Supporting Information for

Enantioselective Synthesis of 1,2-Disubstituted Thiocyclobutanes via Michael Addition

Emma G. L. Robert and Jérôme Waser*†

[†]Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland. jerome.waser@epfl.ch

(125 pages)

Contents

1.	Experimental part	3
	1.1. Synthesis of cyclobutenes	4
	1.2. Optimization of the racemic sulfa-Michael addition	10
	1.3. Racemic sulfa-Michael addition onto cyclobutenes	11
	1.4. Crossover experiment	27
	1.5. Optimization of the enantioselective sulfa-Michael addition	28
	1.6. Enantioselective sulfa-Michael addition onto cyclobutenes	31
	1.7. Product modifications	38
	1.8. Proposed model for stereoinduction	44
2.	References	45
3.	X-rays crystallographic data	46
	3.1 Compound 3'I (CCDC number 2383043)	46
	3.2 Compound 4b (CCDC number 2415842)	52
4.	NMR Spectra	56
5.	SFC traces	109

1. Experimental part

All reactions were carried out in oven dried glassware under an atmosphere of nitrogen, unless stated otherwise.

All chemicals were purchased from Acros, Aldrich, TCI, Merck, Fluorochem or Combi-Blocks and used as such.

Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, 60 Å, using the solvents indicated as eluent with 0.1-0.5 bar pressure. For flash chromatography, distilled technical grade solvents were used. TLC was performed on Merck silica gel 60 F254 TLC aluminum or glass plates and visualized with UV light and para-anysaldehyde stain.

¹H-NMR spectra were recorded on a Brucker DPX-400 400 MHz spectrometer in chloroform*d* or DMSO-*d*₆, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm or the internal DMSO signal at 2.50 ppm as standard. The data is being reported as (s = singlet, d = doublet, t= triplet, q = quadruplet, qi = quintet, m = multiplet or unresolved, br = broad signal, app = apparent, coupling constant(s) in Hz, integration, interpretation).¹³C-NMR spectra were recorded with ¹H-decoupling on a Brucker DPX-400 100 MHz spectrometer in chloroform*d* or DMSO-*d*₆ all signals are reported in ppm with the internal chloroform signal at 77.0 ppm or the internal DMSO signal at 39.52 ppm as standard.

Melting points were measured on a Büchi B-540 melting point apparatus using open glass capillaries and are uncorrected.

Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as cm^{-1} (w = weak, m = medium, s = strong, br = broad).

High resolution mass spectrometric measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API. A standard data acquisition and instrument control system was utilized (Thermo Scientific) whereas the ion source was controlled by Chipsoft 8.3.1 software (Advion BioScience). Samples were loaded onto a 96-well plate (Eppendorf, Hamburg, Germany) within an injection volume of 5µl. The experimental condition for the ionization voltage was +1.4kV and the gas pressure was set at 0.30 psi. The temperature of ion transfer capillary was 275 °C, tube voltages. FTMS spectra were obtained in the 80-1000 m/z range in the reduce profile mode with a resolution set to 120,000. In all spectra one microscan was acquired with a maximum injection time value of 1000ms. Typical CID experiments were carried out using Normalized collision energy values of 26-28 and 5 Da of isolation width.

SFC analysis on the chiral stationary phase were performed on an Agilent 1260 Infinity II instrument using columns CHIRALPAK IA-3 and IC-3. HPLC analysis on chiral stationary phase was performed on an Agilent Acquity instrument using a Daicel CHIRALPAK IA chiral column. The exact conditions for the analyses are specified within the characterization section. SFC traces were compared to racemic samples.

1.1. Synthesis of cyclobutenes

General procedure (A) for esterification or amidation of bromocyclobutane

A solution of 1-bromocyclobutane-1-carboxylic acid **10** (1.00 equiv.), alcohol or amine (1.20 equiv.), EDC·HCI (1.20 equiv.) and DMAP (0.10 equiv.) in DCM was stirred at rt for 18 h. The mixture was then washed with water (1 x 100 mL), and the organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude bromocyclobutane was purified by flash chromatography.

1-Bromocyclobutanecarboxylic acid benzyl ester (11a)

Prepared according to the general procedure A from 1-bromocyclobutane-1-carboxylic acid (150 mg, 838 μ mol, 1.00 equiv.), benzylalcohol (109 mg, 1.01 mmol, 1.20 equiv.), EDC·HCl (193 mg, 1.01 mmol, 1.20 equiv.), DMAP (10.2 mg, 83.8 μ mol, 0.100 equiv.), and DCM (4.0 mL). The crude product was purified by flash chromatography using PE/EtOAc 98:2 to afford **11a** as an oil (239 mg, 886 μ mol, 79% yield).

Rf(PE/EtOAc 96:4): 0.71.

¹H NMR (400 MHz, chloroform-*d*) δ 7.50 – 7.30 (m, 5H, Ar*H*), 5.24 (s, 2H, OC*H*₂Ph), 3.05 – 2.84 (m, 2H, CC*H*₂), 2.72 – 2.52 (m, 2H, CC*H*₂), 2.33 – 2.10 (m, 1H, CCH₂C*H*₂), 2.00 – 1.78 (m, 1H, CCH₂C*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 171.5, 135.6, 128.7, 128.5, 128.1, 67.7, 54.3, 37.4, 16.9. NMR spectra are in agreement with the reported data.¹

1-Bromocyclobutanecarboxylic acid butyl ester (11b)

Prepared according to the general procedure A from 1-bromocyclobutane-1-carboxylic acid (895 mg, 5.00 mmol, 1.00 equiv.), 1-butanol (445 mg, 549 μ L, 6.00 mmol, 1.20 equiv.), EDC·HCl (1.15 g, 6.00 mmol, 1.20 equiv.), DMAP (61.1 mg, 500 μ mol, 0.100 equiv.), and DCM (12.1 mL). The crude product was purified by flash chromatography using PE/Et₂O 90:10 to afford **11b** as an oil (942 mg, 4.01 mmol, 80% yield).

Rf(PE/Et₂O 95:5): 0.50.

¹ E. G. L. Robert, V. Pirenne, M. D. Wodrich, J. Waser, *Angew. Chem. Int. Ed.* **2023**, *62*, e202302420.

¹H NMR (400 MHz, chloroform-*d*) δ 4.20 (t, J = 6.6 Hz, 2H, OC H_2), 2.99 – 2.79 (m, 2H, C(O)CC H_2), 2.62 (dddd, J = 13.9, 7.0, 5.0, 2.5 Hz, 2H, C(O)CC H_2), 2.22 (dtt, J = 11.5, 9.7, 5.9 Hz, 1H, C(O)CCH₂CH₂), 1.95 – 1.80 (m, 1H, C(O)CCH₂CH₂), 1.73 – 1.62 (m, 2H, OCH₂CH₂), 1.49 – 1.35 (m, 2H, OCH₂CH₂CH₂), 0.95 (t, J = 7.4 Hz, 3H, CH₃).

¹³C NMR (101 MHz, chloroform-*d*) δ 171.8, 66.0, 54.6, 37.4, 30.6, 19.2, 16.9, 13.8. NMR spectra are in agreement with the reported data.²

1-Bromanyl-N-methoxy-N-methyl-cyclobutane-1-carboxamide (11c)

Prepared according to the general procedure A from 1-bromocyclobutane-1-carboxylic acid (300 mg, 1.68 mmol, 1.00 equiv.), methoxy(methyl)amine hydrochloride (196 mg, 2.01 mmol, 1.20 equiv.), EDC·HCI (386 mg, 2.01 mmol, 1.20 equiv.), DMAP (20.5 mg, 168 µmol, 0.100 equiv.), and DCM (8.0 mL). The crude product was purified by flash chromatography using PE/EtOAc 80:20 to afford **11c** as an oil (267 mg, 1.20 mmol, 72% yield).

Rf(PE/EtOAc 9:1): 0.40.

¹H NMR (400 MHz, chloroform-d) δ 3.77 (s, 3H, OCH₃), 3.23 (s, 3H, NCH₃), 2.96 – 2.85 (m, 2H, CCH₂), 2.57 – 2.45 (m, 2H, CCH₂), 2.43 – 2.28 (m, 1H, CCH₂CH₂), 1.86 – 1.69 (m, 1H, CCH₂CH₂).

 ^{13}C NMR (101 MHz, chloroform-d) δ 174.7, 60.6, 57.0, 37.3, 33.3, 16.2. NMR spectra are in agreement with the reported data.¹

Ethyl 4-(1-bromocyclobutane-1-carboxamido)benzoate (11d)

Prepared according to the general procedure A from 1-bromocyclobutane-1-carboxylic acid (716 mg, 4.00 mmol, 1.00 equiv.), ethyl 4-azanylbenzoate (793 mg, 4.80 mmol, 1.20 equiv.), EDC·HCI (920 mg, 4.80 mmol, 1.20 equiv.), DMAP (48.9 mg, 400 µmol, 0.100 equiv.), and DCM (9.71mL). The crude product was purified by flash chromatography using PE/EtOAc 90:10 to afford **11d** as a white solid (982 mg, 3.01 mmol, 75% yield).

Rf(PE/EtOAc 9:1): 0.29.

¹H NMR (400 MHz, chloroform-*d*) δ 8.17 (s, 1H, N*H*), 8.08 – 7.96 (m, 2H, Ar*H*), 7.70 – 7.59 (m, 2H, Ar*H*), 4.36 (q, *J* = 7.1 Hz, 2H, OC*H*₂), 3.10 (dtd, *J* = 8.8, 7.7, 5.0 Hz, 2H, CC*H*₂), 2.66 (dddd, *J* = 9.4, 7.3, 6.1, 3.3 Hz, 2H, CC*H*₂), 2.41 – 2.25 (m, 1H, CCH₂C*H*₂), 2.11 – 1.96 (m, 1H, CCH₂C*H*₂), 1.39 (t, *J* = 7.1 Hz, 3H, OCH₂C*H*₃).

¹³C NMR (101 MHz, chloroform-*d*) δ 169.2, 166.2, 141.6, 131.0, 126.7, 119.0, 61.1, 60.5, 38.0, 17.2, 14.5.

NMR spectra are in agreement with the reported data.³

<u>General procedure (B) for dehydrobromination</u>

² A. A. Homon, O. V. Hryshchuk, S. Trofymchuk, O. Michurin, Y. Kuchkovska, D. S. Radchenko, O. O. Grygorenko, *Eur. J. Org. Chem.* **2018**, *2018*, 5596–5604.

³ E. G. L. Robert, J. Waser, *Chem. Eur. J.* **2025**, *31*, e202403986.

According to a reported procedure,² DBU (6.0 equiv.) in toluene was heated to 110 °C and the bromocyclobutane **11a-d** (1.00 equiv.) was added. The reaction was stirred at 110 °C for 2.5 h. White salts usually appear in suspension at the end of the reaction. The mixture was diluted in ether (100 mL) and then washed with water (1 x 100 mL), and the organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude cyclobutene was purified by flash chromatography.

Benzyl cyclobutene-1-carboxylate (2a)

Prepared according to the general procedure B from **11a** (4.31 g, 3.20 mL, 16.0 mmol, 1.00 equiv.), DBU (14.6 g, 14.3 mL, 96.0 mmol, 6.00 equiv.) and toluene (50.3 mL). The crude product was purified by flash chromatography using PE/EtOAc 95:5 to afford **2a** as an oil (1.22 g, 6.47 mmol, 40% yield).

OBn

Rf(PE/EtOAc 95:5): 0.34.

¹H NMR (400 MHz, chloroform-*d*) δ 7.35 (dq, J = 16.7, 4.7 Hz, 5H, Ar*H*), 6.81 (s, 1H, C=C*H*), 5.18 (s, 2H, OC*H*₂Ph), 2.78 – 2.72 (m, 2H, C*H*₂CC(O)), 2.48 (t, J = 2.9 Hz, 2H, C*H*₂CH). ¹³C NMR (101 MHz, chloroform-*d*, signals not fully resolved) δ 162.2, 147.2, 138.6, 136.2, 128.7, 128.3, 65.9, 29.3, 27.3.

NMR spectra are in agreement with the reported data.⁴

Cyclobutene-1-carboxylic acid butyl ester (2b)

Prepared according to the general procedure B from **11b** (900 mg, 3.83 mmol, 1.00 equiv.), DBU (3.50 g, 3.43 mL, 23.0 mmol, 6.00 equiv.) and toluene (10.5 mL). The crude product was purified by flash chromatography using PE/EtOAc 95:5 to afford **2b** as an oil (331 mg, 2.14 mmol, 56% yield).

Rf(PE/Et₂O 95:5): 0.37.

¹H NMR (400 MHz, chloroform-*d*) δ 6.76 (s, 1H, *H*C=C), 4.13 (t, *J* = 6.7 Hz, 2H, OC*H*₂), 2.78 – 2.66 (m, 2H, C*H*₂CC(O)), 2.46 (dd, *J* = 4.4, 2.0 Hz, 2H, C*H*₂CH), 1.73 – 1.62 (m, 2H, OCH₂C*H*₂), 1.40 (h, *J* = 7.4 Hz, 2H, OCH₂CH₂), 0.94 (t, *J* = 7.4 Hz, 3H, C*H*₃).

¹³C NMR (101 MHz, chloroform-*d*) δ 162.6, 146.3, 139.0, 64.1, 30.9, 29.3, 27.2, 19.3, 13.9. NMR spectra are in agreement with the reported data.²

⁴ H. Xu, W. Zhang, D. Shu, J. B. Werness, W. Tang, *Angew. Chem. Int. Ed.* **2008**, *47*, 8933–8936.

N-Methoxy-N-methylcyclobutene-1-carboxamide (2c)

Prepared according to the general procedure B from **11c** (1.33 g, 6.00 mmol, 1.00 equiv.), DBU (5.48 g, 5.37 mL, 36.0 mmol, 6.00 equiv.) and toluene (15.6 mL). The crude product was purified by flash chromatography using PE/EtOAc 80:20 to afford **2c** as an oil (393 mg, 2.78 mmol, 46% yield).

Rf(PE/EtOAc 80:20): 0.53.

¹H NMR (400 MHz, chloroform-*d*) δ 6.66 (s, 1H, *H*C=C), 3.70 (s, 3H, OC*H*₃), 3.23 (s, 3H, NC*H*₃), 2.90 – 2.71 (m, 2H, C*H*₂CC(O)), 2.48 (dd, *J* = 4.6, 1.9 Hz, 2H, C*H*₂CH). ¹³C NMR (101 MHz, chloroform-*d*) δ 162.9, 144.8, 139.5, 61.5, 32.7, 30.6, 27.7. NMR spectra are in agreement with the reported data.⁵

Ethyl 4-(cyclobut-1-ene-1-carboxamido)benzoate (2d)

Prepared according to the general procedure B from **11d** (571 mg, 1.75 mmol, 1.00 equiv.), DBU (1.60 g, 1.57 mL, 10.5 mmol, 6.00 equiv.) and toluene (4.54 mL). The crude product was purified by flash chromatography using PE/EtOAc 70:30 to afford **2d** as a white solid (128 mg, 522 μ mol, 30% yield).

m.p.: 154-155 °C.

Rf(PE/EtOAc 7:3): 0.61.

¹H NMR (400 MHz, chloroform-*d*) δ 8.02 (d, *J* = 8.8 Hz, 2H, Ar*H*), 7.72 – 7.51 (m, 2H, Ar*H*), 7.36 (s, 1H, N*H*), 6.79 (t, *J* = 1.2 Hz, 1H, *H*C=C), 4.36 (q, *J* = 7.1 Hz, 2H, OC*H*₂), 2.88 – 2.68 (m, 2H, C(O)CC*H*₂), 2.59 – 2.46 (m, 2H, CHC*H*₂), 1.39 (t, *J* = 7.1 Hz, 3H, OCH₂C*H*₃). ¹³C NMR (101 MHz, chloroform-*d*) δ 166.2, 160.5, 142.6, 141.8, 141.6, 131.0, 126.2, 118.9, 61.0, 28.8, 26.4, 14.5.

IR (v_{max}, cm^{-1}) 3354 (w), 2982 (w), 2932 (m), 2853 (w), 1719 (s), 1602 (m), 1526 (m), 1328 (m), 1274 (s), 1249 (s), 1166 (s), 1105 (m), 1024 (m), 770 (w), 739 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + Na]^+$ Calcd for $C_{14}H_{15}NNaO_3^+$ 268.0944; Found 268.0951.

3-(1-(Phenylthio)cyclobutane-1-carbonyl)oxazolidin-2-one (12)

⁵ J. M. Robinson, S. F. Tlais, J. Fong, R. L. Danheiser, *Tetrahedron* **2011**, 67, 9890–9898.

According to a reported procedure,⁶ commercially available 1-bromocyclobutanecarboxylic acid ethyl ester **11f** (12.4 g, 9.71 mL, 60.0 mmol, 1.00 equiv.) was dissolved in MeCN (60.0 mL). Thiophenol (6.61 g, 6.12 mL, 60.0 mmol, 1.00 equiv.) and DBU (13.7 g, 13.4 mL, 90.0 mmol, 1.50 equiv.) were then added. The mixture was stirred at 80 °C for 18 h. The crude mixture was diluted in EtOAc (200 mL) and washed with brine (200 mL), and the organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The resulting crude product was pure enough and taken to the next step without further purification.

KOH (13.5 g, 240 mmol, 4.00 equiv.) was heated in toluene (240 mL) at 110 °C and ethyl 1-(phenylthio)cyclobutane-1-carboxylate (14.2 g, 60.0 mmol, 1.00 equiv.) was added. The reaction was stirred at 110 °C for 18 h. The mixture was diluted in water (300 mL) and extracted with EtOAc (1 x 200 mL). The pH value of the aqueous layer was adjusted to 1 using HCl (1 M). The mixture was extracted with ethyl acetate (3 x 200 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude white solid was pure enough and taken to the next step without further purification.

A solution of 1-(phenylthio)cyclobutanecarboxylic acid (12.5 g, 60.0 mmol, 1.00 equiv.), 2oxazolidinone (6.27 g, 72.0 mmol, 1.20 equiv.), EDC·HCl (13.8 g, 72.0 mmol, 1.20 equiv.) and DMAP (733 mg, 6.00 mmol, 0.100 equiv.) in DCM (150 mL) was stirred at rt for 18 h. The mixture was then washed with water (1 x 200 mL), and the organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography using PE/EtOAc 70:30 to afford **12** as a white solid (6.88 g, 24.8 mmol, 41% yield over 3 steps).

Rf(PE/EtOAc 7:3): 0.51.

¹H NMR (400 MHz, chloroform-*d*) δ 7.35 – 7.24 (m, 5H, Ar*H*), 4.47 (t, *J* = 8.1 Hz, 2H, OC*H*₂), 4.08 (t, *J* = 8.1 Hz, 2H, NC*H*₂), 2.79 – 2.63 (m, 2H, CC*H*₂), 2.45 – 2.30 (m, 2H, CC*H*₂), 2.30 – 2.13 (m, 1H, CCH₂C*H*₂), 1.81 (dtd, *J* = 15.9, 9.3, 4.7 Hz, 1H, CCH₂C*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.5, 152.2, 133.5, 133.3, 128.9, 128.1, 62.5, 53.6, 43.7, 31.7, 15.4.

NMR spectra are in agreement with the reported data.⁶

3-(Cyclobut-1-ene-1-carbonyl)oxazolidin-2-one (2e)

12 (6.88 g, 24.8 mmol, 1.00 equiv.) was diluted in DCM (163 mL). *m*CPBA (5.28 g, 23.6 mmol, 0.950 equiv.) dissolved in DCM (85.0 mL) was then added dropwise for 15 min at 0 °C. The reaction was stirred at 0 °C for 45 min. The reaction mixture was then diluted in DCM (100 mL) and washed with a sat. NaHCO₃ solution (200 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was pure enough and taken to the next step without further purification.

The crude mixture was diluted in dry toluene (85.0 mL) under argon. The reaction was stirred at 80 °C for 4 days. The crude product was concentrated under reduced pressure and purified

⁶ L. Ghisu, N. Melis, L. Serusi, A. Luridiana, F. Soddu, F. Secci, P. Caboni, R. Guillot, D. J. Aitken, A. Frongia, *Org. Biomol. Chem.* **2019**, *17*, 6143–6147.

by flash chromatography using PE/EtOAc 70:30 to afford **2e** as an oil (1.49 g, 8.92 mmol, 36% yield).

Rf(PE/EtOAc 8:2): 0.25.

