
S Supplementary Information
S.1 Computational Resources
All experiments in Section 2.3, Section 2.5, Section 2.7, Sec-
tion 2.8 were run on an AWS instance with 8 CPU cores and an
NVIDIA A10G GPU with 24 GB of VRAM. In Section 2.6 Virtual
screening with QVINA on ZINC50K was run a compute-optimized
AWS instance with 8 CPU cores, while IDOLpro was run on an
AWS instance with 8 CPU cores and an NVIDIA A10G GPU with
24 GB of VRAM. Experiments in Section 2.4 were run on a Google
Cloud compute virtual machine instance with 8 cpu cores and an
NVIDIA T4 GPU with 16 GB VRAM.

S.2 More Details on Training the TorchSA Model

Fig. S1 Training and validation curves for training PaiNN to predict the

SA score on 3D atomic point clouds. The MSE at each epoch is plotted

for the training set, the ChemBL validation set, the Di!SBDD validation

set, and the CrossDocked validation set.

To train the SA model, we prepare a dataset consisting of all
molecules with structural information in ChemBL80 (2,409,270
structures), and ligands used to train DiffSBDD19 on Cross-
Docked2020 38 (183,468 structures). Although the SA score is
fully determined by the chemical graph of a molecule, we keep
molecules with different conformations from CrossDocked2020
to aid the model in learning the redundancy of pose in determin-
ing the SA score. To improve the model’s performance on ligands
produced by DiffSBDD, we generate nearly 1,000,000 (877,284)
ligands with DiffSBDD which are included in the training data.
We generate several ligands for each of the protein pockets in the
DiffSBDD training set and then filter them using the same validity
checks described in the Methods section. We put a higher empha-
sis on modelling ligands from CrossDocked2020 and DiffSBDD,
sampling from one of these datasets during training with a 5→
higher likelihood than ChEMBL.

We train the polarizable atomic interaction neural network81

(PaiNN) from the Open Catalyst Project82,83 to predict the SA
score given the atomic coordinates and atom types. To allow
PaiNN to make predictions on atom types coming out of DiffS-
BDD, we encode atom types as one-hot vectors. We first opti-
mize the hyperparameters of the model using Ray Tune84. The

hyperparameters chosen were num_rbf = 64 num_layers = 4,
max_neighbor = 30, cutoff = 8.0, hidden_channels = 256. We use
a 95%/5% training/validation split for each dataset. The model is
trained for 100 epochs to minimize the MSE loss with the AdamW
optimizer85 with a learning rate of 5→10↑4. Training and valida-
tion curves are plotted in Fig. S1.

S.3 More Details on Training the Regressor Guidance Model

To train the regressor used in Section 2.4, we prepare a dataset
of latent vector trajectories from the reverse diffusion process
of DiffSBDD. The training set for DiffSBDD consists of 100,000
protein-ligand pairs from the CrossDocked38 dataset. Each re-
verse diffusion trajctory of DiffSBDD consists of 500 denoising
diffusion steps. In order to reduce the size of the training data, we
take a random 10% sample of DiffSBB’s training data, resulting in
10,000 protein pockets which can be used to seed the generation
of DiffSBDD. For each protein pocket, we generate a full reverse
diffusion trajectory (500 denoising diffusion steps). Each latent
vector in the trajectory zt

ω is labeled with the SA score of the final
generated molecule, i.e., SA(z0

ω ). This results in 5,000,000 data
points for training the regressor.

We train an equivariant graph neural network (EGNN)65 with
4 layers and 256 hidden channels to predict the SA score of the fi-
nal DiffSBDD molecule given an intermediate noisy latent vector.
We also supply the model with the corresponding timestep in the
reverse diffusion process. The model is trained for 10 epochs to
minimize the MSE loss with the Adam optimizer85 with a learn-
ing rate of 1→10↑4. The training curve is plotted in Fig. S2.

1 2 3 4 5 6 7 8 9 10
Epoch

100

101

102

103

M
S
E

Fig. S2 Loss curve for training EGNN to predict the SA score of molecules

produced by Di!SBDD given intermediate noisy latent vectors. The MSE

at each step is plotted.

