/2propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 18.2 min (major) and 23.3 min (minor).

Entry	Retention Time	Area	Height	%Area
1	18.281	51.5021	73.17	99.36
2	23.801	0.3298	0.38	0.64

⁽R)-13-(2-bromophenyl)-9,9-dimethyl-2-(pyridin-2-yl)-1,14-diazadispiro[4.0.5⁶.3⁵]-

tetradeca-1,13-diene (47)

White solid; Mp 113.3-114.1 °C; 31.9 mg, 71% yield, 92% ee; $[\alpha]_{D}^{22}$ -32.9 (c 1.0, CH₃OH); ¹H NMR (600 MHz, CD₃OD) δ 8.69 -8.59 (m, 1H), 8.15 (d, J = 7.9 Hz, 1H), 7.91 (t, J = 7.7 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.44 – 7.39 (m, 2H), 7.34 (m, 1H), 3.37 – 3.33 (m, 1H), 3.33 – 3.29 (m, 2H), 3.17

 $(t, J = 16.9 \text{ Hz}, 1\text{H}), 2.36 - 2.29 \text{ (m, 1H)}, 2.28 - 2.20 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.67 - 1.62 \text{ (m, 1H)}, 1.67 - 1.62 \text{ (m, 1H)}, 1.67 - 1.62 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.67 - 1.62 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.67 - 1.62 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.67 - 1.62 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.80 - 1.62 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.80 - 1.62 \text{ (m, 1H)}, 1.80 - 1.72 \text{ (m, 1H)}, 1.80 - 1.62 \text{$ (m, 1H), 1.59 – 1.54 (m, 1H), 1.54 – 1.47 (m, 2H), 1.43 – 1.37 (m, 2H), 1.34 – 1.29 (m, 1H), 0.95 (s, 3H), 0.94 (s, 3H). ¹³C NMR (151 MHz, CD₃OD) δ 180.2, 177.6, 153.6, 150.2, 138.3, 138.1, 134.2, 132.1, 130.8, 128.6, 126.6, 123.6, 121.3, 112.5, 50.5, 37.8, 36.5, 35.9, 33.2, 30.6, 28.9, 27.6, 27.3, 24.0. HRMS (ESI) 450.1539 m/z (M + H⁺), calc. for C₂₅H₂₉BrN₃⁺ 450.1539. The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2-propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.1 min (minor) and 10.3 min (major).

Entry	Retention Time	Area	Height	%Area
1	9.183	4.3674	19.66	3.77
2	10.273	111.5968	378.55	96.23

(R)-17-(2-bromophenyl)-2-(pyridin-2-yl)-10,13-dioxa-1,18-diazatrispiro[4.0.2.4⁹.2⁶.3⁵]-

octadeca-1,17-diene (48)

White solid; Mp 79.4–80.3 °C; 20.6 mg, 43% yield, 90% ee; $[\alpha]_D^{22}$ +36.7 (*c* 1.0, CH₃OH); ¹**H** NMR (400 MHz, CD₃OD) δ 8.69 – 8.60 (m, 1H), 8.20 – 8.10 (m, 1H), 7.91 (td, *J* = 7.8, 1.6 Hz, 1H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.53 – 7.46 (m, 1H), 7.46 – 7.38 (m, 2H), 7.35 (m, 1H), 3.93 (s, 4H), 3.39 (d, *J* = 17.1 Hz, 1H), 3.32 – 3.28 (m, 2H), 3.23 (d, *J* = 17.1 Hz, 1H), 2.36 – 2.19 (m, 2H), 1.95

(d, J = 9.9 Hz, 1H), 1.76 (m, 5H), 1.64 – 1.58 (m, 2H). ¹³C NMR (101 MHz, CD₃OD) δ 180.0, 177.7, 153.5, 150.2, 138.2, 138.0, 134.2, 132.2, 130.8, 128.6, 126.6, 123.7, 121.4, 112.1, 109.4, 65.1, 65.1, 35.9, 33.7, 32.4, 29.2, 28.8; HRMS (ESI) 480.1281 m/z (M + H⁺), calc. for C₂₅H₂₇BrN₃O₂⁺ 480.1281.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 18.3 min (major) and 24.3 min (minor).