¹H NMR (400 MHz, chloroform-*d*) δ 7.06 (d, *J* = 1.2 Hz, 1H, *H*C=C), 4.44 (t, *J* = 7.9 Hz, 2H, OC*H*₂), 4.05 (t, *J* = 8.0 Hz, 2H, NC*H*₂), 3.00 – 2.81 (m, 2H, C*H*₂C), 2.59 – 2.43 (m, 2H, CHC*H*₂). ¹³C NMR (101 MHz, chloroform-*d*) δ 161.8, 153.0, 150.4, 138.0, 62.7, 43.3, 30.7, 27.9. NMR spectra are in agreement with the reported data.⁶

1.2. <u>Optimization of the racemic sulfa-Michael addition</u> <u>General procedure for the optimization of the reaction</u>

In a sealed vial under nitrogen, thiol **1a** and cyclobutene **2a** were diluted in 1 mL of solvent. DBU was then added. The reaction was stirred at the indicated temperature for the indicated time. The reaction mixture was concentrated under reduced pressure. The reaction mixture was analyzed by ¹H NMR (400 MHz, chloroform-*d*) using dibromomethane as an internal standard and by integration of the SC*H* proton at 4.19 (q, J = 8.3 Hz, 1H) ppm.

Optimization table

Entry	Base	Solvent	T °C	Time	NMR Yield (%) ^b	dr ^c
1	DBU	MeCN	80 °C	18 h	82	>95:5
2	DBU	MeCN	rt	18 h	quant.	>95:5
3	NEt ₃	MeCN	rt	18 h	95	51:49
4	TMG	MeCN	rt	18 h	90	64:36
5	TBD	MeCN	rt	18 h	69	72:28
6	K_2CO_3	MeCN	rt	18 h	72	50:50
7	DBU	EtOAc	rt	18 h	quant.	82:18
8	DBU	MeCN	rt	1 h	quant.	64:36
9	DBU	MeCN	rt	2 h	98	71:29
10	DBU	MeCN + air	rt	18 h	81	86:14
11	DBU	HPLC-MeCN	rt	18 h	97	89:11

^aReaction conditions: 1.0 equiv. thiol **1a** (0.1 mmol), 1.1 equiv. cyclobutene **2a**, 1.1 equiv. base. ^b1H NMR of the crude mixture with dibromomethane as an internal standard. ^cMeasured on the crude ¹H NMR.

1.3. <u>Racemic sulfa-Michael addition onto cyclobutenes</u> General procedure (C) for the racemic sulfa-Michael addition

In a sealed vial under nitrogen, thiol **1a-x** (0.3 mmol) and cyclobutene **2a-d** (1.1 equiv.) were diluted in 3 mL of MeCN. DBU (50.2 mg, 49.3 μ L, 330 μ mol, 1.10 equiv.) was then added. The reaction was stirred at rt for 18 h. The reaction mixture concentrated under reduced pressure and purified by flash chromatography. The mixture of diastereoisomers was isolated and the yield measured. For characterization purposes, a prep-TLC was then performed and only the major diastereoisomer was isolated and characterized, unless otherwise stated.

The dr was measured from the crude ¹H NMR spectra by integration of the SC*H* proton.

General procedure (D) for the racemic sulfa-Michael addition

In a sealed vial under nitrogen, thiol **1a-x** (0.3 mmol) and cyclobutene **2a-d** (1.1 equiv.) were diluted in 3 mL of MeCN. DBU (137 mg, 134 μ L, 900 μ mol, 3.00 equiv.) was then added. The reaction was stirred at 80 °C for 18 h. The reaction mixture concentrated under reduced pressure and purified by flash chromatography. The mixture of diastereoisomers was isolated and the yield measured. For characterization purposes, a prep-TLC was then performed and only the major diastereoisomer was isolated and characterized, unless otherwise stated.

The dr was measured from the crude ¹H NMR spectra by integration of the SC*H* proton.

Benzyl 2-((2-bromophenyl)thio)cyclobutane-1-carboxylate (3a)

Prepared according to the general procedure C from 2-bromothiophenol (56.7 mg, 36.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3a** and **3'a** as an oil (111 mg, 294 μ mol, 94% yield).

A scale up experiment with 2-bromothiophenol (189 mg, 120 μ L, 1.00 mmol, 1.00 equiv.), cyclobutene **2a** (207 mg, 1.10 mmol, 1.10 equiv.) and DBU (167 mg, 164 μ L, 1.10 mmol, 1.10 equiv.) was also accomplished using the same procedure and led to **3a** (306 mg, 811 μ mol, 81% yield, dr >95:5).

The configuration of the two diastereoisomers obtained was determined by 2D-NOESY.

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.58.

¹H NMR (400 MHz, chloroform-*d*) δ 7.52 (dd, *J* = 7.9, 1.3 Hz, 1H, Ar*H*), 7.38 – 7.28 (m, 5H, Ar*H*), 7.23 (dd, *J* = 7.9, 1.6 Hz, 1H, Ar*H*), 7.14 (td, *J* = 7.6, 1.3 Hz, 1H, Ar*H*), 7.00 (td, *J* = 7.6, 1.6 Hz, 1H, Ar*H*), 5.11 (s, 2H, OC*H*₂Ph), 4.19 (q, *J* = 8.3 Hz, 1H, SC*H*), 3.23 (q, *J* = 8.6 Hz, 1H, C*H*C(O)), 2.56 – 2.44 (m, 1H, SCHC*H*₂), 2.42 – 2.30 (m, 1H, C*H*₂CHC(O)), 2.23 (dq, *J* = 11.1, 8.9 Hz, 1H, C*H*₂CHC(O)), 2.08 (dq, *J* = 11.4, 9.2 Hz, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.3, 137.2, 135.9, 133.1, 129.5, 128.7, 128.4, 128.3, 127.9, 127.2, 123.8, 66.7, 46.1, 41.7, 27.0, 22.6.

IR $(v_{max}, cm^{-1}) 3036 (w)$, 2946 (m), 2863 (w), 1732 (s), 1705 (m), 1658 (m), 1577 (w), 1450 (m), 1386 (m), 1348 (m), 1253 (m), 1197 (s), 1160 (s), 1023 (m), 748 (s).

HRMS (Nanochip-based ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₁₈H₁₈⁷⁹BrO₂S⁺ 377.0205; Found 377.0211.

Data for the cis- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.41.

¹H NMR (400 MHz, chloroform-*d*) δ 7.48 (dd, J = 7.9, 1.3 Hz, 1H, Ar*H*), 7.30 – 7.08 (m, 7H, Ar*H*), 7.02 – 6.93 (m, 1H, Ar*H*), 5.06 (q, J = 12.2 Hz, 2H, OC*H*₂Ph), 4.26 (q, J = 8.5 Hz, 1H, SC*H*), 3.66 (tt, J = 5.5, 3.2 Hz, 1H, C*H*C(O)), 2.62 – 2.30 (m, 3H, SCHC*H*₂ + C*H*₂CHC(O)), 2.29 – 2.14 (m, 1H, C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 172.3, 138.6, 135.6, 132.8, 128.6, 128.5, 128.2, 127.9, 127.8, 126.5, 122.2, 66.9, 45.4, 42.0, 27.3, 21.2.

IR (v_{max}, cm⁻¹) 3065 (w), 3033 (w), 2951 (m), 1730 (s), 1660 (w), 1447 (m), 1433 (m), 1382 (m), 1346 (m), 1242 (m), 1163 (s), 1022 (m), 748 (s).

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₈H₁₇BrNaO₂S⁺ 399.0025; Found 399.0025.

Benzyl 2-((4-fluorophenyl)thio)cyclobutane-1-carboxylate (3b)

Prepared according to the general procedure C from 4-fluorobenzenethiol (38.5 mg, 32.3 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3b** and **3'b** as an oil (83.4 mg, 264 μ mol, 88% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.71.

¹H NMR (400 MHz, chloroform-*d*) δ 7.41 – 7.27 (m, 7H, Ar*H*), 7.02 – 6.86 (m, 2H, Ar*H*), 5.07 (s, 2H, OC*H*₂Ph), 3.97 (q, *J* = 8.6 Hz, 1H, SC*H*), 3.10 (q, *J* = 8.8 Hz, 1H, C*H*C(O)), 2.38 – 2.24 (m, 1H, SCHC*H*₂), 2.21 – 2.08 (m, 2H, C*H*₂CHC(O)), 2.04 – 1.86 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*, signals not fully resolved) δ 173.1, 162.5 (d, *J* = 247.5 Hz), 135.9, 134.7 (d, *J* = 8.2 Hz), 128.7, 128.4, 128.3, 116.1 (d, *J* = 21.8 Hz), 66.6, 46.4, 44.3, 26.8, 21.9.

¹⁹F NMR (376 MHz, chloroform-*d*) δ -114.2 (tt, *J* = 8.7, 5.3 Hz).

IR $(v_{max}, cm^{-1}) 3034$ (w), 2989 (w), 2953 (w), 2114 (w), 1732 (s), 1589 (m), 1491 (s), 1455 (m), 1384 (m), 1350 (m), 1261 (s), 1224 (s), 1203 (s), 1159 (s), 1091 (m), 1033 (m), 917 (m), 824 (m), 744 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₁₈H₁₈FO₂S⁺ 317.1006; Found 317.1003.

Benzyl 2-((3-chlorophenyl)thio)cyclobutane-1-carboxylate (3c)

Prepared according to the general procedure C from 3-chlorobenzenethiol (43.4 mg, 34.4 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3c** and **3'c** as an oil (81.9 mg, 246 μ mol, 82% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.53.

¹H NMR (400 MHz, chloroform-*d*) δ 7.38 – 7.28 (m, 6H, Ar*H*), 7.20 – 7.13 (m, 3H, Ar*H*), 5.15 – 5.04 (m, 2H, OC*H*₂Ph), 4.10 (q, *J* = 8.5 Hz, 1H, SC*H*), 3.15 (q, *J* = 8.8 Hz, 1H, C*H*C(O)), 2.40 (qd, *J* = 8.5, 3.1 Hz, 1H, SCHC*H*₂), 2.30 – 2.12 (m, 2H, C*H*₂CHC(O)), 2.08 – 1.94 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 137.3, 135.9, 134.7, 130.1, 130.0, 128.7, 128.5, 128.4, 128.3, 126.9, 66.7, 46.5, 42.8, 27.2, 22.2.

IR (v_{max}, cm⁻¹) 3035 (w), 2991 (w), 2944 (w), 1734 (s), 1579 (m), 1464 (m), 1385 (m), 1248 (m), 1198 (m), 1155 (s), 1083 (m), 1033 (m), 914 (m), 780 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₁₈H₁₈ClO₂S⁺ 333.0711; Found 333.0721.

Benzyl 2-((3-(trifluoromethyl)phenyl)thio)cyclobutane-1-carboxylate (3d)

Prepared according to the general procedure C from 3-(trifluoromethyl)benzenethiol (53.5 mg, 40.8 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3d** and **3'd** as an oil (97.9 mg, 267 μ mol, 89% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.41.

¹H NMR (400 MHz, chloroform-*d*) δ 7.56 (s, 1H, Ar*H*), 7.44 (dd, *J* = 16.7, 7.8 Hz, 2H, Ar*H*), 7.39 – 7.27 (m, 6H, Ar*H*), 5.18 – 4.97 (m, 2H, OC*H*₂Ph), 4.15 (q, *J* = 8.6 Hz, 1H, SC*H*), 3.16 (qd, *J* = 9.2, 1.0 Hz, 1H, C*H*C(O)), 2.50 – 2.35 (m, 1H, SCHC*H*₂), 2.31 – 2.13 (m, 2H, C*H*₂CHC(O)), 2.03 (dq, *J* = 11.2, 9.4 Hz, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 136.9, 135.8, 133.3, 131.4 (q, J = 32.3 Hz), 129.4, 128.7, 128.4, 128.3, 123.9 (q, J = 272.7 Hz), 123.3 (q, J = 3.7 Hz), 66.7, 46.5, 42.6, 27.2, 22.3. ¹⁹F NMR (376 MHz, chloroform-*d*) δ -62.8.

IR (v_{max}, cm⁻¹) 3044 (w), 2950 (w), 1728 (m), 1424 (w), 1321 (s), 1270 (m), 1166 (s), 1126 (s), 1073 (m), 908 (w), 798 (m), 738 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{19}H_{18}F_3O_2S^+$ 367.0974; Found 367.0973.

Benzyl 2-((4-nitrophenyl)thio)cyclobutane-1-carboxylate (3e)

Prepared according to the general procedure C from 4-nitrobenzenethiol (46.6 mg, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/EtOAc 90:10 to afford **3e** and **3'e** as an oil (60.1 mg, 175 μ mol, 58% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 95:5): 0.36.

¹H NMR (400 MHz, chloroform-*d*) δ 7.97 (d, J = 8.6 Hz, 2H, Ar*H*), 7.44 – 7.14 (m, 7H, Ar*H*), 5.22 – 4.94 (m, 2H, OC*H*₂Ph), 4.26 (q, J = 8.4 Hz, 1H, SC*H*), 3.20 (q, J = 8.8 Hz, 1H, C*H*C(O)),

2.56 - 2.45 (m, 1H, SCHC H_2), 2.44 - 2.31 (m, 1H, $CH_2CHC(O)$), 2.31 - 2.19 (m, 1H, $CH_2CHC(O)$), 2.13 - 1.97 (m, 1H SCHC H_2).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.0, 146.4, 145.4, 135.6, 128.8, 128.7, 128.5, 127.2, 124.1, 66.9, 46.6, 40.9, 27.0, 22.6.

IR (v_{max}, cm⁻¹) 3101 (w), 2991 (w), 2946 (w), 2363 (w), 2330 (w), 1728 (s), 1577 (m), 1511 (s), 1478 (w), 1451 (w), 1383 (w), 1337 (s), 1242 (m), 1199 (m), 1159 (m), 1093 (m), 1029 (w), 852 (m), 738 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₁₈H₁₈NO₄S⁺ 344.0951; Found 344.0947.

Methyl 2-((2-((benzyloxy)carbonyl)cyclobutyl)thio)benzoate (3f)

Prepared according to the general procedure C from 2-mercaptobenzoic acid methyl ester (50.5 mg, 41.4 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 86:14) was purified by flash chromatography using PE/EtOAc 85:15 to afford **3f** and **3'f** as an oil (106 mg, 299 μ mol, quant.).

Prepared according to the general procedure D from 2-mercaptobenzoic acid methyl ester (50.5 mg, 41.4 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/EtOAc 85:15 to afford **3f** and **3'f** as an oil (74.9 mg, 210 μ mol, 70% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 8:2): 0.72.

¹H NMR (400 MHz, chloroform-*d*) δ 7.94 (dd, J = 7.8, 1.5 Hz, 1H, Ar*H*), 7.40 – 7.26 (m, 6H, Ar*H*), 7.20 (d, J = 7.4 Hz, 1H, Ar*H*), 7.16 – 7.08 (m, 1H, Ar*H*), 5.14 (s, 2H, OCH₂Ph), 4.25 (q, J = 8.0 Hz, 1H, SC*H*), 3.90 (s, 3H, OCH₃), 3.23 (q, J = 8.6 Hz, 1H, C*H*C(O)), 2.64 – 2.51 (m, 1H, SCHCH₂), 2.48 – 2.35 (m, 1H, CH₂CHC(O)), 2.27 (dq, J = 11.3, 8.9 Hz, 1H, CH₂CHC(O)), 2.10 (dq, J = 11.5, 9.1 Hz, 1H, SCHCH₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.6, 167.0, 141.2, 135.9, 132.5, 131.5, 128.7, 128.4, 128.3, 127.3, 126.6, 124.2, 66.7, 52.2, 45.6, 40.3, 27.1, 22.7.

IR (v_{max}, cm⁻¹) 2950 (w), 1717 (s), 1462 (m), 1436 (m), 1289 (m), 1246 (s), 1192 (m), 1146 (m), 1062 (s), 1044 (m), 743 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{20}H_{21}O_4S^+$ 357.1155; Found 357.1156.

Benzyl 2-(phenylthio)cyclobutane-1-carboxylate (3g)

Prepared according to the general procedure C from benzenethiol (33.1 mg, 30.6 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 78:22) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3g** and **3'g** as an oil (86.1 mg, 289 μ mol, 96% yield).

Prepared according to the general procedure D from benzenethiol (33.1 mg, 30.6 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product

(dr >95:5) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3g** and **3'g** as an oil (75.3 mg, 252 μ mol, 84% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.46.

¹H NMR (400 MHz, chloroform-*d*) δ 7.33 (ddtt, *J* = 9.3, 7.2, 4.8, 2.1 Hz, 7H, Ar*H*), 7.25 – 7.17 (m, 3H, Ar*H*), 5.30 – 4.71 (m, 2H, OC*H*₂Ph), 4.08 (q, *J* = 8.5 Hz, 1H, SC*H*), 3.14 (q, *J* = 8.7 Hz, 1H, C*H*C(O)), 2.42 – 2.30 (m, 1H, SCHC*H*₂), 2.27 – 2.09 (m, 2H, C*H*₂CHC(O)), 2.00 (dq, *J* = 10.9, 9.4 Hz, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.3, 136.0, 134.7, 131.4, 129.0, 128.7, 128.4, 128.2, 127.0, 66.6, 46.4, 43.3, 27.2, 22.0.

IR (v_{max}, cm⁻¹) 3062 (w), 2982 (w), 2949 (w), 1728 (s), 1585 (w), 1479 (m), 1441 (m), 1383 (m), 1348 (m), 1243 (s), 1195 (s), 1159 (s), 1091 (m), 1029 (m), 914 (m), 744 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{18}H_{19}O_2S^+$ 299.1100; Found 299.1110.

Benzyl 2-((4-(tert-butyl)phenyl)thio)cyclobutane-1-carboxylate (3h)

Prepared according to the general procedure C from 4-tert-butylbenzenethiol (49.9 mg, 50.4 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 84:16) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3h** and **3'h** as an oil (80.9 mg, 228 μ mol, 76% yield).

Prepared according to the general procedure D from 4-tert-butylbenzenethiol (49.9 mg, 50.4 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3h** and **3'h** as an oil (95.9 mg, 271 μ mol, 90% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.68.

¹H NMR (400 MHz, chloroform-*d*) δ 7.37 – 7.27 (m, 5H, Ar*H*), 7.25 (d, *J* = 8.5 Hz, 4H, Ar*H*), 5.15 – 5.00 (m, 2H, OC*H*₂Ph), 4.01 (q, *J* = 8.6 Hz, 1H, SC*H*), 3.18 – 3.05 (m, 1H, C*H*C(O)), 2.35 – 2.26 (m, 1H, SCHC*H*₂), 2.22 – 2.07 (m, 2H, C*H*₂CHC(O)), 1.97 (dq, *J* = 10.9, 9.4 Hz, 1H, SCHC*H*₂), 1.27 (s, 9H, C(CH₃)₃).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.3, 150.3, 136.0, 131.6, 130.9, 128.7, 128.3, 128.2, 126.1, 66.5, 46.4, 43.6, 34.6, 31.4, 27.1, 21.9.

IR (v_{max}, cm^{-1}) 2961 (w), 2896 (w), 2872 (w), 1685 (m), 1614 (m), 1494 (m), 1407 (m), 1368 (m), 1182 (w), 1126 (w), 907 (s), 731 (s).

HRMS (Sicrit plasma/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{22}H_{27}O_2S^+$ 355.1726; Found 355.1725.

Benzyl 2-((2,6-dimethylphenyl)thio)cyclobutane-1-carboxylate (3i)

Prepared according to the general procedure C from 2,6-dimethylbenzenethiol (41.5 mg, 40.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 84:16) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3i** and **3'i** as an oil (97.5 mg, 299 μ mol, quant.).

Prepared according to the general procedure D from 2,6-dimethylbenzenethiol (41.5 mg, 40.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3i** and **3'i** as an oil (91.0 mg, 279 μ mol, 93% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.64.

¹H NMR (400 MHz, chloroform-*d*) δ 7.33 (td, J = 5.4, 2.7 Hz, 3H, Ar*H*), 7.29 – 7.22 (m, 2H, Ar*H*), 7.08 (q, J = 5.2 Hz, 3H, Ar*H*), 5.07 – 4.94 (m, 2H, OC*H*₂Ph), 3.81 – 3.67 (m, 1H, SC*H*), 3.16 – 3.03 (m, 1H, C*H*C(O)), 2.48 (s, 6H, ArC*H*₃), 2.27 – 2.17 (m, 1H, SCHC*H*₂), 2.14 – 1.92 (m, 3H, SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 143.6, 136.0, 132.1, 128.6, 128.6, 128.3, 128.3, 128.2, 66.5, 47.0, 45.2, 27.7, 22.5, 22.0.

