1 Supplementary Information

- 2 A Perspective of emerging trends in integrated PFAS detection and remediation
- 3 technologies with data driven approaches
- 4
- 5 Samaneh Yaghoobian ^a, Manuel A. Ramirez-Ubillus ^b, Lei Zhai ^{b,*}, Jae-Hoon Hwang ^{a,**}
- 6 a Department of Building, Civil and Environmental Engineering, Concordia University,
- 7 Montreal, QC, H3G 1M8, Canada
- 8 ^b NanoScience Technology Center and Department of Chemistry, University of Central
- 9 Florida, Florida, USA.
- 10 * Corresponding authors.
- 11 ** Corresponding authors.
- 12 E-mail addresses: lzhai@ucf.edu (L. Zhai), Jaehoon.hwang@concordia.ca (J.-H. Hwang)
- 13

The electrochemical degradation mechanism of PFOA has been extensively explored and involves multiple steps. Initially, a direct electron transfer generates $C_7F_{15}COO \cdot$ radicals on the anode surface (Eq. 1). These radicals undergo Kolbe decarboxylation, releasing CO_2 (Eq. 2) and form $C_7F_{15} \cdot$ radicals. Subsequent hydrolysis leads to the formation of perfluoroheptanoic acid ($C_6F_{13}COOH$), formic acid and fluoride ions (Eq. 3).^{1, 2}

$$20 \quad C_7 F_{15} COO^- \rightarrow C_7 F_{15} COO^{\bullet} + e^-$$

$$\tag{1}$$

$$21 \quad C_7 F_{15} COO^{\bullet} \rightarrow C_7 F_{15}^{\bullet} + CO_2 \tag{2}$$

22
$$C_7F_{15}COO^{\bullet} + 3H_2O \rightarrow C_6F_{13}COOH + HCOOH + 2F^{-} + 2H^{+} + OH^{\bullet}$$
 (3)

23

After decarboxylation, C_7F_{15} radicals react with O_2 , H_2O , or OH• radicals. C_7F15 • radicals react with O_2 to form the $C_7F_{15}OO$ • radicals (Eq. 4), which subsequently interact with perfluoro-heptylperoxy radicals to produce the intermediates $C_7F_{15}O$ • (Eq. 5). These intermediates eventually break down into shorter-chain compounds and byproducts such as CO_2 , COF_2 , and HF (Eq. 6 and 7). These four steps (4-7) cycle until the initial 7-carbon chains break down into shorter chain products.^{3, 4}

31
$$C_7F_{15} + O_2 \rightarrow C_7F_{15}OO^{\bullet}$$
 (4)

32
$$C_7F_{15}OO^{\bullet} + R^{\circ}COO^{\bullet} \rightarrow C_7F_{15}O^{\bullet} + R^{\circ}CO^{\bullet} + O_2$$
 (5)

33
$$C_7F_{15}O^{\bullet} \rightarrow C_6F_{13}^{\bullet} + COF_2$$
 (6)

$$34 \quad \operatorname{COF}_2 + \operatorname{H}_2 \operatorname{O} \to \operatorname{CO}_2 + 2\operatorname{HF}$$

$$\tag{7}$$

35

36 Hydrolysis pathways are also crucial for PFAS degradation. The oxidation of radicals 37 like C_7F_{15} • on the anode produces carbocation intermediates $C_6F_{13}C^+F_2$ (eq. 8), which react

with water to form alcohols such as $C_6F_{13}CF_2$ -OH (Eq. 9). These alcohols undergo anodic 38 oxidation to generate acyl fluoride (C₆F₁₃COF) (Eq. 10), which can further oxidize and 39 hydrolyze into shorter chain perfluoroalkyl carboxylic acids like C₆F₁₃COOH (Eq. 11, 12 40 41 and 13). Finally, C₆F₁₃COOH undergoes deprotonation (Eq. 14), forming radical $C_6F_{13}COO$. The subsequent decomposition through Kolbe's decarboxylation reduces the 42 initial carbon chain by a CF2 unit.5 This deprotonation process generates radicals that drive 43 44 the Kolbe decarboxylation reaction forward, progressively shortening the PFAS carbon chain length. 45