Entry	Retention Time	Area	Height	%Area
1	18.325	99.5481	123.27	50.58
2	24.330	97.2757	94.66	49.42
20 Muj 400 400 300 400	, 1-18.400		2-24780 	• • • • • • • • • • • • • • • • • • • •

Entry	Retention Time	Area	Height	%Area
1	18.496	302.8833	382.19	95.04
2	24.763	15.7916	15.72	4.96

(*R*)-13-(2-bromophenyl)-2-(pyridin-2-yl)-9-oxa-1,14-diazadispiro[4.0.5⁶.3⁵]tetradeca-1,13-diene (49)

2H), 3.36 - 3.30 (m, 3H), 2.34 (m, 1H), 2.29 - 2.18 (m, 1H), 1.82 - 1.75 (m, 2H), 1.72 - 1.56 (m, 2H); ¹³C NMR (151 MHz, CD₃OD) δ 179.7, 178.2, 153.4, 150.2, 138.1, 134.2, 132.2, 130.8, 128.6, 126.7, 125.9, 123.7, 121.4, 112.2, 66.8, 65.5, 47.8, 35.9, 32.2, 31.9, 30.7, 28.9; HRMS (ESI) 424.1019 m/z (M +H⁺), calc. for C₂₂H₂₃BrN₃O⁺ 424.1019.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 26.1 min (major) and 31.6 min (minor).

Entry	Retention Time	Area	Height	%Area
1	26.126	106.0119	93.66	49.88
2	31.653	106.5155	72.02	50.12

Entry	Retention Time	Area	Height	%Area
1	26.613	231.0167	202.37	95.23
2	32.660	11.5803	7.64	4.77

(*R*)-14-(2-bromophenyl)-2-(pyridin-2-yl)-1,15-diazadispiro[4.0.6⁶.3⁵]pentadeca-1,14-diene (50)

8.8 Hz, 2H), 2.36 – 2.28 (m, 2H), 1.96 (dd, *J* = 14.0, 7.5 Hz, 1H), 1.83 (dd, *J* = 14.3, 6.5 Hz, 1H), 1.65 (m, 10H); ¹³C NMR (101 MHz, CD₃OD) δ 180.1, 177.3, 153.6, 150.2, 138.4, 138.1, 134.2, 132.1, 130.8, 128.5, 126.6, 123.7, 121.3, 113.1, 53.7, 51.6, 36.1, 35.9, 34.1, 30.2, 29.9, 29.4, 25.7, 24.7; HRMS (ESI) 436.1383 m/z (M + H⁺), calc. for C₂₄H₂₇BrN₃⁺ 436.1383.

The ee was determined by HPLC analysis: CHIRALPAK IE (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 11.7 min (minor) and 13.6 min (major).

(R)-19-(2-bromophenyl)-2-(pyridin-2-yl)-1,20-diazadispiro[4.0.11⁶.3⁵]icosa-1,19-diene

(51)

White solid; Mp 70.5–71.4 °C; 21.7 mg, 43% yield, 91% ee; $[\alpha]_D^{22}$ -21.6 (*c* 1.0, CH₃OH) ; ¹**H NMR** (600 MHz, CD₃OD) δ 8.64 (d, *J* = 4.7 Hz, 1H), 8.15 (d, *J* = 7.9 Hz, 1H), 7.96 – 7.78 (m, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.53 – 7.43 (m, 1H), 7.43 – 7.34 (m, 2H), 7.34 – 7.23 (m, 1H), 3.36 – 3.28 (m, 2H), 3.21 (d, *J* = 17.3 Hz, 1H), 3.10 (d, *J* = 17.3 Hz, 1H), 2.32 (dd, *J* = 8.0, 4.3 Hz, 2H),

1.83 (dd, J = 11.3, 6.3 Hz, 2H), 1.54 – 1.21 (m, 20H); ¹³**C NMR** (151 MHz, CD₃OD) δ 179.5, 177.6, 153.6, 150.2, 138.2, 138.1, 134.1, 132.0, 130.7, 128.5, 126.6, 123.6, 121.3, 112.6, 52.4, 51.3, 35.4, 30.6, 30.3, 28.8, 27.9, 27.8, 27.0, 23.7, 23.6, 23.3, 22.8, 20.7, 20.4; **HRMS** (ESI) 506.2165 m/z (M + H⁺), calc. for C₂₉H₃₇BrN₃⁺ 506.2165.

