Supporting information for

Mechanistic Insights into Spontaneous Redispersion of ZnO onto TiO₂ in Water-Containing Environments

Conghui Liu,^{ab} Rongtan Li,^b Xiaohui Feng,^b Yuting Sun,^b Yamei Fan,^b Jiaxin Li,^b and Qiang Fu*^b

Fig. S1 (a) XRD patterns, (b) Raman spectra and (c) Zn 2p XPS spectra of ZnO-TiO₂ sample before and after H₂O vapor treatment.

Fig. S2 STEM and EDS mapping images of ZnO-TiO₂-H₂O sample.

Fig. S3 XRD patterns of (a) 5 wt% ZnO-Al₂O₃ and (b) 5 wt% ZnO-SiO₂ samples before and after liquid water treatment.

Fig. S4 (a) XRD patterns and (b) Raman spectra of ZnO-TiO₂ sample before and after liquid water treatment.

Fig. S5 In situ ¹H NMR spectra of TiO₂ with varying water content.

Fig. S6 In situ ¹H NMR spectra of TiO₂ after introducing water. (a-b) In situ ¹H NMR spectra of TiO₂ after introducing 3 μ L water without direct contact. (c-d) In situ ¹H NMR spectra of TiO₂ after introducing 0.5 μ L water without direct contact.

Fig. S7 Effect of temperature on ZnO redispersion. (a) XRD patterns of ZnO-TiO₂ sample after treatment in 3.2% H₂O/O₂ at different temperatures. (b) Zn2*p*/Ti3*d* XPS peak area ratio of ZnO-TiO₂ sample after treatment in 3.2% H₂O/O₂ at different temperatures. (c) DRIFTS spectra of TiO₂ at different temperatures. (d) XRD patterns of ZnO-TiO₂ sample before and after treatment in liquid water at 90 °C.

Fig. S8 Effect of temperature and water content on ZnO redispersion. XRD patterns of ZnO-TiO₂ before and after water treatment without contacting at (a) 25 °C, (b) 50 °C, (c) 70 °C, and (d) 90 °C.

Fig. S9 The water requirement for ZnO redispersion at various temperatures.

Fig. S10 DRIFTS spectra of TiO_2 and hydrophobic TiO_2 before and after treatment in 3.2% H₂O/O₂.

Fig. S11 C₃H₆ selectivity of ZnO-TiO₂ (a) before and (b) after water treatment in PDH.

Fig. S12 Kinetic fitting plot of the reaction order for C_3H_8 in propane dehydrogenation reaction.

Fig. S13 (a) Stability test of ZnO-TiO₂-H₂O catalysts in the PDH reaction under different C_3H_8 concentrations. (b) Stability test of 5% ZnO/TiO₂ sample prepared by impregnation method in the PDH reaction after pre-oxidation and regeneration (orange dashed line: pre-oxidation process, heating to 550 °C in 40 mL/min O₂; gray dashed line: regeneration process, treatment in 40 mL/min O₂ at 550 °C for 10 min).

Processing Conditions	Sample Weight (mg)	Peak Area	Hydrogen Content (mol)	H ₂ O Coverage (ML)
Dry	88	2.9E+10	4.1E-05	0.2
1.6% H ₂ O/O ₂	95	1.8E+11	2.5E-04	1.2
2.3% H ₂ O/O ₂	90	2.4E+11	3.3E-04	1.7
3.2% H ₂ O/O ₂	97	4.2E+11	5.8E-04	2.8
7.4% H ₂ O/O ₂	93	4.6E+11	6.4E-04	3.2

Table S1 Quantitative calculation of H₂O coverage according to Fig. 2d.

Polydimethylsiloxane (PDMS) was added to the test sample as an internal standard due to its defined structure, which facilitates the calculation of hydrogen atom amount based on mass. By comparing the ¹H peak area of PDMS at 0.16 ppm and ¹H peak area of adsorbed water in the range of 5.1 to 5.7 ppm, the hydrogen atom amount in the surface adsorbed water can be determined. Subsequently, the coverage of the surface adsorbed water is calculated using the specific surface area and weight of TiO₂ sample.

Table S2 Calculation of water consumption by evaporation in 10 mL bottle at different temperatures.

Temperature (°C)	Saturated vapor pressure of water (kPa)	Evaporated water volume (µL)			
25	3.2	0.2			
50	12.3	0.8			
70	31.2	2.0			
90	70.1	4.2			

Table S3 Comparison of PDH performance of Zn-based catalysts in this work and other works.

Temperature (°C)	Catalyst	Reaction Gas	WHSV (g _{C3H8} ·h ⁻¹ ·g _{cat} . ⁻¹)	X(C3H8)	S(C3H6)	STY (g _{C3H6} ·h ⁻¹ ·g _{cat.} ⁻¹)	Specific Activity (mol _{C3H6} ·h ⁻¹ ·mol _{Zn} ⁻¹)	Ref.
525	10Zn0.1Pt/HZ	C ₃ H ₈ /N ₂ =5/95	0.239	56.2%	79.0%	0.101	1.58	[59]
550	Zn/ZSM-5(20)-IE(16 h)-(0.17)	C ₃ H ₈ /He=5/95	10.8	29.0%	69.0%	2.06	356	[60]
550	Zn/ZSM-5(20)-CVD(DMZ)/RED/OX	C ₃ H ₈ /He=5/95	10.8	42.0%	62.0%	2.68	102	[60]
550	Zn/ZSM-5(20)-IWI-(0.70)	C ₃ H ₈ /He=5/95	10.8	50.0%	42.0%	2.16	96.0	[60]
550	3c-ZnO-ZSM-5	C ₃ H ₈ /Ar=5/95	1.09	54.0%	26.0%	0.146	2.52	[61]
550	2c-ZnO-Y	C ₃ H ₈ /Ar=5/95	0.996	15.0%	83.0%	0.118	0.917	[61]
550	ZnO-S-1_3	$C_3H_8/N_2=40/60$	7.89	31.0%	87.0%	2.03	49.4	[12]
550	ZnO//ZnO-S-1_3	$C_3H_8/N_2=40/60$	1.44	37.0%	94.7%	0.480	1.73	[12]
550	6ZnO/S-1(0.5Mg)	$C_3H_8/N_2=40/60$	2.15	29.0%	90.0%	0.483	18.8	[13]
600	Znβ-10	C ₃ H ₈ /N ₂ =5/95	0.359	53.3%	92.9%	0.170	2.64	[62]
600	10%Zn/250HZSM-5	C ₃ H ₈ /N ₂ =5/95	0.538	72.9%	67.0%	0.251	3.91	[63]
600	10%Zn/80HZSM-5	C ₃ H ₈ /N ₂ =5/95	0.538	92.3%	12.0%	0.057	0.886	[63]
600	15Zn0.1Pt/Al ₂ O ₃	$C_3H_8/H_2/N_2=28/28/44$	3.01	35.0%	94.0%	0.772	9.11	[64]
600	5%ZnO/HZSM-5(650)	C ₃ H ₈ /CO ₂ /N ₂ =2.5/5/92.5	0.269	54.3%	54.7%	0.076	2.38	[65]
600	Zn1Co1/NC	C ₃ H ₈ /H ₂ /He=5/5/90	1.61	20.0%	92.0%	0.284	83.3	[66]
550	ZnO-TiO ₂ -H ₂ O	C ₃ H ₈ /Ar/N ₂ =5/5/90	0.538	48.2%	96.3%	0.211	8.66	This work
550	ZnO-TiO ₂ -H ₂ O	C ₃ H ₈ /Ar=40/60	4.30	24.2%	97.1%	0.966	39.6	This work