IR (v_{max}, cm⁻¹) 3058 (w), 2987 (w), 2948 (w), 1732 (s), 1454 (m), 1382 (m), 1349 (m), 1253 (m), 1193 (m), 1159 (s), 1033 (m), 917 (m), 773 (s), 740 (m).

HRMS (Sicrit plasma/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₂₀H₂₃O₂S⁺ 327.1413; Found 327.1412.

Benzyl 2-((4-methyl-2-oxo-2H-chromen-7-yl)thio)cyclobutane-1-carboxylate (3j)

Prepared according to the general procedure C from 7-mercapto-4-methyl-coumarin (57.7 mg, 300 µmol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 µmol, 1.10 equiv.). The crude product (dr 88:12) was purified by flash chromatography using PE/EtOAc 60:40 to afford **3j** and **3'j** as an oil (106 mg, 279 µmol, 93% yield).

Prepared according to the general procedure D from 7-mercapto-4-methyl-coumarin (57.7 mg, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/EtOAc 60:40 to afford **3j** and **3'j** as an oil (37.7 mg, 99.1 μ mol, 33% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 6:4): 0.43.

¹H NMR (400 MHz, chloroform-*d*) δ 7.46 – 7.30 (m, 6H, Ar*H*), 7.18 (d, *J* = 1.8 Hz, 1H, Ar*H*), 7.13 (dd, *J* = 8.3, 1.8 Hz, 1H, Ar*H*), 6.21 (s, 1H, C=C*H*), 5.14 (s, 2H, OC*H*₂Ph), 4.24 (q, *J* = 8.4 Hz, 1H, SC*H*), 3.29 – 3.13 (m, 1H, C*H*C(O)), 2.59 – 2.45 (m, 1H, SCHC*H*₂), 2.41 – 2.20 (m, 5H, CH₃ + C*H*₂CHC(O)), 2.07 (dq, *J* = 11.4, 9.4 Hz, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.0, 160.7, 153.8, 152.1, 141.8, 135.8, 128.7, 128.4, 128.3, 124.8, 124.1, 117.8, 115.9, 114.4, 66.8, 46.3, 41.6, 27.3, 22.5, 18.7.

IR (v_{max}, cm^{-1}) 3066 (w), 2950 (w), 2110 (w), 1727 (s), 1685 (w), 1602 (s), 1455 (w), 1386 (m), 1242 (w), 1202 (m), 1164 (m), 1029 (w), 961 (m), 852 (w), 752 (w).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{22}H_{21}O_4S^+$ 381.1155; Found 381.1152.

Benzyl 2-((3-methoxyphenyl)thio)cyclobutane-1-carboxylate (3k)

Prepared according to the general procedure C from 3-methoxybenzenethiol (42.1 mg, 37.2 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 86:14) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3k** and **3'k** as an oil (98.4 mg, 299 μ mol, quant.).

Prepared according to the general procedure D from 3-methoxybenzenethiol (42.1 mg, 37.2 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 89:11) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3k** and **3'k** as an oil (98.1 mg, 299 μ mol, quant. yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.31.

¹H NMR (400 MHz, chloroform-*d*) δ 7.41 – 7.28 (m, 5H, Ar*H*), 7.16 (t, *J* = 7.9 Hz, 1H, Ar*H*), 6.95 – 6.87 (m, 2H, Ar*H*), 6.75 (ddd, *J* = 8.3, 2.5, 0.8 Hz, 1H, Ar*H*), 5.17 – 4.97 (m, 2H, OC*H*₂Ph), 4.11 (q, *J* = 8.5 Hz, 1H, SC*H*), 3.76 (s, 3H, OC*H*₃), 3.21 – 3.08 (m, 1H, C*H*C(O)), 2.44 – 2.32 (m, 1H, SCHC*H*₂), 2.19 (dtd, *J* = 17.9, 9.3, 2.3 Hz, 2H, C*H*₂CHC(O)), 2.01 (dq, *J* = 11.0, 9.4 Hz, 1H, SCHC*H*₂).

¹³C NMR 13C NMR (101 MHz, CDCl₃) δ 173.3, 159.9, 136.0, 135.9, 129.8, 128.7, 128.3, 128.2, 123.2, 116.1, 112.9, 66.6, 55.4, 46.4, 43.0, 27.2, 22.1.

IR (v_{max}, cm⁻¹) 3065 (w), 2943 (w), 2835 (w), 1728 (m), 1589 (s), 1520 (w), 1480 (s), 1418 (s), 1383 (m), 1285 (s), 1242 (s), 1192 (m), 1156 (s), 1040 (s), 863 (m), 781 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{19}H_{21}O_3S^+$ 329.1206; Found 329.1207.

Benzyl 2-((4-hydroxyphenyl)thio)cyclobutane-1-carboxylate (3l)

Prepared according to the general procedure C from 4-mercaptophenol (37.9 mg, 30.3μ L, 300μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 57:43) was purified by flash chromatography using PE/EtOAc 80:20 to afford **3I** and **3'I** as an oil (92.4 mg, 294 μ mol, 98% yield).

Prepared according to the general procedure D from 4-mercaptophenol (37.9 mg, 30.3μ L, 300μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 \mumol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/EtOAc 80:20 to afford **3I** and **3'I** as an oil (64.3 mg, 205 µmol, 68% yield).

The configuration of the minor diastereoisomer obtained was determined by X-rays analysis.

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 8:2): 0.43.

¹H NMR (400 MHz, chloroform-*d*, O*H* signal not resolved) δ 7.41 – 7.26 (m, 7H, Ar*H*), 6.77 – 6.69 (m, 2H, Ar*H*), 5.07 (d, *J* = 2.1 Hz, 2H, OCH₂Ph), 3.88 (q, *J* = 8.5 Hz, 1H, SC*H*), 3.07 (q, *J* = 8.9 Hz, 1H, C*H*C(O)), 2.28 – 2.17 (m, 1H, SCHC*H*₂), 2.09 (td, *J* = 9.3, 6.2 Hz, 2H, C*H*₂CHC(O)), 2.01 – 1.84 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.4, 155.9, 136.0, 135.9, 128.7, 128.3, 128.2, 124.1, 116.1, 66.5, 46.1, 44.9, 26.6, 21.7.

IR (v_{max} , cm⁻¹) 3405 (m), 2950 (m), 1732 (s), 1632 (m), 1602 (m), 1581 (m), 1497 (s), 1456 (m), 1433 (m), 1383 (m), 1350 (m), 1267 (s), 1216 (s), 1166 (s), 1029 (w), 845 (w), 744 (m). HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₈H₁₈NaO₃S⁺ 337.0869; Found 337.0871.

Data for the cis- diastereoisomer:

m.p.: 96-98 °C.

Rf(PE/EtOAc 8:2): 0.30.

¹H NMR (400 MHz, chloroform-*d*) δ 7.32 (s, 5H, Ar*H*), 7.25 – 7.17 (m, 2H, Ar*H*), 6.76 – 6.66 (m, 2H, Ar*H*), 5.20 (d, *J* = 12.3 Hz, 1H, OC*H*₂Ph), 5.09 (d, *J* = 12.3 Hz, 1H, OC*H*₂Ph), 4.76 (s, 1H, O*H*), 4.06 (q, *J* = 8.4 Hz, 1H, SC*H*), 3.58 – 3.44 (m, 1H, C*H*C(O)), 2.49 – 2.22 (m, 3H, SCHC*H*₂ + C*H*₂CH(O)), 2.09 (dt, *J* = 10.7, 8.5 Hz, 1H, C*H*₂CH(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 172.7, 155.0, 135.9, 133.1, 128.7, 128.6, 128.3, 127.0, 116.0, 66.7, 45.8, 45.3, 28.0, 20.8.

IR (v_{max} , cm⁻¹) 3040 (m), 2953 (m), 2928 (m), 1728 (s), 1710 (s), 1605 (m), 1584 (m), 1496 (s), 1353 (m), 1263 (s), 1215 (s), 1173 (s), 1069 (m), 987 (s), 910 (s), 831 (m), 738 (m). HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₈H₁₈NaO₃S⁺ 337.0869; Found 337.0871.

Benzyl 2-((4-acetamidophenyl)thio)cyclobutane-1-carboxylate (3m)

Prepared according to the general procedure C from N-(4-sulfanylphenyl)acetamide (50.2 mg, 300 µmol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 µmol, 1.10 equiv.). The crude product (dr 75:25) was purified by flash chromatography using PE/EtOAc 70:30 to afford **3m** and **3'm** as an oil (101 mg, 285 µmol, 95% yield).

Prepared according to the general procedure D from N-(4-sulfanylphenyl)acetamide (50.2 mg, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/EtOAc 70:30 to afford **3m** and **3'm** as an oil (93.9 mg, 264 μ mol, 88% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 7:3): 0.69.

¹H NMR (400 MHz, chloroform-*d*) δ 7.48 – 7.29 (m, 9H, Ar*H*), 7.19 (s, 1H, N*H*), 5.08 (q, *J* = 2.8 Hz, 2H, OC*H*₂Ph), 3.97 (q, *J* = 8.6 Hz, 1H, SC*H*), 3.09 (q, *J* = 8.9 Hz, 1H, C*H*C(O)), 2.29 (dtd, *J* = 11.3, 7.9, 3.4 Hz, 1H, SCHC*H*₂), 2.22 – 2.05 (m, 5H, C(O)C*H*₃ + C*H*₂CHC(O)), 2.02 – 1.88 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.2, 168.3, 137.5, 136.0, 133.6, 129.0, 128.7, 128.3, 128.2, 120.2, 66.5, 46.2, 44.1, 26.9, 24.8, 21.9.

IR (v_{max}, cm^{-1}) 3310 (m), 3101 (m), 2993 (m), 2946 (m), 2359 (w), 2104 (s), 1725 (s), 1671 (s), 1592 (s), 1527 (s), 1494 (s), 1455 (m), 1393 (s), 1372 (m), 1310 (s), 1252 (s), 1206 (s), 1158 (s), 1032 (m), 960 (m), 831 (m), 748 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{20}H_{22}NO_3S^+$ 356.1315; Found 356.1312.

Benzyl 2-((2-aminophenyl)thio)cyclobutane-1-carboxylate (3n)

Prepared according to the general procedure C from 2-aminobenzenethiol (37.6 mg, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 82:18) was purified by flash chromatography using PE/EtOAc 80:20 to afford **3n** and **3'n** as an oil (92.0 mg, 294 μ mol, 98% yield).

Prepared according to the general procedure D from 2-aminobenzenethiol (37.6 mg, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 94:6) was purified by flash chromatography using PE/EtOAc 80:20 to afford **3n** and **3'n** as an oil (82.5 mg, 263 μ mol, 88% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 8:2): 0.70.

¹H NMR (400 MHz, chloroform-*d*) δ 7.44 – 7.29 (m, 6H, Ar*H*), 7.14 (td, *J* = 8.0, 1.6 Hz, 1H, Ar*H*), 6.76 – 6.54 (m, 2H, Ar*H*), 5.09 (s, 2H, OC*H*₂Ph), 4.31 (br s, 2H, N*H*₂), 3.85 – 3.72 (m, 1H, SC*H*), 3.07 (q, *J* = 8.6 Hz, 1H, C*H*C(O)), 2.26 – 2.11 (m, 1H, SCHC*H*₂), 2.11 – 1.88 (m, 3H, C*H*₂CHC(O) + SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 149.5, 138.1, 136.1, 130.7, 128.7, 128.3, 128.2, 118.3, 115.1, 114.8, 66.5, 45.7, 44.5, 26.6, 21.6.

IR (v_{max}, cm⁻¹) 3468 (w), 3357 (m), 3062 (m), 3029 (w), 2993 (m), 2950 (m), 1726 (s), 1607 (s), 1480 (s), 1448 (m), 1379 (w), 1348 (m), 1307 (m), 1242 (s), 1197 (s), 1159 (s), 1027 (m), 961 (w), 910 (w), 748 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₁₈H₂₀NO₂S⁺ 314.1209; Found 314.1224.

Benzyl 2-(pyridin-2-ylthio)cyclobutane-1-carboxylate (30)

Prepared according to the general procedure C from 2-pyridinethiol (33.3 mg, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 81:19) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3o** and **3'o** as an oil (71.1 mg, 237 μ mol, 79% yield).

Prepared according to the general procedure D from 2-pyridinethiol (33.3 mg, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3o** and **3'o** as an oil (63.0 mg, 210 μ mol, 70% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.53.

¹H NMR (400 MHz, chloroform-*d*) δ 8.30 – 8.21 (m, 1H, Ar*H*), 7.42 (td, *J* = 7.7, 1.9 Hz, 1H, Ar*H*), 7.36 – 7.27 (m, 5H, Ar*H*), 7.11 (d, *J* = 8.1 Hz, 1H, Ar*H*), 6.92 (ddd, *J* = 7.4, 4.9, 1.0 Hz, 1H, Ar*H*), 5.19 – 5.07 (m, 2H, OC*H*₂Ph), 4.62 (q, *J* = 8.6 Hz, 1H, SC*H*), 3.33 – 3.21 (m, 1H, C*H*C(O)), 2.54 – 2.39 (m, 1H, SCHC*H*₂), 2.32 (td, *J* = 9.3, 6.3 Hz, 2H, C*H*₂CHC(O)), 2.19 – 2.04 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.5, 159.1, 149.5, 136.1, 136.1, 128.6, 128.2, 128.2, 122.1, 119.6, 66.5, 47.2, 40.1, 26.7, 22.7.

IR (v_{max} , cm⁻¹) 3041 (w), 2979 (w), 2946 (w), 1728 (s), 1578 (s), 1559 (m), 1453 (s), 1415 (s), 1383 (m), 1348 (m), 1267 (m), 1242 (m), 1191 (s), 1155 (s), 1127 (s), 1029 (m), 759 (s). HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₇H₁₇NNaO₂S⁺ 322.0872; Found 322.0861.

Benzyl 2-((2-methylfuran-3-yl)thio)cyclobutane-1-carboxylate (3p)

Prepared according to the general procedure C from 2-methyl-3-furanthiol (34.2 mg, 32.9 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 76:24) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3p** and **3'p** as an oil (88.6 mg, 293 μ mol, 98% yield).

Prepared according to the general procedure D from 2-methyl-3-furanthiol (34.2 mg, 32.9 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3p** and **3'p** as an oil (69.2 mg, 229 μ mol, 76% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.44.

¹H NMR (400 MHz, chloroform-*d*) δ 7.35 (dtt, *J* = 11.2, 7.4, 3.8 Hz, 5H, Ar*H*), 7.26 (d, *J* = 1.4 Hz, 1H, Ar*H*), 6.32 (d, *J* = 1.9 Hz, 1H, Ar*H*), 5.10 (s, 2H, OC*H*₂Ph), 3.69 (q, *J* = 8.8 Hz, 1H, SC*H*), 3.00 (q, *J* = 8.8 Hz, 1H, C*H*C(O)), 2.30 (s, 3H, C*H*₃), 2.21 – 2.10 (m, 1H, SCHC*H*₂), 2.10 – 1.99 (m, 2H, C*H*₂CHC(O)), 1.96 – 1.84 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 156.8, 140.7, 136.1, 128.7, 128.3, 128.2, 116.4, 107.6, 66.5, 45.7, 44.8, 26.2, 21.5, 12.0.

IR (v_{max}, cm⁻¹) 2993 (w), 2946 (w), 2925 (w), 1732 (s), 1516 (w), 1451 (w), 1384 (w), 1348 (w), 1241 (m), 1191 (m), 1159 (s), 1091 (m), 1033 (w), 936 (w), 738 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{17}H_{19}O_3S^+$ 303.1049; Found 303.1063.

Benzyl 2-(benzylthio)cyclobutane-1-carboxylate (3q)

Prepared according to the general procedure C from phenylmethanethiol (37.3 mg, 35.2 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 50:50) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3q** and **3'q** as an oil (93.4 mg, 299 μ mol, quant.).

Prepared according to the general procedure D from phenylmethanethiol (37.3 mg, 35.2 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 93:7) was purified by flash chromatography using PE/Et₂O 98:2 to afford **3q** and **3'q** as an oil (93.3 mg, 299 μ mol, quant.).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.45.

¹H NMR (400 MHz, chloroform-*d*) δ 7.35 (q, J = 3.6 Hz, 5H, Ar*H*), 7.28 – 7.19 (m, 5H, Ar*H*), 5.11 (s, 2H, OC*H*₂Ph), 3.79 – 3.56 (m, 3H, SC*H*₂Ph + SC*H*), 3.13 (q, J = 8.7 Hz, 1H, C*H*C(O)), 2.30 – 2.01 (m, 3H, SCHC*H*₂ + C*H*₂CHC(O)), 1.97 – 1.78 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.5, 138.6, 136.0, 128.9, 128.7, 128.6, 128.4, 128.3, 127.1, 66.6, 47.6, 41.2, 36.0, 26.7, 22.0.

IR (v_{max}, cm⁻¹) 3062 (w), 3033 (w), 2950 (w), 1732 (s), 1497 (w), 1455 (m), 1382 (w), 1350 (m), 1242 (m), 1199 (m), 1159 (s), 1074 (w), 1033 (w), 957 (w), 911 (w).

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₉H₂₀NaO₂S⁺ 335.1076; Found 335.1085.

Benzyl 2-((4-methoxybenzyl)thio)cyclobutane-1-carboxylate (3r)

Prepared according to the general procedure D from (4-methoxyphenyl)methanethiol (46.3 mg, 41.3 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 92:8) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3r** and **3'r** as an oil (98.8 mg, 289 μ mol, 96% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.29.

¹H NMR (400 MHz, chloroform-*d*) δ 7.34 (d, *J* = 4.3 Hz, 5H, Ar*H*), 7.16 (d, *J* = 8.6 Hz, 2H, Ar*H*), 6.87 – 6.75 (m, 2H, Ar*H*), 5.12 (s, 2H, OC*H*₂), 3.77 (s, 3H, OC*H*₃), 3.72 – 3.50 (m, 3H, SC*H*₂ + SC*H*), 3.13 (q, *J* = 8.7 Hz, 1H, C*H*C(O)), 2.26 – 2.04 (m, 3H, SCHC*H*₂ + C*H*₂CHC(O)), 1.96 – 1.80 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.6, 158.7, 136.0, 130.5, 130.0, 128.7, 128.4, 128.3, 114.0, 66.5, 55.4, 47.6, 41.1, 35.3, 26.6, 22.0.

IR (v_{max}, cm⁻¹) 2996 (w), 2950 (m), 2838 (w), 1730 (s), 1613 (w), 1512 (s), 1455 (w), 1248 (s), 1177 (m), 1156 (m), 1035 (m), 831 (w), 744 (m).

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₀H₂₂NaO₃S⁺ 365.1182; Found 365.1189.

Benzyl 2-((4-chlorobenzyl)thio)cyclobutane-1-carboxylate (3s)

Prepared according to the general procedure D from (4-chlorophenyl)methanethiol (47.6 mg, 39.6 µL, 300 µmol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 µmol, 1.10 equiv.). The

crude product (dr >95:5) was purified by flash chromatography using PE/EtOAc 95:5 to afford **3s** and **3's** as an oil (92.7 mg, 267 μ mol, 89% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 95:5): 0.68.

¹H NMR (400 MHz, chloroform-*d*) δ 7.40 – 7.29 (m, 5H, Ar*H*), 7.25 – 7.13 (m, 4H, Ar*H*), 5.17 – 5.02 (m, 2H, OC*H*₂), 3.77 – 3.43 (m, 3H, SC*H* + SC*H*₂), 3.18 – 3.04 (m, 1H, C*H*C(O)), 2.29 – 2.03 (m, 3H, SCHC*H*₂ + C*H*₂CHC(O)), 2.00 – 1.79 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.5, 137.2, 135.9, 132.8, 130.2, 128.8, 128.7, 128.5, 128.4, 66.6, 47.7, 41.1, 35.3, 26.5, 22.0.

 $\begin{array}{l} \mathsf{IR} \; (v_{\text{max}},\, \mathrm{cm}^{\text{-1}}) \; 3040 \; (w), \; 2984 \; (w), \; 2953 \; (w), \; 2872 \; (w), \; 1730 \; (s), \; 1492 \; (m), \; 1455 \; (w), \; 1382 \; (w), \\ 1350 \; (w), \; 1242 \; (m), \; 1203 \; (m), \; 1159 \; (m), \; 1094 \; (m), \; 1015 \; (w), \; 910 \; (w), \; 830 \; (w), \; 748 \; (m). \end{array}$

HRMS (Nanochip-based ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{19}H_{20}CIO_2S^+$ 347.0867; Found 347.0868.