The ee was determined by HPLC analysis: CHIRALPAK IC (4.6 mm i.d. x 250 mm); hexane/2propanol = 80/20; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 9.3 min (major) and 11.9 min (minor).

Entry	Retention Time	Area	Height	%Area
1	9.275	14.7538	38.13	50.01
2	11.913	14.7491	29.68	49.99
146 mu 120 120 120 120 120 120 120 120	-1-9311		12 + 12 000	- -

Entry	Retention Time	Area	Height	%Area
1	9.311	37.6599	97.87	95.38
2	12.023	1.8225	3.77	4.62

(R)-isobutyl-7-methoxy-2-(phenylethynyl)quinoline-1(2H)-carboxylate (54)

Colorless oil; 20.3 mg, 56% yield, 90% ee; $[\alpha]_D^{22}$ –38.8 (*c* 1.0, CH₃OH); ¹**H** NMR (600 MHz, CDCl₃) δ 7.35 (s, 1H), 7.33 – 7.29 (m, 2H), 7.23 (m, 3H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.67 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.51 (d, *J* = 9.3 Hz, 1H), 6.08 (d, *J* = 5.5 Hz, 1H), 5.95 (dd, *J* = 9.1, 6.3 Hz, 1H), 4.12 –

3.98 (m, 2H), 3.82 (s, 3H), 2.08 – 1.99 (m, 1H), 1.00 (s, 3H), 0.99 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 159.4, 135.7, 132.0, 128.41, 128.2, 127.5, 125.7, 122.7), 119.9, 110.6, 86.2, 83.2, 77.3, 77.1, 76.9, 72.8, 55.5, 44.8, 28.0, 19.3; HRMS (ESI) 362.1750 m/z (M + H⁺), calc. for C₂₃H₂₄NO₃⁺ 362.1751.

The ee was determined by HPLC analysis: CHIRALPAK ODH (4.6 mm i.d. x 250 mm); hexane/2-propanol = 90/10; flow rate 1.0 mL/min; 25 °C; 254 nm; retention time: 6.3 min (major) and 8.0 min (minor).

Entry	Retention Time	Area	Height	%Area
1	6.300	72.5252	302.57	95.02
2	8.018	3.8014	14.68	4.98

8. Copies of NMR spectra

S150

S158

S159

9. References

- P.Rabe, L.Barra, J. Rinkel, R. Riclea, C. Citron, T. Klapschinski, A. Janusko, J. Dickschat, Angew. Chem. Int. Ed. 2015, 54, 13448–13451.
- (2) C. Huang, Z. Li, J. Song, H. Xu, Angew. Chem. Int. Ed. 2021, 60, 11237-11241.
- (3) C. Hsu, H. Lin, X. Hou, R. Tapales, C. Shih, S. Miñoza, Y. Tsai, Z. Tsai, C. Chan, H. Liao, Am. Chem. Soc. 2023, 145, 19049–19059.
- (4) N. Gesmundo, D. Nicewicz, Beilstein J. Org. Chem. 2014, 10, 1272-1281.
- J. Davies, L. Angelini, M. Alkhalifah, L. Sanz, N. Sheikh, D. Leonori, *Synthesis* 2018, 50, 821-830.
- (6) H. Xu, J. He, J. Shi, L. Tan, D. Qiu, X. Luo, Y. Li, J. Am. Chem. Soc. 2018, 140, 3555–3559.
- (7) X. Shen, C. Huang, X. Yuan, S. Yu, Angew. Chem. Int. Ed. 2021, 60, 9672–9679.
- (8) Y. Liao, Y. Ran, G. Liu, P. Liu, X. Liu, Org. Chem. Front. 2020, 7, 3638-3647.
- (9) S. Li, H. Du, P. Davies, W. Shu, Doi: 10.26434/chemrxiv-2023-z1fq5.
- (10) M. Andresini, L. Degannaroand, R. Luisi, Beilstein J. Org. Chem. 2021, 17, 203-209.
- (11) L. Liu, Q. Zhang, C. Wang, Org. Lett. 2022, 24, 5913-5917.
- (12) M. Pappoppula, F. Cardoso, B. Garrett, A. Aponick, *Angew. Chem. Int. Ed.* 2015, 54, 15202–15206.