Supporting Information

Pt-Free MoS₂ Co-Catalyst Enables Record Photocurrent Density in Sb₂Se₃ Photocathodes for Highly Efficient Solar Hydrogen Production

Munir Ahmad^a, Anadil Gul^b, Hafiz Sartaj Aziz^a, Tahir Imran^a, Muhammad Ishaq^a, Muhammad Abbas^a, Zhenghua Su^a, and Shuo Chen ^{a,*}

^{*a*}Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060, China

^bCollege of Health Science and Environmental Engineering, Shenzhen Technology University Shenzhen 518118, China

*Corresponding Author- Shuo Chen; <u>chensh@szu.edu.cn</u>

Device	$R_{S}(\Omega)$	$R_{HF}(\Omega)$	$C_{HF}(\mathbf{F})$	$R_{MF}(\Omega)$	$C_{MF}(\mathbf{F})$
M-20	5.635	2.939	3.815×10^{-4}	16.955	1.476×10^{-3}
M-30	5.093	1.372	5.03 × 10 ⁻⁶	4.599	1.627×10^{-3}
M-40	5.342	2.572	5.254 × 10 ⁻⁵	7.929	1.221 × 10 ⁻³

Table S1. Summary of PEIS fitted parameters for M-20, M-30, and M-40photocathodes.

Table S2. Comparison of the PEC performances and stability of photocathodes using MoS_2 and

Pt as a co-catalyst.

Photoelectrode	Electrolyte	$J_{ m ph}$ (mA cm ⁻²)	V _{on} (V _{RHE})	HC-STH (%)	Stability (time, remain)	Refs
Mo/Sb ₂ Se ₃ /CdS/ MoS ₂	0.5M H ₂ SO ₄	31.03	0.43	3.08	5 h, 90%	This work
Mo/Sb ₂ Se ₃ /TiO ₂ /Pt	$1M H_2SO_4$	20.2	0.57	1.36	2 h, 85%	[1]
Mo/grad/Sb ₂ Se ₃ /TiO ₂ /Pt	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	14.2	0.42	2	2 h, 70%	[2]
FTO/Au/Sb ₂ Se ₃ /TiO ₂ /Pt	$0.5M H_2SO_4$	11.3	0.3	0.53	2 h, 50%	[3]
FTO/Au/Sb ₂ Se ₃ /PABA/TiO ₂ /Pt	$1 M H_2 SO_4$	35	0.50	4.79	5h, 15%	[4]
FTO/Au/Sb ₂ Se ₃ /CdS/TiO ₂ /Pt	$0.1M H_2SO_4$	19	0.50	3.4	5 h, 35%	[5]
FTO/Au/Sb ₂ Se ₃ /CdS/TiO ₂ /Pt	$0.5M H_2 SO_4$	11	0.47	N/A	3 h, 73%	[6]
Mo/Sb ₂ Se ₃ /CdS/Pt	$0.5M H_2 SO_4$	16.25	0.52	2.58	1 h, 87%	[7]
$Mo/Sb_2Se_3/Cd_{0.5}Zn_{0.5}S/Pt$	0.2M Na ₂ HPO ₄	17.5	0.80	2.19	2 h, 80%	[8]

Fig. S1. Schematic illustration of the preparation process of the Sb_2Se_3 thin film photocathode. (a) Sb precursor thin film deposited by RF magnetron sputtering. (b) Sb_2Se_3 thin film obtained by post-selenization heat treatment. (c) CdS buffer layer obtained by CBD method. (d) Post-annealing of the Sb_2Se_3/CdS heterojunction. (e) MoS_2 co-catalyst deposited by RF magnetron sputtering. (f) Schematic configuration of the as-prepared Sb_2Se_3 thin film photocathode.

Fig. S2. (a) J-V curves of the M-25 and M-35 photocathodes under dark and continuous sunlight illumination, (b) The obtained HC-STH conversion efficiencies.

Fig. S3. Enlarged view of the onset potential region of the J-V curves in Figure 1d.

Fig. S4. (a) XRD of pure MoS_2 , Raman spectra of (b) M-30 photocathode after PEC measurement, and (c) bare MoS_2 thin film, (d) SEM micrographs of pure MoS_2 thin film.