Benzyl 2-((furan-2-ylmethyl)thio)cyclobutane-1-carboxylate (3t)

Prepared according to the general procedure D from 2-furylmethanethiol (34.2 mg, 30.3 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 94:6) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3t** and **3't** as an oil (72.7 mg, 240 μ mol, 80% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.51.

¹H NMR (400 MHz, chloroform-*d*) δ 7.43 – 7.29 (m, 6H, Ar*H*), 6.26 (dd, *J* = 3.0, 2.0 Hz, 1H, Ar*H*), 6.09 (d, *J* = 3.2 Hz, 1H, Ar*H*), 5.14 (s, 2H, OC*H*₂), 3.83 – 3.63 (m, 3H, SC*H*₂ + SC*H*), 3.14 (q, *J* = 8.7 Hz, 1H, C*H*C(O)), 2.30 – 2.07 (m, 3H, SCHC*H*₂ + C*H*₂CHC(O)), 1.92 (qd, *J* = 10.0, 1.4 Hz, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.4, 151.7, 142.1, 135.9, 128.7, 128.4, 128.3, 110.5, 107.4, 66.5, 47.6, 41.2, 28.0, 26.4, 21.9.

IR (v_{max}, cm⁻¹) 3115 (w), 3033 (w), 2989 (w), 2950 (w), 2871 (w), 1727 (s), 1501 (m), 1455 (w), 1389 (w), 1350 (m), 1245 (s), 1192 (m), 1154 (s), 1076 (w), 1030 (m), 1011 (m), 935 (m), 737 (s).

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{17}H_{18}NaO_3S^+$ 325.0869; Found 325.0875.

Benzyl 2-(phenethylthio)cyclobutane-1-carboxylate (3u)

Prepared according to the general procedure C from 2-phenylethanethiol (41.5 mg, 40.3 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 50:50) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3u** and **3'u** as an oil (97.5 mg, 299 μ mol, 100% yield, quant.).

Prepared according to the general procedure D from 2-phenylethanethiol (41.5 mg, 40.3 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product

(dr >95:5) was purified by flash chromatography using PE/Et₂O 95:5 to afford 3u and 3'u as an oil (97.8 mg, 299 µmol, quant.).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.44.

¹H NMR (400 MHz, chloroform-*d*) δ 7.38 – 7.25 (m, 7H, Ar*H*), 7.23 – 7.08 (m, 3H, Ar*H*), 5.13 (s, 2H, OC*H*₂Ph), 3.73 (q, *J* = 8.4 Hz, 1H, SC*H*), 3.12 (q, *J* = 9.0 Hz, 1H, C*H*C(O)), 2.89 – 2.70 (m, 4H, SC*H*₂C*H*₂Ph), 2.32 – 2.08 (m, 3H, SCHC*H*₂ + C*H*₂CHC(O)), 1.93 (p, *J* = 9.8 Hz, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.6, 140.6, 136.0, 128.7, 128.6, 128.6, 128.4, 128.4, 126.5, 66.6, 47.7, 41.7, 36.6, 33.0, 26.8, 22.0.

IR (v_{max} , cm⁻¹) 3062 (w), 3028 (m), 2993 (w), 2870 (m), 2835 (w), 1725 (s), 1496 (m), 1382 (m), 1361 (m), 1329 (m), 1260 (s), 1243 (s), 1195 (s), 1087 (m), 1029 (m), 964 (m), 738 (m). HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₀H₂₂NaO₂S⁺ 349.1233; Found 349.1232.

Benzyl 2-(cyclohexylthio)cyclobutane-1-carboxylate (3v)

Prepared according to the general procedure D from cyclohexanethiol (34.9 mg, 36.7 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 93.7) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3v** and **3'v** as an oil (90.9 mg, 299 μ mol, quant.).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.64.

¹H NMR (400 MHz, chloroform-*d*) δ 7.40 – 7.29 (m, 5H, Ar*H*), 5.13 (d, *J* = 1.8 Hz, 2H, OC*H*₂), 3.75 (q, *J* = 8.7 Hz, 1H, SC*H*CHC(O)), 3.09 (q, *J* = 8.5 Hz, 1H, C*H*C(O)), 2.66 (ddt, *J* = 10.5, 7.5, 3.7 Hz, 1H, SC*H*^{cyclohex}), 2.34 – 2.07 (m, 3H, SCHC*H*₂CH₂CHC(O)), 1.99 – 1.79 (m, 3H, SCHC*H*₂CH₂CHC(O) + C*H*₂^{cyclohex}), 1.74 – 1.64 (m, 2H, C*H*₂^{cyclohex}), 1.54 (d, *J* = 8.8 Hz, 1H, C*H*₂^{cyclohex}), 1.37 – 1.06 (m, 5H, C*H*₂^{cyclohex}).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.7, 136.1, 128.7, 128.4, 128.3, 66.5, 48.2, 44.0, 40.2, 34.2, 34.0, 27.8, 26.2, 26.1, 25.8, 22.1.

IR $(v_{max}, cm^{-1}) 3033 (w)$, 2932 (s), 2856 (m), 1732 (s), 1654 (w), 1584 (w), 1450 (m), 1343 (m), 1249 (m), 1190 (s), 1155 (s), 1083 (w), 1029 (m), 909 (w), 744 (m).

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{24}NaO_2S^+$ 327.1389; Found 327.1389.

Benzyl 2-((adamantan-1-yl)thio)cyclobutane-1-carboxylate (3w)

Prepared according to the general procedure C from adamantane-1-thiol (50.5 mg, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 29:71) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3w** and **3'w** as an oil (107 mg, 299 μ mol, quant.).

Prepared according to the general procedure D from adamantane-1-thiol (50.5 mg, 300 µmol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 µmol, 1.10 equiv.). The crude product (dr 92:8)

was purified by flash chromatography using PE/Et₂O 95:5 to afford **3w** and **3'w** as an oil (100 mg, 281 µmol, 94% yield).

The configuration of the two diastereoisomers obtained was determined by 2D-NOESY.

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.44.

¹H NMR (400 MHz, chloroform-*d*) δ 7.46 – 7.29 (m, 5H, Ar*H*), 5.24 – 5.02 (m, 2H, OC*H*₂Ph), 3.84 (q, *J* = 8.8 Hz, 1H, SC*H*), 3.06 (q, *J* = 9.0 Hz, 1H, C*H*C(O)), 2.30 (qd, *J* = 8.8, 2.7 Hz, 1H, SCHC*H*₂), 2.22 – 2.04 (m, 2H, C*H*₂CHC(O)), 2.02 – 1.85 (m, 4H, SCHC*H*₂ + SCCH₂C*H*), 1.79 (d, *J* = 2.4 Hz, 6H, SCC*H*₂), 1.63 (q, *J* = 12.3 Hz, 6H, SCCH₂CHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.7, 136.1, 128.7, 128.36, 128.35, 66.5, 48.2, 45.9, 43.9, 36.6, 36.3, 29.8, 29.6, 22.6.

IR (v_{max}, cm⁻¹) 2907 (s), 2849 (m), 1732 (s), 1452 (m), 1347 (m), 1254 (m), 1192 (m), 1152 (s), 1040 (m), 741 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + $H]^{\scriptscriptstyle +}$ Calcd for $C_{22}H_{29}O_2S^{\scriptscriptstyle +}$ 357.1883; Found 357.1876

Data for the cis- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.36.

¹H NMR (400 MHz, chloroform-*d*) δ 7.43 (dd, J = 8.1, 1.3 Hz, 2H, Ar*H*), 7.40 – 7.29 (m, 3H, Ar*H*), 5.24 (d, J = 12.2 Hz, 1H, OC*H*₂Ph), 5.16 (d, J = 12.2 Hz, 1H, OC*H*₂Ph), 3.92 (q, J = 9.0 Hz, 1H, SC*H*), 3.34 (tt, J = 8.5, 2.8 Hz, 1H, C*H*C(O)), 2.45 – 2.18 (m, 3H, SCHC*H*₂ + C*H*₂CHC(O)), 2.17 – 2.02 (m, 1H, C*H*₂CHC(O)), 1.97 (s, 3H, SCCH₂C*H*), 1.76 (q, J = 12.5 Hz, 6H, SCC*H*₂), 1.70 – 1.52 (m, 6H, SCCH₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.4, 136.2, 128.9, 128.6, 128.3, 66.4, 47.9, 45.4, 43.8, 36.5, 36.4, 30.4, 29.8, 21.4.

IR (v_{max}, cm⁻¹) 3032 (w), 2903 (s), 2849 (m), 1729 (s), 1455 (m), 1382 (w), 1344 (m), 1278 (m), 1152 (s), 1043 (m), 910 (w), 752 (m), 734 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{22}H_{29}O_2S^+$ 357.1883; Found 357.1880.

Benzyl 2-(acetylthio)cyclobutane-1-carboxylate (3x)

Prepared according to the general procedure C from thioacetic acid (22.8 mg, 21.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2a** (62.1 mg, 330 μ mol, 1.10 equiv.). The crude product dr (dr 67:33) was purified by flash chromatography using PE/Et₂O 95:5 to afford **3x** and **3'x** as an oil (56.3 mg, 213 μ mol, 71% yield).

Data for the mixture of diastereoisomer:

Rf(PE/EtOAc 98:2): 0.21.

1H NMR (400 MHz, chloroform-*d*, 65:35 mixture of diastereoisomers (major:minor)) δ 7.34 (td, J = 7.9, 5.0 Hz, 5H, Ar*H* (major+minor)), 5.25 – 5.01 (m, 2H, OC*H*₂Ph (major+minor)), 4.49 (q, J = 8.4 Hz, 0.35H, SC*H* (minor)), 4.32 (q, J = 9.0 Hz, 0.65H, SC*H* (major)), 3.62 – 3.46 (m, 0.35H, C*H*C(O) (minor), 3.19 (q, J = 8.9 Hz, 0.65H, C*H*C(O) (major)), 2.44 – 2.14 (m, 6.35H, C*H*₂CHC(O) (major+minor) + C(O)C*H*₃ (major+minor) + SCHC*H*₂ (major+minor)), 2.12 – 1.98 (m, 0.65H, SCHC*H*₂ (major)).

 13 C NMR (101 MHz, chloroform-*d*, 65:35 mixture of diastereoisomers (major:minor)) δ 195.2, 195.2, 173.0, 172.8, 136.0, 136.0, 128.7, 128.6, 128.4, 128.3, 66.7, 66.6, 45.9, 44.9, 39.1, 38.3, 30.6, 30.4, 27.7, 26.6, 22.7, 21.9.

IR (v_{max}, cm⁻¹) 2982 (w), 2950 (w), 1736 (s), 1692 (s), 1455 (w), 1389 (w), 1353 (m), 1245 (m), 1186 (m), 1159 (s), 1132 (m), 1032 (w), 950 (m), 752 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + Na]+ Calcd for C14H16NaO3S+ 287.0712; Found 287.0708.

Butyl 2-((2-bromophenyl)thio)cyclobutane-1-carboxylate (3y)

Prepared according to the general procedure C from 2-bromothiophenol (56.7 mg, 36.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2b** (50.9 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 73:27) was purified by flash chromatography using PE/EtOAc 98:2 to afford **3y** and **3'y** as an oil (101 mg, 294 μ mol, 98% yield).

Prepared according to the general procedure D from 2-bromothiophenol (56.7 mg, 36.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2b** (50.9 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 94:6) was purified by flash chromatography using PE/EtOAc 98:2 to afford **3y** and **3'y** as an oil (98.8 mg, 288 μ mol, 96% yield).

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 98:2): 0.61.

¹H NMR (400 MHz, chloroform-*d*) δ 7.53 (d, *J* = 8.1 Hz, 1H, Ar*H*), 7.33 – 7.17 (m, 2H, Ar*H*), 7.05 – 6.96 (m, 1H, Ar*H*), 4.18 (q, *J* = 8.2 Hz, 1H, SC*H*), 4.07 (t, *J* = 6.7 Hz, 2H, OC*H*₂), 3.17 (q, *J* = 8.7 Hz, 1H, C*H*C(O)), 2.50 (qd, *J* = 8.6, 3.5 Hz, 1H, SCHC*H*₂), 2.41 – 2.28 (m, 1H, C*H*₂CHC(O)), 2.28 – 2.14 (m, 1H, C*H*₂CHC(O)), 2.14 – 2.00 (m, 1H, SCHC*H*₂), 1.70 – 1.49 (m, 2H, OCH₂C*H*₂), 1.34 (dq, *J* = 14.6, 7.4 Hz, 2H, C*H*₂CH₃), 0.92 (t, *J* = 7.4 Hz, 3H, C*H*₃).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.6, 137.4, 133.1, 129.3, 127.9, 127.1, 123.7, 64.9, 46.2, 41.6, 30.8, 27.0, 22.6, 19.2, 13.9.

IR (v_{max}, cm⁻¹) 2960 (s), 2933 (m), 2872 (m), 1730 (s), 1447 (s), 1359 (m), 1231 (s), 1202 (s), 1163 (s), 1123 (m), 1089 (m), 1015 (m), 936 (m), 750 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{15}H_{20}^{79}BrO_2S^+$ 343.0362; Found 343.0373.

2-((2-Bromophenyl)thio)-N-methoxy-N-methylcyclobutane-1-carboxamide (3z)

Prepared according to the general procedure C from 2-bromothiophenol (56.7 mg, 36.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2c** (46.6 mg, 330 μ mol, 1.10 equiv.). The crude product (dr 60:40) was purified by flash chromatography using PE/EtOAc 80:20 to afford **3z** and **3'z** as an oil (53.5 mg, 162 μ mol, 54% yield).

Prepared according to the general procedure D from 2-bromothiophenol (56.7 mg, 36.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2c** (46.6 mg, 330 μ mol, 1.10 equiv.). The crude product

(dr >95:5) was purified by flash chromatography using PE/EtOAc 80:20 to afford 3z and 3'z as an oil (92.1 mg, 279 µmol, 93% yield).

The configuration of the two diastereoisomers obtained was determined by 2D-NOESY.

Data for the trans- diastereoisomer:

Rf(PE/EtOAc 8:2): 0.48.

¹H NMR (400 MHz, chloroform-*d*) δ 7.50 (d, J = 7.5 Hz, 1H, Ar*H*), 7.32 – 7.16 (m, 2H, Ar*H*), 6.98 (ddd, J = 8.7, 6.6, 2.4 Hz, 1H, Ar*H*), 4.33 (q, J = 8.3 Hz, 1H, SC*H*), 3.72 – 3.48 (m, 4H, C*H*C(O) + OC*H*₃), 3.17 (s, 3H, NC*H*₃), 2.52 (qd, J = 8.2, 3.1 Hz, 1H, SCHC*H*₂), 2.40 – 2.26 (m, 1H, C*H*₂CHC(O)), 2.26 – 2.16 (m, 1H, C*H*₂CHC(O)), 2.16 – 2.03 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.8, 138.0, 133.0, 128.3, 127.9, 126.5, 122.4, 61.8, 43.5, 40.2, 32.4, 27.2, 22.8.

IR (v_{max}, cm⁻¹) 2941 (m), 1656 (s), 1449 (s), 1426 (s), 1383 (m), 1256 (m), 1173 (m), 1109 (m), 1021 (m), 991 (m), 748 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{13}H_{17}BrNO_2S^+$ 330.0158; Found 330.0167.

Data for the cis- diastereoisomer:

Rf(PE/EtOAc 8:2): 0.33.

¹H NMR (400 MHz, chloroform-*d*) δ 7.51 (d, *J* = 7.9 Hz, 1H, Ar*H*), 7.25 – 7.15 (m, 2H, Ar*H*), 7.03 – 6.92 (m, 1H, Ar*H*), 4.25 (q, *J* = 7.4 Hz, 1H, SC*H*), 3.95 (d, *J* = 7.4 Hz, 1H, C*H*C(O)), 3.61 (s, 3H, OC*H*₃), 3.17 (s, 3H, NC*H*₃), 2.76 – 2.59 (m, 1H, C*H*₂CH(O)), 2.60 – 2.45 (m, 1H, SCHC*H*₂), 2.22 (tt, *J* = 11.8, 6.3 Hz, 1H, SCHC*H*₂), 2.16 – 2.01 (m, 1H, C*H*₂CH(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 172.8, 138.3, 133.0, 129.1, 127.6, 126.7, 123.9, 61.3, 43.3, 41.0, 32.4, 28.2, 21.1.

IR (v_{max}, cm⁻¹) 2941 (m), 1660 (s), 1447 (s), 1426 (m), 1384 (m), 1246 (m), 1173 (m), 1116 (m), 1022 (m), 993 (m), 748 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for $C_{13}H_{17}BrNO_2S^+$ 330.0158; Found 330.0167.

Ethyl 4-(2-((2-bromophenyl)thio)cyclobutane-1-carboxamido)benzoate (3aa)

Prepared according to the general procedure D from 2-bromothiophenol (56.7 mg, 36.1 μ L, 300 μ mol, 1.00 equiv.) and cyclobutene **2d** (80.9 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 30:70 to afford **3aa** and **3'aa** as an oil (88.9 mg, 205 μ mol, 68% yield).

Data for the trans- diastereoisomer:

Rf(PE/Et₂O 2:8): 0.71.

¹H NMR (400 MHz, chloroform-*d*) δ 8.05 – 7.89 (m, 2H, Ar*H*), 7.60 – 7.51 (m, 3H, Ar*H*), 7.47 (s, 1H, N*H*), 7.33 (dd, *J* = 7.9, 1.6 Hz, 1H, Ar*H*), 7.26 – 7.18 (m, 1H, Ar*H*), 7.05 (td, *J* = 7.7, 1.6 Hz, 1H, Ar*H*), 4.36 (q, *J* = 7.1 Hz, 2H, OC*H*₂), 4.14 (q, *J* = 8.4 Hz, 1H, SC*H*), 3.13 (q, *J* = 8.6 Hz, 1H, C*H*C(O)), 2.53 – 2.32 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)), 2.30 – 2.19 (m, 1H, C*H*₂CHC(O)), 2.18 – 2.05 (m, 1H, SCHC*H*₂), 1.38 (t, *J* = 7.1 Hz, 3H, OCH₂C*H*₃).

¹³C NMR (101 MHz, chloroform-*d*) δ 171.0, 166.2, 141.8, 136.1, 133.4, 131.0, 130.9, 128.2, 128.1, 126.2, 124.9, 118.9, 61.0, 48.7, 43.2, 27.1, 21.4, 14.5.

IR (v_{max}, cm^{-1}) 3332 (w), 3060 (w), 2989 (w), 2939 (m), 2857 (w), 1712 (s), 1689 (s), 1597 (s), 1531 (s), 1447 (m), 1408 (m), 1278 (s), 1253 (s), 1173 (s), 1108 (s), 1020 (m), 860 (m), 767 (m), 745 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{20}BrNNaO_3S^+$ 456.0239; Found 456.0252.

1.4. Crossover experiment

In a sealed vial under nitrogen, bromothiophenol **1a** (21.4 mg, 13.6 μ L, 110 μ mol, 1.10 equiv.) and cyclobutene **2a** (18.8 mg, 100 μ mol, 1.00 equiv.) were diluted in 3 mL of MeCN. DBU (137 mg, 134 μ L, 900 μ mol, 3.00 equiv.) was then added. The reaction was stirred at rt for 1 h, at which time full conversion of **2a** was observed. Methyl thiosalicylate (18.5 mg, 15.2 μ L, 110 μ mol, 1.10 equiv) was then added and the reaction was stirred at rt for 18 h. The reaction mixture concentrated under reduced pressure and analyzed by ¹H NMR using dibromomethane as internal standard; **3a** was observed in 71% NMR yield, **3f** in 19% NMR yield.

1.5. Optimization of the enantioselective sulfa-Michael addition

All catalysts were commercially available, purchased from Fluorochem or Combi-Blocks, and used as such.

General procedure for the optimization of the reaction

In a sealed vial under nitrogen, the chiral catalyst and cyclobutene **2e** were diluted in 1 mL of solvent. Thiol **1a** was then added. The reaction was stirred at the indicated temperature for the indicated time. The reaction mixture was concentrated under reduced pressure. The reaction mixture was analyzed by ¹H NMR (400 MHz, chloroform-*d*) using dibromomethane as an internal standard and by integration of the SC*H* proton at 4.28 (q, J = 8.5 Hz, 1H) ppm (yield and dr were measured). The crude was then purified by prep-TLC using PE/Et₂O 30:70 and submitted to SFC analysis (IC column, 9% MeCN in supercritical CO₂, flow rate 0.75 mL/min, $\lambda = 250.4$ nm. tR(major) = 23.2 min, tR(minor) = 20.4 min).