46

47	$C_7F_{15} \rightarrow C_6F_{13}C^+F_2 + e^-$	(8)
	,	· · ·

$C_6F_{13}C^+F_2 + H_2O \rightarrow C_6F_{13}CF_2OH + H^+$	(9)
($C_6F_{13}C^+F_2 + H_2O \rightarrow C_6F_{13}CF_2OH + H^+$	$C_6F_{13}C^+F_2 + H_2O \rightarrow C_6F_{13}CF_2OH + H^+$ (9)

49
$$C_6F_{13}CF_2OH \to C_6F_{13}COF + F^{\bullet} + H^+ + e^-$$
 (10)

50
$$C_6F_{13}COF \to C_6F_{13}C^+O^*F + e^-$$
 (11)

51
$$C_6F_{13}C^+O^+F + H_2O \rightarrow C_6F_{13}CO^-F - O^+H + H^+$$
 (12)

52
$$C_6F_{13}CO^-F^-O^+H \to C_6F_{13}COO^+H + F^-$$
 (13)

53
$$C_6F_{13}COO^+H \rightarrow C_6F_{13}COO^+ + H$$
 (14)

54

Finally, when the hydroxyl radical OH[•] is the main oxidative specie, the degradation mechanism comprises the following reactions. The addition of the hydroxyl radical to the species C_7F_{15} [•] will produce an unstable alcohol $C_7F_{15}OH$ (eq. 15). This alcohol undergoes HF elimination to form $C_6F_{13}COF$ and release a fluoride anion F⁻ (eq. 16). The $C_6F_{13}COF$ specie will be hydrolyzed forming $C_6F_{13}COO^-$ along with the release of another fluoride anion (eq. 17). Finally, the perfluoroheptanoic acid in its anionic form can be oxidized (eq. 18) to produce the species $C_6F_{13}COO^+$ and repeat the cycle until the initial carbon chain is

62	reduce	e by a CF_2 unit ^{1,6} .		
63				
64	$C_7 F_{15} \cdot + OH \cdot \longrightarrow C_7 F_{15} OH \tag{15}$			
65	$C_7 F_{15} OH \rightarrow C_6 F_{13} COF + H + F^- $ (16)			
66	$C_6F_{13}COF + H_2O \rightarrow C_6F_{13}COO^- + 2H^+ + F^-$ (17)			
67	$C_6 F_{13} COO^{-} \rightarrow C_6 F_{13} COO^{\bullet} + e^{-} $ (18)			
68 69				
70 71	Reference			
72	1.	A. Román Santiago, P. Baldaguez Medina and X. Su, Electrochin	n. Acta, 2022, 403 ,	
73		139635.		
74	2.	2. MK. Kim, T. Kim, TK. Kim, SW. Joo and KD. Zoh, Sep. Purif. Technol., 2020		
75		247.		
76	3.	S. Sharma, N. P. Shetti, S. Basu, M. N. Nadagouda and T. M. A	aminabhavi, Chem.	
77		Eng. J., 2022, 430 .		
78	4.	. K. Sivagami, P. Sharma, A. V. Karim, G. Mohanakrishna, S. Karthika, G. Divyapriya		
79		R. Saravanathamizhan and A. N. Kumar, Sci. Total Environ., 202	23, 861 , 160440.	
80	5.	D. Huang, K. Wang, J. Niu, C. Chu, S. Weon, Q. Zhu, J. Lu, E. Stavitski and J. H. Kim		
81		Environ. Sci. Technol., 2020, 54, 10954-10963.		
82	6.	Q. Zhuo, S. Deng, B. Yang, J. Huang and G. Yu, Environ Sci	Technol, 2011, 45 ,	
83		2973-2979.		