Fig. S5. EDS spectra of (a) Sb₂Se₃, (b) Sb₂Se₃/CdS, (c) Sb₂Se₃/CdS/MoS₂ thin films and their elemental compositions.

Fig. S6. The measured CAs (using H₂SO₄ electrolyte droplet) of (a) M-20 and (b) M-40 samples.

Figure S7. The measured *CA*s (using the glycerol droplet) of (a) Sb₂Se₃, (b) Sb₂Se₃/CdS, and (c) Sb₂Se₃/CdS/MoS₂ samples.

Fig. S8. AFM images of the (a) M-20 and (b) M-40 samples surfaces

Fig. S9. (a) 2D and (b) 3D AFM images of bare MoS_2 thin film.

Fig. S10. The topography and potential of (a) M-20, and (b) M-40 photocathodes.

Fig. S11. Energy density flux for the standard (AM 1.5G) solar spectrum and integrated photocurrent density of the (a) M-20, and (b) M-40 samples. (c) UPS characterizations derived $V_{\rm B}$ positions and SEC edges of (c) Sb₂Se₃, and (d) CdS thin films.

Fig. S12. *M-S* plots of the pure (a) MoS₂-20, and pure (b) MoS₂-40 thin films at a frequency

of 1 KHz.

Fig. S13. (a-b) *J-T* curves of the M-20, and M-40 photocathodes at 0 V_{RHE} under AM 1.5G simulated sunlight illumination. Cyclic voltammetry measurements of (c) bare Sb₂Se₃, (d) bare MoS₂ in 0.5 M H₂SO₄ under illumination.

Fig. S14. Photocurrent stability test of the (a) M-20, and (b) M-40 photocathode at 0 V_{RHE} under AM 1.5G sunlight illumination within 5 hours. The chop *LSV* performance of M-30 (c) before and (d) after 5 h stability test.

Supplementary Notes

Note S1

To calculate the theoretical J_{ph} of Sb₂Se₃-based photocathodes using 1.5G AM standard solar light spectrum with wavelength-dependent LHE (light harvesting efficiency), the following formula were applied (Figure S8). ^{7, 8}

$$J_{abs} = \int_{300}^{\lambda_{e}} \frac{\lambda}{1240} \cdot N_{ph}(\lambda) \times LHE(\lambda) d\lambda$$

$$LHE = 1 - 10^{-A(\lambda)}$$
(1)
(2)

where J_{abs} is theoretical photocurrent density, λ is wavelenth, λ_e is absorption cut-off wavelenth related to band-gap, $N_{ph}(\lambda)$ phototon flux, and $A(\lambda)$ is absorbance related to wavelenth.

References

- H. Zhou, M. Feng, K. Song, B. Liao, Y. Wang, R. Liu, X. Gong, D. Zhang, L. Cao and S. Chen, *Nanoscale*, 2019, **11**, 22871-22879.
- H. Zhou, M. Feng, M. Feng, X. Gong, D. Zhang, Y. Zhou and S. Chen, *Appl. Phys. Lett.*, 2020, **116**, 113902.
- 3 M. Wang, S. Wang, Q. Zhang, S. Pan, Y. Zhao and X. Zhang, *Sol. RRL*, 2022, **6**, 2100798.
- 4 J. Tan, W. Yang, H. Lee, J. Park, K. Kim, O. S. Hutter, L. J. Phillips, S. Shim, J. Yun, Y. Park and J. Lee, *Appl. Catal.*, *B*, 2021, **286**, 119890.
- 5 W. Yang, J. H. Kim, O. S. Hutter, L. J. Phillips, J. Tan, J. Park, H. Lee, J. D. Major, J.S. Lee and J. Moon, *Nat. Commun.*, 2020, **11**, 861.
- J. Park, W. Yang, Y. Oh, J. Tan, Lee, H., R. Boppella, and J. Moon, ACS Energy Lett.,
 2019, 4, 517-526.

- G. Liang, T. Liu, M. Ishaq, Z. Chen, R. Tang, Z. Zheng, Z. Su, P. Fan, X. Zhang and S.
 Chen, *Chem. Eng. J.*, 2022, 431, 133359.
- T. Zhou, S. Chen, J. Wang, Y. Zhang, J. Li, J. Bai and B. Zhou, *Chem. Eng. J.*, 2021, 403, 126350.