Screen of catalysts

Optimization table

Entry	Deviation from standard conditions	NMR Yield (%) [♭]	dr °	er ^d
1	None	99%	89:11	98:2
2	5 mol% instead of 2 mol% of Cat*8	quant.	90:10	98:2
3	CHCl ₃ instead of toluene	quant.	90:10	97:3
4	DCM instead of toluene	97%	78:22	96:4
5	0 °C instead of rt	quant.	86:14	99:1
6	1.2 equiv. 1a and 1.0 equiv. 2e	91%	89:11	98:2
7	2 h instead of 18 h	69%	90:10	98:2

^aReaction conditions: 1.0 equiv. thiol **1a** (0.1 mmol), 1.2 equiv. cyclobutene **2e**, 2 mol% **Cat*8**. ^b1H NMR of the crude mixture with dibromomethane as an internal standard. ^CMeasured on the crude ¹H NMR. ^dMeasured on the SFC chromatogram.

1.6. Enantioselective sulfa-Michael addition onto cyclobutenes General procedure (E) for the enantioselective sulfa-Michael addition

In a sealed vial under nitrogen, **Cat*8** (1.26 mg, 2.00 µmol, 0.0200 equiv.) and cyclobutene **2e** (18.4 mg, 110 µmol, 1.10 equiv.) were diluted in 1 mL of dry toluene. Thiol **1a-u** was then added. The reaction was stirred at room temperature for 18 h. The reaction mixture was concentrated under reduced pressure and purified by prep-TLC. The mixture of diastereoisomers was isolated and the yield measured. For characterization purposes, a prep-TLC was then performed and only the major diastereoisomer was isolated and characterized.

The dr was measured from the crude ¹H NMR spectra by integration of the SC*H* proton. The er was measured from the SFC analysis of the purified major diastereoisomer.

3-(2-((2-Bromophenyl)thio)cyclobutane-1-carbonyl)oxazolidin-2-one (4a)

<u>*Racemic:*</u> Prepared according to the general procedure C from 2-bromothiophenol (18.9 mg, 12.0 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (55.2 mg, 330 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 30:70 to afford **4a** and **4'a** as an oil (88.4 mg, 248 μ mol, 83% yield).

<u>Enantioenriched:</u> Prepared according to the general procedure E from 2-bromothiophenol (18.9 mg, 12.0 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr 89:11) was purified by prep-TLC using PE/Et₂O 30:70 to afford **4a** and **4'a** as an oil (35.2 mg, 98.8 μ mol, 99% yield).

A scale up experiment with 2-bromothiophenol (151 mg, 96.2 μ L, 800 μ mol, 1.00 equiv.), cyclobutene **2e** (160 mg, 960 μ mol, 1.20 equiv.) and **Cat*8** (10.1 mg, 16.0 μ mol, 0.0200 equiv.) was also accomplished using the same procedure and led to **4a** (271 mg, 761 μ mol, 95% yield, 91:9 dr, 98:2 er).

Rf(PE/EtOAc 8:2): 0.39.

 $[\alpha]_D^{23} = 100.3 (c = 0.0467, CHCl_3).$

¹H NMR (400 MHz, chloroform-*d*) δ 7.53 (dd, J = 8.0, 1.3 Hz, 1H, Ar*H*), 7.33 (dd, J = 7.9, 1.5 Hz, 1H, Ar*H*), 7.29 – 7.20 (m, 1H, Ar*H*), 7.02 (td, J = 7.7, 1.6 Hz, 1H, Ar*H*), 4.49 – 4.33 (m, 3H, OC*H*₂ + SC*H*), 4.28 (q, J = 8.5 Hz, 1H, C*H*C(O)), 4.06 – 3.91 (m, 2H, NC*H*₂), 2.63 – 2.43 (m, 2H, SCHC*H*₂ + C*H*₂CH(O)), 2.22 – 1.98 (m, 2H, SCHC*H*₂ + C*H*₂CH(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 172.9, 153.1, 137.4, 133.1, 129.5, 127.9, 127.1, 123.8, 62.3, 45.5, 42.6, 39.4, 27.0, 23.9.

IR (v_{max}, cm⁻¹) 2921 (w), 1782 (s), 1692 (m), 1479 (w), 1386 (s), 1278 (w), 1227 (m), 1118 (w), 1042 (w), 911 (m), 740 (m).

HRMS (APCI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₄H₁₄BrNNaO₃S⁺ 377.9770; Found 377.9758.

The enantiomeric ratio was determined to be 98:2 by SFC analysis: IC column, 9% MeCN in supercritical CO₂, flow rate 0.75 mL/min, λ = 250.4 nm. tR(major) = 23.2 min, tR(minor) = 20.4 min.).

Methyl 2-((2-(2-oxooxazolidine-3-carbonyl)cyclobutyl)thio)benzoate (4b)

<u>*Racemic:*</u> Prepared according to the general procedure C from methyl 2-mercaptobenzoate (16.8 mg, 13.8 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 30:70 to afford **4b** and **4'b** as a white solid (31.4 mg, 93.6 μ mol, 94% yield).

<u>Enantioenriched</u>: Prepared according to the general procedure E from methyl 2mercaptobenzoate (16.8 mg, 13.8 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr >95:5) was purified by prep-TLC using PE/Et₂O 25:75 to afford **4b** and **4'b** as a white solid (31.2 mg, 93.0 μ mol, 93% yield).

m.p.:102-104 °C.

Rf(PE/Et₂O 3:7): 0.31.

 $[\alpha]_D^{23} = 80.4$ (c = 0.0367, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 7.94 (dd, *J* = 7.8, 1.4 Hz, 1H, Ar*H*), 7.44 – 7.37 (m, 1H, Ar*H*), 7.33 (d, *J* = 7.9 Hz, 1H, Ar*H*), 7.15 (t, *J* = 7.5 Hz, 1H, Ar*H*), 4.49 (q, *J* = 7.9 Hz, 1H, SC*H*), 4.40 (td, *J* = 8.3, 3.3 Hz, 2H, OC*H*₂), 4.25 (q, *J* = 8.2 Hz, 1H, C*H*C(O)), 4.05 – 3.96 (m, 2H, NC*H*₂), 3.90 (s, 3H, OC*H*₃), 2.70 – 2.49 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)), 2.24 – 2.00 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 167.0, 153.0, 141.3, 132.5, 131.4, 127.6, 126.9, 124.3, 62.3, 52.3, 45.1, 42.6, 38.1, 27.2, 24.2.

IR (v_{max}, cm⁻¹) 3011 (w), 2957 (w), 1782 (m), 1714 (s), 1465 (m), 1437 (m), 1390 (m), 1280 (s), 1252 (s), 1145 (w), 1116 (w), 1062 (m), 746 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{17}NNaO_5S^+$ 358.0720; Found 358.0722.

The enantiomeric ratio was determined to be 97:3 by SFC analysis: IA column, 9% MeCN in supercritical CO₂, flow rate 2.0 mL/min, λ = 260.4 nm. tR(major) = 5.8 min, tR(minor) = 12.2 min.

3-(2-((4-(tert-Butyl)phenyl)thio)cyclobutane-1-carbonyl)oxazolidin-2-one (4c)

<u>*Racemic:*</u> Prepared according to the general procedure C from 4-tert-butylbenzenethiol (16.6 mg, 17.3 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr 93:7) was purified by flash chromatography using PE/Et₂O 20:80 to afford **4c** and **4'c** as an oil (30.9 mg, 92.7 μ mol, 93% yield).

<u>Enantioenriched:</u> Prepared according to the general procedure E from 4-tert-butylbenzenethiol (16.6 mg, 17.3 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr 91:9) was purified by prep-TLC using PE/Et₂O 25:75 to afford **4c** and **4'c** as an oil (27.4 mg, 82.2 μ mol, 82% yield).

Rf(PE/Et₂O 2:8): 0.56. $[\alpha]_D^{23} = 182.4 (c = 0.0167, CHCl_3).$ ¹H NMR (400 MHz, chloroform-*d*) δ 7.33 (s, 4H, Ar*H*), 4.51 – 4.33 (m, 2H, OC*H*₂), 4.32 – 4.19 (m, 2H, SC*H* + C*H*C(O)), 3.97 (qdd, *J* = 11.0, 9.1, 7.1 Hz, 2H, NC*H*₂), 2.51 – 2.28 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)), 2.18 – 1.90 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)), 1.32 (s, 9H, C(C*H*₃)₃). ¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 153.2, 150.1, 131.3, 131.3, 126.0, 62.2, 45.5, 42.6, 41.5, 34.7, 31.4, 27.0, 23.3.

IR (v_{max}, cm⁻¹) 2960 (m), 2909 (w), 2871 (w), 1779 (s), 1692 (s), 1491 (w), 1385 (s), 1270 (m), 1222 (m), 1119 (m), 1083 (w), 1044 (m), 824 (m), 759 (m).

HRMS (APCI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₈H₂₃NNaO₃S⁺ 356.1291; Found 356.1281.

The enantiomeric ratio was determined to be 99.7:0.3 by SFC analysis: IA column, 9% MeCN in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 3.3 min, tR(minor) = 2.2 min.

3-(2-((3-Methoxyphenyl)thio)cyclobutane-1-carbonyl)oxazolidin-2-one (4d)

<u>*Racemic:*</u> Prepared according to the general procedure C from 3-methoxybenzenethiol (14.0 mg, 12.4 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr 93:7) was purified by flash chromatography using PE/Et₂O 20:80 to afford **4d** and **4'd** as an oil (27.3 mg, 88.8 μ mol, 89% yield).

<u>Enantioenriched:</u> Prepared according to the general procedure E from 3-methoxybenzenethiol (14.0 mg, 12.4 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr 88:12) was purified by prep-TLC using PE/Et₂O 25:75 to afford **4d** and **4'd** as an oil (30.6 mg, 99.6 μ mol, quant.).

Rf(PE/Et₂O 2:8): 0.45.

 $[\alpha]_D^{23} = 88.3 (c = 0.0433, CHCl_3).$

¹H NMR (400 MHz, chloroform-*d*) δ 7.18 (t, J = 7.9 Hz, 1H, Ar*H*), 6.98 – 6.87 (m, 2H, Ar*H*), 6.74 (ddd, J = 8.3, 2.5, 0.9 Hz, 1H, Ar*H*), 4.45 – 4.16 (m, 4H, SC*H* + C*H*C(O) + OC*H*₂), 4.07 – 3.83 (m, 2H, NC*H*₂), 3.80 (s, 3H, OC*H*₃), 2.50 – 2.28 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)), 2.16 – 1.93 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 159.9, 153.1, 136.5, 129.8, 122.9, 115.6, 112.8, 62.2, 55.5, 45.7, 42.6, 41.2, 27.0, 23.3.

IR (v_{max}, cm⁻¹) 2991 (w), 2946 (w), 1778 (s), 1692 (s), 1588 (m), 1478 (m), 1385 (s), 1281 (m), 1228 (s), 1117 (m), 1079 (m), 1037 (s), 860 (m), 760 (m).

HRMS (APCI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₇NNaO₄S⁺ 330.0770; Found 330.0763.

The enantiomeric ratio was determined to be 99:1 by SFC analysis: IA column, 18% MeOH in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 1.2 min, tR(minor) = 2.4 min.

3-(2-(Pyridin-2-ylthio)cyclobutane-1-carbonyl)oxazolidin-2-one (4e)

<u>*Racemic:*</u> Prepared according to the general procedure C from 2-pyridinethiol (11.1 mg, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 20:80 to afford **4e** and **4'e** as an oil (20.3 mg, 72.9 μ mol, 73% yield).

<u>Enantioenriched</u>: Prepared according to the general procedure E from pyridine-2-thiol (11.1 mg, 100 μ mol, 1.00 equiv.). The crude product (dr 61:39) was purified by prep-TLC using PE/Et₂O 25:75 to afford **4e** and **4'e** as an oil (26.4 mg, 94.9 μ mol, 95% yield).

Rf(PE/Et₂O 2:8): 0.34.

 $[\alpha]_D^{23} = 92.6$ (c = 0.0300, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 8.39 – 8.29 (m, 1H, Ar*H*), 7.46 (td, *J* = 7.7, 1.9 Hz, 1H, Ar*H*), 7.16 (d, *J* = 8.1 Hz, 1H, Ar*H*), 6.95 (ddd, *J* = 7.3, 4.9, 0.9 Hz, 1H, Ar*H*), 4.71 (q, *J* = 8.3 Hz, 1H, SC*H*), 4.48 (q, *J* = 8.7 Hz, 1H, C*H*C(O)), 4.42 – 4.26 (m, 2H, OC*H*₂), 4.07 – 3.95 (m, 2H, NC*H*₂), 2.47 (ddt, *J* = 14.8, 12.7, 4.4 Hz, 2H, SCHC*H*₂ + C*H*₂CHC(O)), 2.30 – 2.06 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.2, 159.5, 153.2, 149.2, 136.1, 122.3, 119.6, 62.1, 45.3, 42.8, 39.2, 26.7, 23.4.

IR (v_{max}, cm⁻¹) 2993 (w), 2953 (w), 1779 (s), 1695 (s), 1578 (m), 1455 (m), 1415 (m), 1386 (s), 1275 (m), 1227 (m), 1127 (m), 1044 (m), 986 (w), 917 (w), 759 (m).

HRMS (APCI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₃H₁₄N₂NaO₃S⁺ 301.0617; Found 301.0604.

The enantiomeric ratio was determined to be 96:4 by SFC analysis: IA column, 9% MeCN in supercritical CO₂, flow rate 2.0 mL/min, λ = 250.4 nm. tR(major) = 3.7 min, tR(minor) = 7.0 min.

3-(2-(Benzylthio)cyclobutane-1-carbonyl)oxazolidin-2-one (4f)

<u>*Racemic:*</u> Prepared according to the general procedure C from phenylmethanethiol (12.4 mg, 11.7 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr 90:10) was purified by flash chromatography using PE/EtOAc 80:20 to afford **4f** and **4'f** as an oil (29.0 mg, 99.5 μ mol, quant.).

<u>Enantioenriched:</u> Prepared according to the general procedure E from phenylmethanethiol (12.4 mg, 11.7 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr 68:32) was purified by prep-TLC using PE/Et₂O 30:70 to afford **4f** and **4'f** as an oil (29.0 mg, 99.5 μ mol, quant. yield).

Rf(PE/EtOAc 8:2): 0.41.

 $[\alpha]_D^{23} = 145.4$ (c = 0.0200, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 7.35 (d, *J* = 7.2 Hz, 2H, Ar*H*), 7.29 (dd, *J* = 8.2, 6.7 Hz, 2H, Ar*H*), 7.24 – 7.18 (m, 1H, Ar*H*), 4.47 – 4.27 (m, 2H, OC*H*₂), 4.12 (q, *J* = 9.1 Hz, 1H, SC*H*), 4.01 – 3.82 (m, 3H, CHC(O) + NC*H*₂), 3.79 – 3.61 (m, 2H, SC*H*₂Ph), 2.47 – 2.32 (m, 1H, SCHC*H*₂), 2.21 – 2.10 (m, 1H, C*H*₂CHC(O)), 2.03 – 1.79 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.2, 153.1, 138.9, 129.0, 128.5, 126.9, 62.2, 46.7, 42.5, 39.4, 36.3, 26.5, 23.8.

IR (v_{max}, cm⁻¹) 2987 (w), 2943 (w), 1779 (s), 1692 (s), 1483 (w), 1453 (w), 1386 (s), 1267 (m), 1224 (s), 1116 (m), 1077 (m), 1044 (m), 759 (m).

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{17}NNaO_3S^+$ 314.0821; Found 314.0824.

The enantiomeric ratio was determined to be 98:2 by SFC analysis: IA column, 9% MeCN in supercritical CO₂, flow rate 2.0 mL/min, λ = 220.4 nm. tR(major) = 2.9 min, tR(minor) = 8.7 min.

3-(2-((4-Methoxybenzyl)thio)cyclobutane-1-carbonyl)oxazolidin-2-one (4g)

<u>*Racemic:*</u> Prepared according to the general procedure C from (4-methoxyphenyl)methanethiol (15.4 mg, 13.8 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr 91:9) was purified by flash chromatography using PE/Et₂O 20:80 to afford **4g** and **4'g** as an oil (26.7 mg, 83.1 μ mol, 83% yield).

<u>Enantioenriched</u>: Prepared according to the general procedure E from (4-methoxyphenyl)methanethiol (15.4 mg, 13.8 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr 91:9) was purified by prep-TLC using PE/Et₂O 30:70 to afford **4g** and **4'g** as an oil (19.9 mg, 61.9 μ mol, 62% yield).

Rf(PE/Et₂O 2:8): 0.44.

 $[\alpha]_D^{23} = 119.6$ (c = 0.0167, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 7.30 – 7.22 (m, 2H, Ar*H*), 6.86 – 6.78 (m, 2H, Ar*H*), 4.36 (t, *J* = 8.1 Hz, 2H, OC*H*₂), 4.11 (q, *J* = 9.1 Hz, 1H, SC*H*), 3.97 – 3.83 (m, 3H, C*H*C(O) + NC*H*₂), 3.79 (s, 3H, OC*H*₃), 3.75 – 3.58 (m, 2H, SC*H*₂), 2.47 – 2.31 (m, 1H, SCHC*H*₂), 2.18 (dt, *J* = 9.9, 8.6 Hz, 1H, C*H*₂CHC(O)), 2.01 – 1.82 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.2, 158.6, 153.1, 130.8, 130.1, 113.9, 62.2, 55.4, 46.7, 42.6, 39.4, 35.7, 26.4, 23.9.

IR (v_{max}, cm⁻¹) 2992 (w), 2927 (w), 2842 (w), 1779 (s), 1689 (s), 1613 (w), 1512 (s), 1386 (s), 1246 (s), 1181 (m), 1119 (w), 1076 (w), 1044 (m), 837 (w), 759 (m).

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₉NNaO₄S⁺ 344.0927; Found 344.0931.

The enantiomeric ratio was determined to be 97:3 by SFC analysis: IA column, 16% MeCN in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 1.8 min, tR(minor) = 5.5 min.

3-(2-((4-Chlorobenzyl)thio)cyclobutane-1-carbonyl)oxazolidin-2-one (4h)

<u>*Racemic:*</u> Prepared according to the general procedure C from (4-chlorophenyl)methanethiol (15.9 mg, 13.2 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr 93:7) was purified by flash chromatography using PE/Et₂O 20:80 to afford **4h** and **4'h** as an oil (30.2 mg, 92.7 μ mol, 93% yield).

<u>Enantioenriched</u>: Prepared according to the general procedure E from (4-chlorophenyl)methanethiol (15.9 mg, 13.2 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr >95:5) was purified by prep-TLC using PE/Et₂O 30:70 to afford **4h** and **4'h** as an oil (32.5 mg, 99.8 μ mol, quant.).

Rf(PE/Et₂O 2:8): 0.67.

 $[\alpha]_D^{23} = 76.7 (c = 0.0867, CHCl_3).$

¹H NMR (400 MHz, chloroform-*d*) δ 7.34 – 7.20 (m, 4H, Ar*H*), 4.46 – 4.28 (m, 2H, OC*H*₂), 4.19 – 4.04 (m, 1H, SC*H*), 4.00 – 3.77 (m, 3H, NC*H*₂ + C*H*C(O)), 3.74 – 3.60 (m, 2H, SC*H*₂), 2.48

– 2.31 (m, 1H, SCHC H_2), 2.25 – 2.08 (m, 1H, C H_2 CHC(O)), 1.99 – 1.77 (m, 2H, SCHC H_2 + C H_2 CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.1, 153.1, 137.5, 132.6, 130.4, 128.6, 62.2, 46.9, 42.5, 39.3, 35.7, 26.4, 23.9.

IR (v_{max}, cm⁻¹) 2986 (w), 2948 (w), 2923 (w), 2866 (w), 1777 (s), 1689 (s), 1490 (m), 1384 (s), 1274 (m), 1220 (s), 1116 (m), 1091 (m), 1045 (m), 835 (w), 755 (m).

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₆CINNaO₃S⁺ 348.0432; Found 348.0439.

The enantiomeric ratio was determined to be 98:2 by SFC analysis: IA column, 16% MeCN in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 2.0 min, tR(minor) = 5.4 min.

3-(2-((Furan-2-ylmethyl)thio)cyclobutane-1-carbonyl)oxazolidin-2-one (4i)

<u>*Racemic:*</u> Prepared according to the general procedure C from 2-furylmethanethiol (11.4 mg, 10.1 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr >95:5) was purified by flash chromatography using PE/Et₂O 30:70 to afford **4i** and **4'i** as an oil (28.0 mg, 99.5 μ mol, quant.).

<u>Enantioenriched</u>: Prepared according to the general procedure E from 2-furylmethanethiol (11.4 mg, 10.1 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr 90:10) was purified by prep-TLC using PE/Et₂O 25:75 to afford **4i** and **4'i** as an oil (22.2 mg, 78.9 μ mol, 79% yield).

Rf(PE/Et₂O 3:7): 0.39.

 $[\alpha]_D^{23} = 94.3$ (c = 0.0267, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 7.34 (dd, J = 1.8, 0.8 Hz, 1H, Ar*H*), 6.29 (dd, J = 3.2, 1.9 Hz, 1H, Ar*H*), 6.23 – 6.16 (m, 1H, Ar*H*), 4.40 (t, J = 8.1 Hz, 2H, OC*H*₂), 4.19 – 4.06 (m, 1H, SC*H*), 4.03 – 3.90 (m, 3H, NC*H*₂ + C*H*C(O)), 3.81 – 3.67 (m, 2H, SC*H*₂), 2.53 – 2.38 (m, 1H, SCHC*H*₂), 2.28 – 2.12 (m, 1H, C*H*₂CHC(O)), 2.04 – 1.86 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.2, 153.1, 152.1, 142.1, 110.5, 107.4, 62.3, 46.8, 42.6, 39.4, 28.3, 26.5, 23.7.

IR (v_{max}, cm⁻¹) 2990 (w), 2946 (w), 1780 (s), 1689 (s), 1472 (w), 1386 (s), 1270 (m), 1220 (m), 1123 (w), 1077 (w), 1045 (m), 743 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + Na]^+$ Calcd for $C_{13}H_{15}NNaO_4S^+$ 304.0614; Found 304.0625.

The enantiomeric ratio was determined to be 99:1 by SFC analysis: IA column, 18% MeOH in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 1.1 min, tR(minor) = 2.8 min.

3-(2-(Phenethylthio)cyclobutane-1-carbonyl)oxazolidin-2-one (4j)

<u>*Racemic:*</u> Prepared according to the general procedure C from 2-phenylethanethiol (13.8 mg, 13.6 μ L, 100 μ mol, 1.00 equiv.) and cyclobutene **2e** (18.4 mg, 110 μ mol, 1.10 equiv.). The crude product (dr 95:5) was purified by flash chromatography using PE/Et₂O 20:80 to afford **4j** and **4'j** as an oil (23.8 mg, 77.9 μ mol, 78% yield).
<u>Enantioenriched:</u> Prepared according to the general procedure E from 2-phenylethanethiol (13.8 mg, 13.6 μ L, 100 μ mol, 1.00 equiv.). The crude product (dr 85:15) was purified by prep-TLC using PE/Et₂O 25:75 to afford **4j** and **4'j** as an oil (28.0 mg, 91.7 μ mol, 92% yield).

Rf(PE/Et₂O 2:8): 0.51.

 $[\alpha]_D^{23} = 163.4$ (c = 0.0133, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 7.34 – 7.23 (m, 2H, Ar*H*), 7.21 (dd, *J* = 7.1, 3.6 Hz, 3H, Ar*H*), 4.48 – 4.29 (m, 2H, OC*H*₂), 4.19 – 4.05 (m, 1H, SC*H*), 4.04 – 3.83 (m, 3H, NC*H*₂ + C*H*C(O)), 2.98 – 2.67 (m, 4H, SC*H*₂C*H*₂Ph), 2.54 – 2.40 (m, 1H, SCHC*H*₂), 2.32 – 2.16 (m, 1H, C*H*₂CHC(O)), 2.09 – 1.85 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.3, 153.2, 140.8, 128.7, 128.6, 126.4, 62.3, 46.9, 42.6, 39.4, 36.7, 33.0, 26.7, 23.6.

IR (v_{max}, cm⁻¹) 3027 (w), 2947 (w), 2925 (w), 2859 (w), 1782 (s), 1691 (s), 1496 (w), 1476 (w), 1389 (s), 1265 (m), 1225 (m), 1119 (m), 1083 (w), 1051 (w).

HRMS (APCI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₉NNaO₃S⁺ 328.0978; Found 328.0975.

The enantiomeric ratio was determined to be 95:5 by SFC analysis: IA column, 9% MeCN in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 2.7 min, tR(minor) = 6.3 min.

1.7. <u>Product modifications</u> Benzyl 2-((2-bromophenyl)thio)cyclobutane-1-carboxylate (3a)

Racemic: The racemic compound was described above as **3a** (page 11).

<u>Enantioenriched</u>: Cyclobutane **4a** (28.0 mg, 78.6 µmol, 1.00 equiv.) was diluted in BnOH (786 µL) and DMAP (2.88 mg, 23.6 µmol, 0.300 equiv.) was added. The reaction mixture was stirred at rt for 18 h. The mixture was then concentrated under reduced pressure. The crude mixture was purified by prep-TLC using PE/Et₂O 95:5 to afford **3a** as an oil (13.5 mg, 35.8 µmol, 46% yield).

 $[\alpha]_D^{23} = 56.4$ (c = 0.0333, CHCl₃).

The enantiomeric ratio was determined to be 97:3 by SFC analysis: IA column, 15% MeOH in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 22.9 min, tR(minor) = 26.9 min.

Benzyl 2-((2-bromophenyl)sulfonyl)cyclobutane-1-carboxylate (5)

<u>*Racemic:*</u> Cyclobutane **3a** (37.7 mg, 100 μ mol, 1.00 equiv.) was diluted in DCM (1.00 mL) and *m*CPBA (56.0 mg, 250 μ mol, 2.50 equiv.) was then added at 0 °C. The reaction was stirred at rt for 3 h. The reaction was then diluted in DCM (10 mL) and washed with sat. NaHCO₃ solution (10 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product **5** (40.0 mg, 97.7 μ mol, 98% yield) was pure enough without further purification.

<u>Enantioenriched</u>: the same procedure as described above was implemented on enantioenriched **3a** (15.1 mg, 40.0 μ mol, 1.00 equiv.) to afford **5** as an oil (10.3 mg, 25.2 μ mol, 95% yield).

 $[\alpha]_D^{23} = 7.3$ (c = 0.0400, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 8.10 (dd, J = 7.7, 1.9 Hz, 1H, Ar*H*), 7.63 (dd, J = 7.8, 1.3 Hz, 1H, Ar*H*), 7.46 – 7.32 (m, 5H, Ar*H*), 7.19 (dd, J = 6.6, 3.0 Hz, 2H, Ar*H*), 4.99 – 4.87 (m, 2H, OC*H*₂Ph), 4.83 – 4.70 (m, 1H, SC*H*), 3.67 – 3.53 (m, 1H, C*H*C(O)), 2.71 – 2.54 (m, 1H, SCHC*H*₂), 2.43 – 2.12 (m, 3H, C*H*₂CHC(O) + SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 171.5, 137.0, 135.6, 135.4, 134.8, 132.6, 128.7, 128.5, 128.4, 127.9, 121.4, 67.0, 56.0, 39.1, 21.1, 18.9.

IR (v_{max} , cm⁻¹) 3069 (w), 2957 (w), 1733 (s), 1573 (w), 1447 (m), 1314 (s), 1249 (m), 1199 (m), 1150 (s), 1026 (m), 737 (s).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₁₈H₁₈BrO₄S⁺ 409.0104; Found 409.0120.

The enantiomeric ratio was determined to be 97:3 by SFC analysis: IC column, 7% MeCN in supercritical CO₂, flow rate 0.75 mL/min, λ = 270.4 nm. tR(major) = 65.4 min, tR(minor) = 70.3 min.

Methyl 2-((2-bromophenyl)thio)cyclobutane-1-carboxylate (6)

<u>*Racemic:*</u> Cyclobutane **4a** (35.6 mg, 100 μ mol, 1.00 equiv.) was diluted in dry MeOH (1.0 mL) and DMAP (3.67 mg, 30.0 μ mol, 0.300 equiv.) was added. The reaction mixture was stirred at rt for 2 h. The mixture was then concentrated under reduced pressure. The crude mixture was purified by prep-TLC using PE/Et₂O 90:10 to afford **8** as an oil (10.5 mg, 34.9 μ mol, 87% yield).

<u>Enantioenriched:</u> the same procedure as described above was implemented on enantioenriched **4a** (35.6 mg, 100 µmol, 1.00 equiv.) to afford **8** as an oil (11.4 mg, 37.8 µmol, 95% yield).

Rf(PE/Et₂O 9:1): 0.37.

 $[\alpha]_D^{23} = 91.3$ (c = 0.0100, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 7.54 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.36 – 7.17 (m, 2H, Ar*H*), 7.03 (dt, *J* = 8.4, 4.5 Hz, 1H, Ar*H*), 4.18 (q, *J* = 8.3 Hz, 1H, SC*H*), 3.66 (s, 3H, OC*H*₃), 3.19 (q, *J* = 8.8 Hz, 1H, C*H*C(O)), 2.56 – 2.43 (m, 1H, SCHC*H*₂), 2.40 – 2.28 (m, 1H, C*H*₂CHC(O)), 2.22 (p, *J* = 9.2 Hz, 1H, C*H*₂CHC(O)), 2.16 – 1.91 (m, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 173.9, 137.2, 133.2, 129.3, 127.9, 127.1, 123.7, 52.1, 45.9, 41.7, 27.2, 22.6.

IR (v_{max}, cm^{-1}) 3059 (w), 2993 (w), 2951 (m), 2922 (m), 2852 (w), 1732 (s), 1574 (w), 1448 (m), 1361 (m), 1247 (m), 1210 (m), 1165 (m), 1039 (m), 1022 (m).

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₂H₁₃BrNaO₂S⁺ 322.9712; Found 322.9716.

The enantiomeric ratio was determined to be 97:3 by SFC analysis: IC column, 6% MeOH in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 1.3 min, tR(minor) = 1.5 min.

tert-Butyl 2-((2-bromophenyl)thio)cyclobutane-1-carboxylate (7)

<u>*Racemic:*</u> Cyclobutane **4a** (71.2 mg, 200 µmol, 1.00 equiv.) was diluted in THF (1.3 mL) and H₂O (0.7 mL). LiOH monohydrate (16.8 mg, 400 µmol, 2.00 equiv.) and hydrogen peroxide 30w% (136 mg, 123 µL, 1.20 mmol, 6.00 equiv) were added at 0 °C. The reaction mixture was stirred at rt for 18 h. The reaction mixture was quenched with sat. Na₂SO₃ (1 mL), diluted with sat. NaHCO₃ (10 mL), washed with EtOAc (10 mL). The pH value of the aqueous layer was adjusted to 1 using HCI (1 M). The mixture was extracted with EtOAc (3 x 20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure.

To the crude mixture was added DMAP (2.44 mg, 20.0 μ mol, 0.100 equiv.), Boc₂O (65.5 mg, 300 μ mol, 1.50 equiv.), NEt₃ (40.5 mg, 55.8 μ L, 400 μ mol, 2.00 equiv.) and *t*BuOH (29.6 mg, 38.0 μ L, 400 μ mol, 2.00 equiv.) in this order. The reaction was stirred neat at rt for 18 h. The reaction mixture was diluted with DCM (10 mL), washed with brine (2 x 10 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was purified by prep-TLC using PE/Et₂O 90:10 to afford **9** as an oil (31.6 mg, 92.1 μ mol, 46% yield).

<u>Enantioenriched:</u> the same procedure as described above was implemented on enantioenriched **4a** (71.2 mg, 200 µmol, 1.00 equiv.) to afford **11** as an oil (28.9 mg, 84.2 µmol, 42% yield).

Rf(PE/EtOAc 9:1): 0.85.

 $[\alpha]_D^{23} = 37.8 (c = 0.0270, CHCl_3).$

¹H NMR (400 MHz, chloroform-*d*) δ 7.53 (dd, J = 7.9, 1.3 Hz, 1H, Ar*H*), 7.37 – 7.14 (m, 2H, Ar*H*), 7.02 (ddd, J = 7.9, 7.3, 1.8 Hz, 1H, Ar*H*), 4.14 (q, J = 8.2 Hz, 1H, SC*H*), 3.14 – 3.01 (m, 1H, C*H*C(O)), 2.54 – 2.41 (m, 1H, SCHC*H*₂), 2.41 – 2.24 (m, 1H, C*H*₂CHC(O)), 2.22 – 1.95 (m, 2H, SCHC*H*₂ + C*H*₂CHC(O)), 1.42 (s, 9H, C(C*H*₃)₃).

¹³C NMR (101 MHz, chloroform-*d*) δ 172.9, 137.6, 133.1, 129.2, 127.9, 126.9, 123.5, 81.0, 47.5, 41.4, 28.1, 26.7, 22.5.

IR (v_{max}, cm⁻¹) 3062 (w), 2978 (m), 2938 (w), 2873 (w), 1721 (s), 1451 (m), 1367 (m), 1249 (m), 1151 (s), 1021 (w), 844 (w).

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₉BrNaO₂S⁺ 365.0181; Found 365.0190.

The enantiomeric ratio was determined to be 97:3 by SFC analysis: IA column, 1% MeCN in supercritical CO₂, flow rate 0.75 mL/min, λ = 214.4 nm. tR(major) = 7.1 min, tR(minor) = 8.3 min.

(2-((2-Bromophenyl)thio)cyclobutyl)methanol (8)

<u>*Racemic:*</u> Cyclobutane **3a** (37.7 mg, 100 µmol, 1.00 equiv.) was diluted in dry THF (2.50 mL) and the mixture was cooled to 0 °C. Diisobutylaluminium hydride (56.9 mg, 400 µL, 400 µmol, 1 M in toluene, 4.00 equiv.) was added dropwise and the reaction mixture was stirred at room temperature for 10 minutes. The reaction was diluted with ether and cooled to 0°C, 400 µL of water were added, followed by 400 µL of 15 % sodium hydroxide and 900 µL of water. The mixture was warmed to room temperature and stirred for 15 min. MgSO₄ was added and the mixture stirred for an additional 15 min. The mixture was filtered and concentrated under reduced pressure. The crude product was purified by prep-TLC using PE/EtOAc 60:40 to afford **7** as an oil (27.2 mg, 99.6 µmol, quant.).

<u>Enantioenriched</u>: To a solution of cyclobutane **4a** (35.6 mg, 100 μ mol, 1.00 equiv.) in THF (0.8 mL) and H₂O (0.2 mL) was added NaBH₄ (15.1 mg, 400 μ mol, 4.00 equiv.). The reaction was stirred at rt for 2 h. The reaction mixture was quenched with sat. NH₄Cl (10 mL), extracted with EtOAc (3 x 10 mL) dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by prep-TLC using PE/EtOAc 60:40 to afford **7** as an oil (25.1 mg, 91.9 μ mol, 92% yield).

Rf(PE/EtOAc 6:4): 0.63.

 $[\alpha]_D^{23} = 129.3 (c = 0.0700, CHCl_3).$

¹H NMR (400 MHz, chloroform-*d*) δ 7.53 (d, *J* = 7.9 Hz, 1H, Ar*H*), 7.26 – 7.23 (m, 2H, Ar*H*), 7.01 (dp, *J* = 8.4, 4.1 Hz, 1H, Ar*H*), 3.76 (q, *J* = 8.0 Hz, 1H, SC*H*), 3.69 (t, *J* = 4.5 Hz, 2H, CH₂OH), 2.60 (ddt, *J* = 13.7, 8.4, 4.2 Hz, 1H, SCHC*H*), 2.55 – 2.43 (m, 1H, SCHC*H*₂), 2.14 (qd, *J* = 9.0, 3.1 Hz, 1H, SCHCH₂C*H*₂), 2.02 (dq, *J* = 11.2, 8.9 Hz, 1H, SCHC*H*₂), 1.92 – 1.79 (m, 1H, SCHCH₂C*H*₂), 1.41 (t, *J* = 5.0 Hz, 1H, O*H*).

¹³C NMR (101 MHz, chloroform-*d*) δ 138.3, 133.1, 128.6, 127.9, 126.7, 123.3, 64.7, 45.0, 41.0, 28.1, 21.1.

IR (v_{max} , cm⁻¹) 3372 (m), 2979 (m), 2938 (m), 2863 (m), 1574 (w), 1448 (s), 1429 (m), 1253 (m), 1112 (m), 1067 (m), 1022 (s).

HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₁H₁₃BrNaOS⁺ 294.9763; Found 294.9763.

The enantiomeric ratio was determined to be 97:3 by SFC analysis: IA column, 6% MeOH in supercritical CO₂, flow rate 0.50 mL/min, λ = 270.4 nm. tR(major) = 35.6 min, tR(minor) = 41.3 min.

Enantioenriched 2-((2-Bromophenyl)thio)-N-methoxy-N-methylcyclobutane-1carboxamide (3z)

Racemic: The racemic compound was described above as 3z (page 25).

<u>Enantioenriched:</u> Cyclobutane **4a** (17.8 mg, 50.0 μ mol, 1.00 equiv.), methoxy(methyl)amine;hydrochloride (14.6 mg, 150 μ mol, 3.00 equiv.), and Yb(OTf)₃ (3.10 mg, 5.00 μ mol, 0.100 equiv.) were diluted in dry MeCN (0.5 mL) and DIPEA (19.4 mg, 26.1 μ L, 150 μ mol, 3.00 equiv.) was added. The reaction mixture was stirred at 90 °C for 48 h. The mixture was then concentrated under reduced pressure. The crude mixture was purified by prep-TLC using PE/EtOAc 80:20 to afford **3z** as an oil (10.2 mg, 30.9 μ mol, 62% yield).

 $[\alpha]_D^{23} = 62.7$ (c = 0.0110, CHCl₃).

The enantiomeric ratio was determined to be 97:3 by SFC analysis: IC column, 10% MeOH in supercritical CO₂, flow rate 2.0 mL/min, λ = 214.4 nm. tR(major) = 2.3 min, tR(minor) = 2.1 min.

1-(2-((2-Bromophenyl)thio)cyclobutyl)ethan-1-one (9)

<u>*Racemic:*</u> Cyclobutane **3z** (66.0 mg, 200 µmol, 1.00 equiv.) was diluted in dry THF (2.0 mL) and MeMgBr (28.6 mg, 80.0 µL, 240 µmol, 3.00M in Et₂O, 1.20 equiv.) was added at -78 °C. The reaction mixture was stirred at 0 °C for 1 h. The reaction mixture was quenched with sat. NH₄Cl (10 mL), extracted with EtOAc (3 x 10 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to afford **10** as an oil (52.4 mg, 184 µmol, 92% yield) which was pure enough without further purification.

<u>Enantioenriched</u>: the same procedure as described above was implemented on enantioenriched 3z (7.90 mg, 23.9 µmol, 1.00 equiv.) to afford 10 as an oil (6.20 mg, 21.7 µmol, 91% yield).

 $[\alpha]_D^{23} = 60.7$ (c = 0.0567, CHCl₃).

¹H NMR (400 MHz, chloroform-*d*) δ 7.62 – 7.46 (m, 1H, Ar*H*), 7.32 – 7.16 (m, 2H, Ar*H*), 7.03 (ddd, *J* = 8.0, 6.6, 2.3 Hz, 1H, Ar*H*), 4.12 (q, *J* = 8.0 Hz, 1H, SC*H*), 3.32 (q, *J* = 8.3 Hz, 1H, C*H*C(O)), 2.50 – 2.39 (m, 1H, SCHC*H*₂), 2.39 – 2.23 (m, 1H, C*H*₂CHC(O)), 2.21 – 1.96 (m, 5H, C*H*₃ + SCHC*H*₂ + C*H*₂CHC(O)).

¹³C NMR (101 MHz, chloroform-*d*) δ 207.5, 137.4, 133.2, 129.1, 128.0, 127.1, 123.4, 53.0, 40.3, 28.3, 26.6, 21.8.

IR $(v_{max}, cm^{-1}) 3059 (w)$, 2947 (m), 2862 (w), 2098 (w), 1744 (m), 1710 (s), 1476 (m), 1448 (s), 1430 (m), 1361 (m), 1252 (m), 1188 (m), 1022 (m), 850 (m).

HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₁₂H₁₄BrOS⁺ 284.9943; Found 284.9948.

The enantiomeric ratio was determined to be 97:3 by chiral HPLC analysis: IA column, 99:1 hexane/isopropanol, flow rate 1.0 mL/min, λ = 214.4 nm. tR(major) = 9.6 min, tR(minor) = 10.7 min.

2-[(2-Bromophenyl)thio]cyclobutanecarboxylic acid (10)

To a solution of cyclobutane **3a** (113 mg, 300 μ mol, 1.00 equiv.) in THF (1.20 mL) and water (1.20 mL) was added sodium hydroxide (48.0 mg, 1.20 mmol, 4.00 equiv.). The reaction was stirred at rt for 4 h. The mixture was washed with EtOAc (3 x 20 mL). The pH value of the

aqueous layer was adjusted to 1 using HCI (1 M). The mixture was extracted with EtOAc (3 x 20 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure to afford **6** (86.0 mg, 299 μ mol, quant.) as an amorphous solid that was pure enough without further purification.

¹H NMR (400 MHz, chloroform-*d*) δ 7.55 (d, J = 8.1 Hz, 1H, Ar*H*), 7.30 – 7.20 (m, 2H, Ar*H*), 7.09 – 6.95 (m, 1H, Ar*H*), 4.18 (q, J = 8.2 Hz, 1H, SC*H*), 3.22 (q, J = 8.7 Hz, 1H, C*H*C(O)), 2.52 (ddt, J = 11.8, 8.7, 4.4 Hz, 1H, SCHC*H*₂), 2.40 (qd, J = 9.4, 3.5 Hz, 1H, C*H*₂CHC(O)), 2.32 – 2.18 (m, 1H, C*H*₂CHC(O)), 2.09 (dq, J = 11.3, 9.1 Hz, 1H, SCHC*H*₂).

¹³C NMR (101 MHz, chloroform-*d*) δ 178.6, 136.9, 133.2, 129.6, 128.0, 127.4, 124.0, 45.4, 41.5, 27.2, 22.6.

IR (v_{max}, cm⁻¹) 3059 (m), 2953 (m), 1704 (s), 1559 (w), 1451 (s), 1422 (m), 1260 (m), 1224 (m), 1019 (m), 937 (w), 910 (w), 744 (s).

HRMS (ESI/QTOF) m/z: $[M + H_{-1}]^{-}$ Calcd for $C_{11}H_{10}BrO_2S^{-}$ 284.9590; Found 284.9586.

1.8. Proposed model for stereoinduction

Figure S1: Proposed stereoinduction model applying Houk's Brønsted acid-hydrogen bonding model.⁷

⁷ a) M. N. Grayson, K. N. Houk, *J. Am. Chem. Soc.* **2016**, *138*, 1170–1173; b) J. Guo, M. W. Wong, *J. Org. Chem.* **2017**, *8*2, 4362–4368.

2. <u>References</u>

- [1] E. G. L. Robert, V. Pirenne, M. D. Wodrich, J. Waser, *Angew. Chem. Int. Ed.* **2023**, *62*, e202302420.
- [2] A. A. Homon, O. V. Hryshchuk, S. Trofymchuk, O. Michurin, Y. Kuchkovska, D. S. Radchenko, O. O. Grygorenko, *Eur. J. Org. Chem.* 2018, 2018, 5596–5604.
- [3] E. G. L. Robert, J. Waser, Chem. Eur. J. 2025, 31, e202403986.
- [4] H. Xu, W. Zhang, D. Shu, J. B. Werness, W. Tang, Angew. Chem. Int. Ed. 2008, 47, 8933– 8936.
- [5] J. M. Robinson, S. F. Tlais, J. Fong, R. L. Danheiser, *Tetrahedron* 2011, 67, 9890–9898.
- [6] L. Ghisu, N. Melis, L. Serusi, A. Luridiana, F. Soddu, F. Secci, P. Caboni, R. Guillot, D. J. Aitken, A. Frongia, *Org. Biomol. Chem.* **2019**, *17*, 6143–6147.
- [7] a) M. N. Grayson, K. N. Houk, J. Am. Chem. Soc. 2016, 138, 1170–1173; b) J. Guo, M. W. Wong, J. Org. Chem. 2017, 82, 4362–4368.

3. X-rays crystallographic data

3.1 Compound 3'I (CCDC number 2383043)

The crystal suitable for X-ray measurement for compound **3'I** was obtained by evaporation of dichloromethane.

Experimental. Single clear pale colourless prism-shaped crystals of **6x** were used as supplied. A suitable crystal with dimensions $0.22 \times 0.04 \times 0.04$ mm³ was selected and mounted on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady T = 139.98(10) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2019/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^2 .

Compound	3'1
Formula	$C_{18}H_{18}O_3S$
D _{calc.} / g cm ⁻³	1.317
μ/mm^{-1}	1.896
Formula Weight	314.38
Colour	clear pale colourless
Shape	prism
Size/mm ³	0.22×0.04×0.04
T/K	139.98(10)
Crystal System	monoclinic
Space Group	C2/c
a/Å	19.0857(3)
b/Å	5.32972(8)
c/Å	31.1946(4)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	92.5193(14)
γ/°	90
V/Å ³	3170.09(8)
Ζ	8
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu K $_{\alpha}$
$\Theta_{min}/^{\circ}$	2.836
$\Theta_{max}/^{\circ}$	75.774
Measured Refl's.	31855
Indep't Refl's	3263
Refl's I≥2 <i>σ</i> (I)	2815
Rint	0.0363
Parameters	274
Restraints	0
Largest Peak	0.303
Deepest Hole	-0.291
GooF	1.040
wR2 (all data)	0.0997
wR_2	0.0948
R1 (all data)	0.0438
R_1	0.0365

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3'l**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
S1	2099.9(2)	6857.5(7)	3004.5(2)	32.07(12)
01	4937.3(6)	5359(2)	3807.5(4)	38.7(3)
02	527.5(6)	6121(2)	3479.3(4)	39.2(3)
03	1215.1(6)	4102(2)	3969.5(3)	35.5(3)
C1	1674.4(8)	3880(3)	2914.1(5)	29.3(3)
C2	1020.1(8)	3983(3)	2604.3(5)	32.2(3)
C3	678.4(8)	2013(3)	2890.1(5)	32.7(3)
C4	1218.5(8)	2622(3)	3260.7(5)	30.0(3)
C5	2926.4(7)	6150(3)	3257.6(5)	28.4(3)
C6	3345.5(8)	4157(3)	3139.4(5)	32.7(3)
C7	4012.9(8)	3850(3)	3321.2(5)	31.9(3)
C8	4279.0(8)	5561(3)	3620.0(5)	31.3(3)
C9	3869.2(9)	7567(3)	3737.8(6)	42.9(4)
C10	3194.6(9)	7830(3)	3562.1(6)	39.5(4)
C11	945.2(7)	4470(3)	3574.0(5)	30.7(3)
C12	937.0(10)	5709(4)	4302.5(5)	45.3(4)

Atom	X	у	Z	U_{eq}
C13	1139.4(15)	4712(6)	4709.1(7)	33.7(15)
C14	1604.2(18)	6034(6)	4980.1(7)	43.1(10)
C15	1815.5(18)	5037(7)	5376.7(7)	47.7(11)
C16	1562.1(18)	2718(6)	5502.3(8)	51.6(18)
C17	1097(2)	1396(5)	5231.3(11)	47.2(12)
C18	885.9(18)	2393(6)	4834.7(11)	44.4(10)
C19	1197.3(14)	4485(6)	4743.3(7)	41.6(19)
C24	728.9(11)	3065(8)	4970.9(11)	41.2(10)
C23	946.3(14)	1962(7)	5358.0(11)	42.7(11)
C22	1632.2(16)	2278(6)	5517.5(8)	39.0(13)
C21	2100.6(14)	3698(7)	5289.9(9)	43.4(10)
C20	1883.1(14)	4802(7)	4902.8(8)	42.1(10)

Table 2: Anisotropic Displacement Parameters (×10⁴) for **3'l**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U 12
S1	28.1(2)	25.4(2)	42.6(2)	1.40(15)	-0.05(14)	3.13(13)
01	29.4(6)	35.2(6)	50.9(7)	-4.0(5)	-3.2(5)	4.0(5)
02	40.0(6)	37.6(6)	40.2(6)	2.0(5)	5.0(5)	13.8(5)
03	36.1(6)	38.6(6)	31.8(5)	-4.7(5)	-0.2(4)	7.5(5)
C1	26.9(7)	27.0(7)	34.1(8)	-1.1(6)	3.5(6)	2.3(6)
C2	32.4(8)	32.9(8)	31.4(8)	0.0(6)	1.3(6)	0.5(6)
C3	30.7(8)	31.6(8)	35.8(8)	-0.1(6)	1.2(6)	-1.2(6)
C4	30.0(7)	28.1(7)	32.0(7)	2.2(6)	1.5(6)	3.4(6)
C5	26.5(7)	24.6(7)	34.2(7)	2.1(6)	4.2(6)	1.1(5)
C6	34.8(8)	30.2(8)	33.1(8)	-4.5(6)	1.0(6)	4.5(6)
C7	32.6(8)	28.8(7)	34.4(8)	-1.8(6)	2.4(6)	7.4(6)
C8	27.1(7)	27.9(7)	39.0(8)	2.1(6)	1.6(6)	0.5(6)
С9	34.6(9)	30.8(8)	62.7(11)	-15.8(8)	-5.2(8)	2.4(7)
C10	33.1(8)	28.2(8)	56.8(10)	-10.5(7)	-0.7(7)	5.0(6)
C11	27.2(7)	30.5(7)	34.6(8)	2.1(6)	2.2(6)	1.7(6)
C12	51.8(10)	45.1(10)	39.3(9)	-9.2(8)	5.0(7)	12.3(8)
C13	32(3)	35(3)	34(3)	-7(2)	5(2)	4(2)
C14	51(2)	46(2)	33.3(17)	-6.9(15)	7.1(15)	-3.8(19)
C15	54(2)	57(3)	32.2(18)	-8.9(17)	1.0(15)	-7(2)
C16	72(4)	55(3)	28(3)	-1(2)	7(3)	9(3)
C17	54(3)	46(2)	43(3)	0.8(19)	12(2)	-2(2)
C18	45(2)	44(2)	45(3)	-7.9(18)	3.4(18)	0.2(18)
C19	52(4)	46(4)	27(3)	-4(3)	-1(3)	16(3)
C24	37(2)	48(2)	39(2)	-5.4(18)	1.8(16)	-0.1(17)
C23	49(2)	44(2)	36(2)	0.6(18)	6.8(18)	0.9(19)
C22	45(3)	38(2)	34(3)	-1.3(19)	2(2)	3(2)
C21	46(2)	43(2)	40.5(19)	0.0(16)	-6.7(16)	3.6(18)
C20	45(2)	42(2)	39.9(19)	2.6(16)	3.7(15)	1.7(17)

Table 3: Bond Lengths in Å for 3'l.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C1	1.7992(15)	C1	C4	1.568(2)
S1	C5	1.7730(15)	C2	C3	1.541(2)
01	C8	1.3667(18)	C3	C4	1.549(2)
02	C11	1.2149(18)	C4	C11	1.497(2)
03	C11	1.3304(18)	C5	C6	1.389(2)
03	C12	1.4640(19)	C5	C10	1.387(2)
C1	C2	1.546(2)	C6	C7	1.381(2)

Atom	Atom	Length/Å	
C7	C8	1.384(2)	
C8	C9	1.384(2)	
C9	C10	1.384(2)	
C12	C13	1.413(3)	
C12	C19	1.582(3)	
C13	C14	1.3900	
C13	C18	1.3900	
C14	C15	1.3900	
C15	C16	1.3900	

Atom	Atom	Length/Å	
C16	C17	1.3900	
C17	C18	1.3900	
C19	C24	1.3900	
C19	C20	1.3900	
C24	C23	1.3900	
C23	C22	1.3900	
C22	C21	1.3900	
C21	C20	1.3900	

Table 4: Bond Angles in ° for 3'l.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C5	S1	C1	105.59(7)	02	C11	C4	124.13(13)
C11	03	C12	115.72(12)	03	C11	C4	112.11(12)
C2	C1	S1	114.41(11)	03	C12	C19	105.41(16)
C2	C1	C4	89.35(11)	C13	C12	03	108.88(17)
C4	C1	S1	121.97(10)	C14	C13	C12	119.8(2)
C3	C2	C1	87.99(11)	C14	C13	C18	120.0
C2	C3	C4	90.24(11)	C18	C13	C12	120.2(2)
C3	C4	C1	86.93(11)	C13	C14	C15	120.0
C11	C4	C1	112.88(12)	C14	C15	C16	120.0
C11	C4	C3	112.68(12)	C15	C16	C17	120.0
C6	C5	S1	123.76(12)	C18	C17	C16	120.0
C10	C5	S1	117.51(11)	C17	C18	C13	120.0
C10	C5	C6	118.43(14)	C24	C19	C12	118.95(19)
C7	C6	C5	120.86(14)	C24	C19	C20	120.0
C6	C7	C8	120.19(14)	C20	C19	C12	121.05(19)
01	C8	C7	122.64(14)	C19	C24	C23	120.0
01	C8	C9	117.84(14)	C22	C23	C24	120.0
С9	C8	C7	119.52(14)	C21	C22	C23	120.0
C8	C9	C10	120.01(15)	C22	C21	C20	120.0
С9	C10	C5	120.97(15)	C21	C20	C19	120.0
02	C11	03	123.76(14)				

Table 5: Torsion Angles in ° for 3'l.

Atom	Atom	Atom	Atom	Angle/°
S1	C1	C2	C3	-142.77(11)
S1	C1	C4	C3	136.19(12)
S1	C1	C4	C11	22.83(17)
S1	C5	C6	C7	173.69(12)
S1	C5	C10	C9	-172.51(14)
01	C8	C9	C10	-178.94(16)
03	C12	C13	C14	113.4(2)
03	C12	C13	C18	-65.3(3)
03	C12	C19	C24	-102.1(2)
03	C12	C19	C20	77.6(3)
C1	S1	C5	C6	41.02(15)
C1	S1	C5	C10	-145.38(13)
C1	C2	C3	C4	17.80(11)
C1	C4	C11	02	65.42(19)
C1	C4	C11	03	-114.37(14)
C2	C1	C4	C3	17.50(11)
C2	C1	C4	C11	-95.86(13)
C2	C3	C4	C1	-17.56(11)
C2	C3	C4	C11	95.99(14)
С3	C4	C11	02	-31.1(2)

Atom	Atom	Atom	Atom	Angle/°
C3	C4	C11	03	149.13(13)
C4	C1	C2	C3	-17.58(11)
C5	S1	C1	C2	-166.56(10)
C5	S1	C1	C4	87.87(12)
C5	C6	C7	C8	-1.2(2)
C6	C5	C10	C9	1.4(3)
C6	C7	C8	01	-179.48(14)
C6	C7	C8	C9	0.6(2)
C7	C8	C9	C10	1.0(3)
C8	C9	C10	C5	-2.0(3)
C10	C5	C6	C7	0.1(2)
C11	03	C12	C13	165.89(18)
C11	03	C12	C19	166.77(16)
C12	03	C11	02	4.6(2)
C12	03	C11	C4	-175.65(13)
C12	C13	C14	C15	-178.7(3)
C12	C13	C18	C17	178.7(3)
C12	C19	C24	C23	179.7(3)
C12	C19	C20	C21	-179.7(3)
C13	C14	C15	C16	0.0
C14	C13	C18	C17	0.0
C14	C15	C16	C17	0.0
C15	C16	C17	C18	0.0
C16	C17	C18	C13	0.0
C18	C13	C14	C15	0.0
C19	C24	C23	C22	0.0
C24	C19	C20	C21	0.0
C24	C23	C22	C21	0.0
C23	C22	C21	C20	0.0
C22	C21	C20	C19	0.0
C20	C19	C24	C23	0.0

'	Table 6: Hydrogen Fractional Ato	mic Coordinates (×10 ⁴)) and Equivalent I	sotropic Displacement P	'arameters
1	$(Å^2 \times 10^3)$ for 3'l . U_{eq} is defined as 1	/3 of the trace of the or	thogonalised <i>U</i> _{ij} .		

Atom	х	у	Z	Ueq
H1	5101(13)	4080(50)	3720(8)	74(8)
H1A	2012(9)	2720(30)	2807(5)	34(4)
H2A	755(10)	5630(40)	2625(6)	49(5)
H2B	1099(9)	3590(30)	2302(6)	36(5)
H3A	185(10)	2290(30)	2956(5)	36(5)
H3B	741(9)	300(40)	2788(5)	38(5)
H4	1464(9)	1240(30)	3414(5)	33(4)
H6	3178(10)	2980(40)	2929(6)	43(5)
H7	4289(10)	2540(40)	3249(6)	45(5)
H9	4055(11)	8730(40)	3944(7)	58(6)
H10	2911(11)	9190(40)	3656(6)	54(6)
H12A	1122.74	7433.43	4275.54	54
H12B	419.12	5782.09	4269.47	54
H12C	418.24	5757.4	4277.95	54
H12D	1118.48	7441.05	4278.45	54
H14	1777.46	7619.17	4894.22	52
H15	2133.23	5940.34	5561.91	57
H16	1706.49	2036.19	5773.4	62
H17	923.97	-189.14	5317.21	57
H18	568.19	1489.65	4649.51	53
H24	260.15	2848.7	4861.96	49
H23	626.19	990.96	5513.59	51
H22	1780.77	1524.01	5782.04	47

Atom	Х	У	Z	U_{eq}	
H21	2569.32	3914.78	5398.86	52	
H20	2203.29	5772.53	4747.23	51	

 Table 7: Hydrogen Bond information for 3'l.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/deg
01	H1	021	0.80(3)	1.94(3)	2.7424(17	7) 176(3)
¹ 1/2+x	x,-1/2+y,+z					

Table 8: Atomic Occ	upancies for all atom	ns that are not full	y occupied in 3'l.
---------------------	-----------------------	----------------------	--------------------

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H12A	0.503(5)	C16	0.503(5)	C23	0.497(5)
H12B	0.503(5)	H16	0.503(5)	H23	0.497(5)
H12C	0.497(5)	C17	0.503(5)	C22	0.497(5)
H12D	0.497(5)	H17	0.503(5)	H22	0.497(5)
C13	0.503(5)	C18	0.503(5)	C21	0.497(5)
C14	0.503(5)	H18	0.503(5)	H21	0.497(5)
H14	0.503(5)	C19	0.497(5)	C20	0.497(5)
C15	0.503(5)	C24	0.497(5)	H20	0.497(5)
H15	0.503(5)	H24	0.497(5)		

3.2 Compound 4b (CCDC number 2415842)

The crystal suitable for X-ray measurement for compound **4b** was obtained by evaporation of dichloromethane.

Experimental. Single colourless plate-shaped crystals of **4b** were used as supplied. A suitable crystal with dimensions $0.09 \times 0.04 \times 0.02 \text{ mm}^3$ was selected and mounted on an XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady *T* = 140.00(10) K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2019/3 (Sheldrick, 2015) using full matrix least squares minimisation on *F*².

Model has Chirality at C2 (Sohncke SpGr)	R Verify
Model has Chirality at C5 (Sohncke SpGr)	S Verify

Table 9: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4b**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U_{eq}
S1	1509.4(15)	8641.2(8)	6260.3(2)	25.50(18)

Atom	X	У	Z	U_{eq}
01	-1391(5)	4158(2)	6045.1(6)	29.7(5)
02	4880(4)	4750(2)	5216.4(7)	30.8(5)
03	5220(4)	2351(2)	5293.2(6)	26.6(5)
04	4509(5)	10824(2)	6582.0(7)	37.5(6)
05	8013(5)	10560(2)	6999.7(7)	30.3(5)
N1	2058(5)	3469(3)	5653.9(7)	21.8(5)
C1	-340(6)	7185(3)	6027.9(9)	23.8(6)
C2	1357(6)	6078(3)	5784.2(9)	22.7(6)
C3	406(7)	6788(3)	5379.0(9)	29.9(7)
C4	-1524(6)	7762(3)	5617.8(9)	27.6(6)
C5	511(6)	4529(3)	5839.0(9)	22.0(6)
C6	4126(6)	3656(3)	5376.7(8)	23.6(6)
C7	4055(6)	1256(3)	5558.8(9)	28.2(6)
C8	1512(6)	1936(3)	5722.3(10)	25.0(6)
С9	3366(6)	7757(3)	6647.0(8)	24.1(6)
C10	5401(6)	8494(3)	6864.3(8)	25.0(6)
C11	6946(7)	7736(4)	7146.6(9)	29.2(7)
C12	6512(7)	6283(4)	7223.8(9)	33.3(7)
C13	4485(7)	5573(3)	7019.9(10)	31.4(7)
C14	2938(6)	6290(4)	6737.1(9)	28.4(7)
C15	5877(6)	10064(3)	6795.3(9)	27.2(7)
C16	8589(8)	12087(3)	6944.5(11)	34.9(7)

Table 10: Anisotropic Displacement Parameters (×10⁴) for **4b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U 12
S1	28.2(4)	18.3(3)	29.9(4)	-0.6(3)	-2.9(3)	-0.5(3)
01	29.0(11)	20.8(10)	39.2(11)	1.2(9)	10.1(11)	-1.1(10)
02	28.9(12)	24.5(12)	39.1(12)	0.8(9)	7.7(10)	-2.8(9)
03	23.4(11)	22.6(11)	34.0(11)	-1.7(9)	3.6(9)	4.1(9)
04	38.4(13)	23.9(11)	50.1(14)	3.1(10)	-16.3(11)	-1.0(10)
05	31.7(12)	23.8(11)	35.5(11)	-2.2(9)	-6.4(10)	-2.1(10)
N1	18.9(12)	15.2(12)	31.1(12)	0.6(10)	3.0(9)	1.6(10)
C1	21.3(14)	17.5(14)	32.4(15)	-0.9(12)	1.8(12)	-1.2(12)
C2	19.1(13)	18.7(14)	30.3(14)	-1.5(11)	1.5(12)	-1.2(12)
C3	35.8(17)	23.6(15)	30.1(16)	2.8(12)	1.0(14)	-0.9(14)
C4	23.8(15)	23.0(15)	36.0(16)	1.0(12)	-4.6(13)	-1.9(14)
C5	21.0(14)	18.6(14)	26.4(14)	1.1(11)	-0.6(12)	2.2(12)
C6	19.7(14)	23.8(14)	27.4(14)	-2.3(13)	0.0(11)	-0.9(13)
C7	25.3(15)	21.4(14)	38.0(16)	3.6(13)	3.2(12)	3.4(13)
C8	22.4(14)	16.1(13)	36.5(15)	1.4(11)	1.4(13)	-0.3(13)
С9	25.5(15)	21.5(14)	25.4(14)	-0.1(11)	4.6(12)	3.3(13)
C10	26.6(15)	24.0(15)	24.4(14)	-1.6(12)	3.9(12)	1.7(13)
C11	26.8(17)	30.5(16)	30.2(16)	-1.2(13)	1.0(13)	2.0(14)
C12	38.5(18)	31.1(16)	30.5(15)	6.3(14)	-2.6(15)	6.6(18)
C13	38.2(18)	22.5(16)	33.4(17)	4.2(13)	4.2(14)	1.7(14)
C14	30.6(17)	23.7(14)	30.8(15)	-1.0(13)	2.3(12)	0.4(14)
C15	28.6(17)	26.1(16)	26.7(15)	-5.3(12)	-1.2(12)	-0.7(13)
C16	36.2(18)	23.2(15)	45.4(18)	-1.5(14)	-6.0(17)	-3.7(16)

Table	11 · Rond	Lengths	in Å	for	4h
Iable	II . Donu	Lenguis	III A	101	TU.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C1	1.801(3)	01	C5	1.217(4)
S1	С9	1.769(3)	02	C6	1.199(4)

Atom	Atom	Length/Å	
03	C6	1.351(4)	
03	C7	1.455(4)	
04	C15	1.204(4)	
05	C15	1.343(4)	
05	C16	1.450(4)	
N1	C5	1.387(4)	
N1	C6	1.388(4)	
N1	C8	1.459(4)	
C1	C2	1.550(4)	
C1	C4	1.559(4)	
C2	C3	1.552(4)	

Atom	Atom	Length/Å
C2	C5	1.503(4)
C3	C4	1.534(4)
C7	C8	1.518(4)
С9	C10	1.417(4)
С9	C14	1.403(4)
C10	C11	1.393(4)
C10	C15	1.486(4)
C11	C12	1.382(5)
C12	C13	1.381(5)
C13	C14	1.375(4)

Table 12: Bond Angles in ° for 4b.

Atom	Atom	Atom	Angle/°
C9	S1	C1	103.13(14)
C6	03	C7	109.7(2)
C15	05	C16	115.4(3)
C5	N1	C6	127.9(2)
C5	N1	C8	120.8(2)
C6	N1	C8	111.1(2)
C2	C1	S1	115.2(2)
C2	C1	C4	89.6(2)
C4	C1	S1	107.6(2)
C1	C2	C3	89.5(2)
C5	C2	C1	114.3(2)
C5	C2	C3	114.6(2)
C4	C3	C2	90.5(2)
C3	C4	C1	89.7(2)
01	C5	N1	118.8(3)
01	C5	C2	123.7(3)
N1	C5	C2	117.5(2)
02	C6	03	122.3(3)

Atom	Atom	Atom	Angle/°	
02	C6	N1	128.7(3)	
03	C6	N1	108.9(2)	
03	C7	C8	105.0(2)	
N1	C8	C7	100.9(2)	
C10	C9	S1	121.0(2)	
C14	C9	S1	121.0(2)	
C14	C9	C10	118.0(3)	
C9	C10	C15	120.5(3)	
C11	C10	С9	119.4(3)	
C11	C10	C15	120.1(3)	
C12	C11	C10	121.4(3)	
C13	C12	C11	119.2(3)	
C14	C13	C12	120.7(3)	
C13	C14	C9	121.3(3)	
04	C15	05	122.9(3)	
04	C15	C10	124.4(3)	
05	C15	C10	112.7(3)	

Table 13: Torsion Angles in ° for **4b**.

Atom	Atom	Atom	Atom	Angle/°
S1	C1	C2	C3	-103.2(2)
S1	C1	C2	C5	139.9(2)
S1	C1	C4	C3	110.1(2)
S1	C9	C10	C11	-175.6(2)
S1	C9	C10	C15	4.9(4)
S1	C9	C14	C13	176.0(3)
03	C7	C8	N1	-20.1(3)
C1	S1	C9	C10	170.5(2)
C1	S1	C9	C14	-7.1(3)
C1	C2	C3	C4	-6.3(2)
C1	C2	C5	01	2.3(4)
C1	C2	C5	N1	-175.4(2)
C2	C1	C4	C3	-6.3(2)
C2	C3	C4	C1	6.2(2)
C3	C2	C5	01	-99.0(3)
C3	C2	C5	N1	83.3(3)
C4	C1	C2	C3	6.2(2)
C4	C1	C2	C5	-110.8(3)
C5	N1	C6	02	-6.1(5)
C5	N1	C6	03	175.9(3)
C5	N1	C8	C7	-165.8(2)

Atom	Atom	Atom	Atom	Angle/°
C5	C2	C3	C4	110.3(3)
C6	03	C7	C8	17.4(3)
C6	N1	C5	01	173.0(3)
C6	N1	C5	C2	-9.2(4)
C6	N1	C8	C7	17.3(3)
C7	03	C6	02	175.1(3)
C7	03	C6	N1	-6.7(3)
C8	N1	C5	01	-3.3(4)
C8	N1	C5	C2	174.5(3)
C8	N1	C6	02	170.5(3)
C8	N1	C6	03	-7.5(3)
С9	S1	C1	C2	-68.5(2)
С9	S1	C1	C4	-166.6(2)
С9	C10	C11	C12	-0.9(5)
С9	C10	C15	04	5.6(5)
С9	C10	C15	05	-174.8(3)
C10	C9	C14	C13	-1.6(4)
C10	C11	C12	C13	-0.8(5)
C11	C10	C15	04	-173.9(3)
C11	C10	C15	05	5.7(4)
C11	C12	C13	C14	1.2(5)
C12	C13	C14	C9	0.0(5)
C14	C9	C10	C11	2.0(4)
C14	C9	C10	C15	-177.4(3)
C15	C10	C11	C12	178.6(3)
C16	05	C15	04	-0.4(5)
C16	05	C15	C10	179.9(3)

Table 14: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4b**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	х	у	Z	Ueq
H1	-1687.76	6730.55	6213.47	29
H2	3312.07	6214.06	5830.68	27
H3A	1824.4	7330.28	5234.26	36
H3B	-497.91	6104.52	5191.2	36
H4A	-3424.65	7510.75	5577.11	33
H4B	-1221.64	8810.25	5573.35	33
H7A	5284.51	1012.11	5785.77	34
H7B	3652.95	362.86	5402.78	34
H8A	-72.34	1608.87	5566.81	30
H8B	1254.19	1720.23	6016.68	30
H11	8326.24	8227.91	7289.18	35
H12	7596.85	5778.3	7414.92	40
H13	4154.47	4579.38	7075.52	38
H14	1554.02	5781.07	6600.15	34
H1 xx	7913.86	12405.79	6677.68	52
H16B	10520.28	12241.59	6956.55	52
H16C	7721.22	12645.93	7162.18	52

4. NMR Spectra

¹H-NMR (400 MHz, chloroform-*d*) (2d)

¹³C-NMR (101 MHz, chloroform-*d*) (2d)

¹H-NMR (400 MHz, chloroform-*d*) (3a)

¹³C-NMR (101 MHz, chloroform-*d*) (3a)

¹H-NMR (400 MHz, chloroform-*d*) (3'a)

¹³C-NMR (101 MHz, chloroform-*d*) (3'a)

2D-NOESY (400 MHz, chloroform-d) (3'a)

¹H-NMR (400 MHz, chloroform-*d*) (3b)

¹³C-NMR (101 MHz, chloroform-*d*) (3b)

¹⁹F-NMR (376 MHz, chloroform-*d*) (3b)

¹H-NMR (400 MHz, chloroform-*d*) (3c)

¹³C-NMR (101 MHz, chloroform-*d*) (3c)

¹H-NMR (400 MHz, chloroform-*d*) (3d)

¹³C-NMR (101 MHz, chloroform-*d*) (3d)

¹⁹F-NMR (376 MHz, chloroform-*d*) (3d)

¹H-NMR (400 MHz, chloroform-*d*) (3e)

¹³C-NMR (101 MHz, chloroform-*d*) (3e)

¹H-NMR (400 MHz, chloroform-*d*) (3f)

¹³C-NMR (101 MHz, chloroform-d) (3f)

¹H-NMR (400 MHz, chloroform-*d*) (3g)

¹³C-NMR (101 MHz, chloroform-*d*) (3g)

¹H-NMR (400 MHz, chloroform-*d*) (3h)

¹³C-NMR (101 MHz, chloroform-*d*) (3h)

¹H-NMR (400 MHz, chloroform-*d*) (3i)

¹³C-NMR (101 MHz, chloroform-*d*) (3i)

¹H-NMR (400 MHz, chloroform-*d*) (3j)

¹³C-NMR (101 MHz, chloroform-*d*) (3j)

¹H-NMR (400 MHz, chloroform-*d*) (3k)

¹³C-NMR (101 MHz, chloroform-*d*) (3k)

¹H-NMR (400 MHz, chloroform-*d*) (3I)

¹³C-NMR (101 MHz, chloroform-d) (3I)

¹H-NMR (400 MHz, chloroform-*d*) (3'l)

¹³C-NMR (101 MHz, chloroform-*d*) (3'l)

¹H-NMR (400 MHz, chloroform-*d*) (3m)

¹³C-NMR (101 MHz, chloroform-*d*) (3m)

¹H-NMR (400 MHz, chloroform-*d*) (3n)

¹³C-NMR (101 MHz, chloroform-*d*) (3n)

¹H-NMR (400 MHz, chloroform-*d*) (30)

¹³C-NMR (101 MHz, chloroform-*d*) (30)

¹H-NMR (400 MHz, chloroform-*d*) (3p)

¹³C-NMR (101 MHz, chloroform-*d*) (3p)

¹H-NMR (400 MHz, chloroform-*d*) (3q)

¹³C-NMR (101 MHz, chloroform-*d*) (3q)

¹H-NMR (400 MHz, chloroform-*d*) (3r)

¹³C-NMR (101 MHz, chloroform-d) (3r)

¹H-NMR (400 MHz, chloroform-*d*) (3s)

¹³C-NMR (101 MHz, chloroform-*d*) (3s)

¹H-NMR (400 MHz, chloroform-*d*) (3t)

¹³C-NMR (101 MHz, chloroform-d) (3t)

¹H-NMR (400 MHz, chloroform-*d*) (3u)

¹³C-NMR (101 MHz, chloroform-*d*) (3u)

¹H-NMR (400 MHz, chloroform-*d*) (3v)

¹³C-NMR (101 MHz, chloroform-*d*) (3v)

¹H-NMR (400 MHz, chloroform-*d*) (3w)

¹³C-NMR (101 MHz, chloroform-*d*) (3w)

¹H-NMR (400 MHz, chloroform-*d*) (3'w)

¹³C-NMR (101 MHz, chloroform-*d*) (3'w)

2D-NOESY (400 MHz, chloroform-d) (3'w)

¹H-NMR (400 MHz, chloroform-*d*) (3x:3'x 65:35 mixture of diastereoisomers)

¹³C-NMR (101 MHz, chloroform-*d*) (3x:3'x 65:35 mixture of diastereoisomers)

¹H-NMR (400 MHz, chloroform-*d*) (3y)

¹³C-NMR (101 MHz, chloroform-d) (3y)

¹H-NMR (400 MHz, chloroform-*d*) (3z)

¹³C-NMR (101 MHz, chloroform-*d*) (3z)

¹H-NMR (400 MHz, chloroform-*d*) (3'z)

¹³C-NMR (101 MHz, chloroform-d) (3'z)

2D-NOESY (400 MHz, chloroform-d) (3'z)

¹H-NMR (400 MHz, chloroform-*d*) (3aa)

¹³C-NMR (101 MHz, chloroform-*d*) (3aa)

¹H-NMR (400 MHz, chloroform-*d*) (4a)

¹³C-NMR (101 MHz, chloroform-*d*) (4a)

¹H-NMR (400 MHz, chloroform-*d*) (4b)

¹³C-NMR (101 MHz, chloroform-*d*) (4b)

¹H-NMR (400 MHz, chloroform-*d*) (4c)

¹³C-NMR (101 MHz, chloroform-*d*) (4c)

¹H-NMR (400 MHz, chloroform-*d*) (4d)

¹³C-NMR (101 MHz, chloroform-*d*) (4d)

¹H-NMR (400 MHz, chloroform-*d*) (4e)

¹³C-NMR (101 MHz, chloroform-*d*) (4e)

¹H-NMR (400 MHz, chloroform-*d*) (4f)

¹³C-NMR (101 MHz, chloroform-d) (4f)

¹H-NMR (400 MHz, chloroform-*d*) (4g)

¹³C-NMR (101 MHz, chloroform-*d*) (4g)

¹H-NMR (400 MHz, chloroform-*d*) (4h)

¹³C-NMR (101 MHz, chloroform-*d*) (4h)

¹H-NMR (400 MHz, chloroform-*d*) (4i)

¹³C-NMR (101 MHz, chloroform-d) (4i)

¹H-NMR (400 MHz, chloroform-*d*) (4j)

¹³C-NMR (101 MHz, chloroform-d) (4j)

¹H-NMR (400 MHz, chloroform-*d*) (5)

¹³C-NMR (101 MHz, chloroform-d) (5)

¹H-NMR (400 MHz, chloroform-*d*) (6)

¹³C-NMR (101 MHz, chloroform-*d*) (6)

¹H-NMR (400 MHz, chloroform-*d*) (7)

¹³C-NMR (101 MHz, chloroform-*d*) (7)

¹H-NMR (400 MHz, chloroform-*d*) (8)

¹³C-NMR (101 MHz, chloroform-d) (8)

¹H-NMR (400 MHz, chloroform-*d*) (9)

¹³C-NMR (101 MHz, chloroform-*d*) (9)

¹H-NMR (400 MHz, chloroform-*d*) (10)

¹³C-NMR (101 MHz, chloroform-*d*) (10)

5. SFC traces

4a

Racemic:

Signal:	MWD1B,S					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
20.428	MM m	2.18	586.09	10.58	50.07	
23.215	MM m	2.81	584.40	9.15	49.93	
		Sum	1170.50			

Signal:	MWD1B,S					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
20.379	MM m	1.94	48.91	1.13	1.58	
22.885	MM m	3.59	3042.04	46.37	98.42	
		Sum	3090.94			

4b

Racemic:

	11111110,01g 200,4 101 000,100						
Name	Area%	Height	Area	Width [min]	Туре	RT [min]	
	96.72	6.21	183.16	2.25	MM m	5.684	
	3.28	0.14	6.20	1.59	MM m	12.342	
			189.37	Sum			

4c

Racemic:

Area%	Height	Area	Width [min]	Туре	RT [min]
49.65	9.61	78.84	0.46	MM m	2.191
50.35	8.53	79.95	0.48	MM m	3.338
		158.80	Sum		

4d

Racemic:

Enantioenriched:

Signal: MWD1C,Sig=214,4 Ref=360,100

				• • •		-
Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	98.86	1502.97	4115.04	0.19	MM m	1.221
	1.14	9.91	47.62	0.27	MM m	2.429
			4162.66	Sum		

4e

Racemic:

Signal.	1010010,3					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
3.734	MM m	0.58	494.08	38.02	50.52	
6.977	MM m	1.40	483.91	15.03	49.48	
		Sum	977.99			

4f

Racemic:

Enantioenriched:

Signal: MWD1D,Sig=220,4 Ref=360,100

-		•				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.902	MM m	0.67	842.60	68.81	98.13	
9.564	MM m	0.85	16.04	0.64	1.87	
		Sum	858.64			

4g

Racemic:

Signal:	MWD1C,S					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
1.853	MM m	0.42	623.46	74.21	50.87	
5.522	MM m	1.33	602.09	18.63	49.13	
		Sum	1225.54			

4h

Racemic:

Signal:	MWD1C,S					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.080	MM m	0.37	204.16	23.91	50.63	
5.430	MM m	1.22	199.10	8.63	49.37	
		Sum	403.26			

Signal:						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
1.939	MM m	0.78	2478.73	225.92	97.91	
5.521	MM m	0.73	52.95	3.01	2.09	
		Sum	2531.69			

4i

Racemic:

Signal:	MWD1C,S	MWD1C,Sig=214,4 Ref=360,100						
RT [min]	Туре	Width [min]	Area	Height	Area%	Name		
1.110	MM m	0.18	1930.71	713.17	50.31			
2.872	MM m	0.34	1906.66	251.18	49.69			
		Sum	3837.37					

Enantioenriched:

Sum

2030.44

4j

Racemic:

•		• · ·				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.741	MM m	0.52	602.55	56.51	95.35	
6.435	MM m	0.86	29.37	1.50	4.65	
		Sum	631.93			

3a

Racemic:

				g =,		
Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	49.75	26.64	2575.75	3.79	MM m	22.941
	50.25	19.75	2601.47	6.79	MM m	26.889
			5177.22	Sum		

Enantioenriched:

Signal: MWD1C,Sig=214,4 Ref=360,100

				-		-
Name	Area%	Height	Area	Width [min]	Туре	RT [min]
	97.11	4.61	346.47	3.87	MM m	24.087
	2.89	0.38	10.31	2.10	MM m	29.163
			356.78	Sum		

5

Signal:	MWD1A,S					
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
65.453	MM m	4.96	192.54	1.43	49.66	
70.329	MM m	5.85	195.19	1.35	50.34	
		Sum	387.73			

Enantioenriched:

Sum

284.41

120

Enantioenriched:

Signal: MWD1C,Sig=214,4 Ref=360,100

Area%	Height	Area	Width [min]	Туре	RT [min]	
97.41	796,81	2253,58	0,14	MM m	1,331	
2,59	19,92	59,87	0,12	MM m	1,503	
		2313.45	Sum			
	Area% 97,41 2,59	Height Area% 796,81 97,41 19,92 2,59	Area Height Area% 2253,58 796,81 97,41 59,87 19,92 2,59 2313,45	Width [min] Area Height Area% 0,14 2253,58 796,81 97,41 0,12 59,87 19,92 2,59 Sum 2313,45 3 3	Type Width [min] Area Height Area% MM m 0.14 2253,58 796,81 97,41 MM m 0.12 59,87 19,92 2,59 Sum 2313.45 Comparison Comparison Comparison	

-		•				
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
7.087	MM m	1.72	9077.36	168.66	97.37	
8.333	MM m	1.76	245.18	3.66	2.63	
		Sum	9322.54			

8

3z

Racemic:

Signal:	MWD1C,S	ig=214,4 Ref=360,1	00			
RT [min]	Туре	Width [min]	Area	Height	Area%	Name
2.093	MM m	0.23	171.67	49.15	50.08	
2.314	MM m	0.23	171.11	44.56	49.92	
		Sum	342.78			

9

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.635	MM	0.1926	2.32874e4	2015.40210	49.9162
2	10.715	MM	0.2206	2.33656e4	1764.92322	50.0838
Total	s:			4.66530e4	3780.32532	

Enantioenriched:

Signal 3: DAD1 C, Sig=214,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|
 -----|

 1
 9.667
 MM
 0.2365
 3.89928e4
 2748.00073
 97.6764

 2
 11.013
 BB
 0.1973
 927.59180
 72.47859
 2.3236

Totals : 3.99204e4 2820.47932