S.4 Hyperparameter Tuning
S.4.1 Accelerating Diffusion

In DiffSBDD, the models are trained to generate ligands over 500
reverse diffusion steps according to some noise schedule. At each

16 | 1–18+PVSOBM�/BNF�<ZFBS>�<WPM�>

Supplementary Information (SI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2025



PDB ID Ligand ID
2ah9 cto
5lvq p2l
5g3n u8d
1u0f g6p
4bnw fxe
4i91 cpz
2ati ihu

2hw1 lj9
1bvr geq
1zyu k2q

Table S1 Validation set used to choose hyper-parameters in IDOLpro. All proteins from the test set of LiGAN
?

were used, and a single protein pocket

for each protein was selected at random.

Diffusion steps Vina [kcal / mol] SA QED Time [s]
5 ↑6.25±2.08 3.72±0.46 0.53±0.10 60.60±49.75
50 ↑6.72±2.45 3.92±0.58 0.54±0.10 196.96±102.97

Table S2 Results when reducing the number of rollout steps from 50 to 5. The average Vina, SA, and QED across the validation set is reported.

thz ! Vina ! SA ! QED
50 -1.21 -0.34 -0.028

100 -1.17 -0.82 0.004
200 -1.84 -0.76 0.048

Table S3 Results when varying the optimization horizon thz in IDOLpro. The di!erence in Vina, SA, and QED for the final optimized ligands produced

by IDOLpro relative to the initial ligands produced by Di!SBDD are reported.

time step an equivariant network takes in the noised coordinates
and atom types, as well as the time step, and returns a denoised
representation of the atoms and coordinates19. One can reduce
the number of reverse diffusion steps by skipping time steps in
the noise schedule.

In IDOLpro, the majority of the reverse diffusion process is run
to generate zthz , i.e., to seed the initial latent vectors. When op-
timizing zthz , the rollout of zthz , . . . ,z0 needs to be repeated many
times. We run an experiment to determine whether we can re-
duce the number of steps during this final rollout 10-fold without
a significant degradation in performance. We run an experiment
with the smallest horizon considered thz = 50. Results are shown
in table Table S2. Running the rollout with reduced diffusion
steps results in over a 3→ speedup, with a slight decrease in av-
erage Vina score (< 0.5 kcal /mol), while preserving average SA
and QED. We adopt this setting in our pipeline for this reason.

S.4.2 Tuning Optimization Horizon

We tune the value of the optimization horizon, thz, to optimize
both the Vina and SA scores of generated molecules. We consider
thz ↓ 50,100,200. For each setting of the optimization horizon, we
track the difference in Vina score, SA score, and QED. Results are
reported in Table S3. Based on these results we set the optimiza-
tion horizon to 200, since that setting resulted in by far the best
difference in Vina score and QED, albeit a slightly worse improve-
ment in SA score relative to setting thz = 100.

S.4.3 Structural Refinement with Torchvina and ANI2x

We use the following parameters in the L-BFGS optimiza-
tion algorithm: max_iter=100, tolerance_grad=10↑3, and

line_search_fn=“strong_wolfe". On top of using intra- and inter-
molecular forces derived from the ANI2x37 and torchvina poten-
tials, we inlcude an L1 penalty for violating the bonds in the
molecule produced by IDOLpro. To do so, we use ASE’s68 natural
cutoffs. We find that setting a weight of 0.01 on this L1 penalty
result in the best balance of Vina score and validity.

S.4.4 Stopping Criteria, Backtracking, and Decaying Learn-
ing Rate

We use per-parameter options in Pytorch35 to allow for individ-
ualized learning rates for different ligands. For each ligand, we
optimize it with Adam with the chosen hyperparameters. We op-
timize each latent vector for 10-200 optimization steps. Often,
during latent vector optimization, a ligand will be pushed to a
part of latent space such that it becomes invalid. In such a case,
we attempt to generate a ligand 10 times with the given latent
vector. If after 10 attempts, reverse diffusion has not produced
a valid ligand, we backtrack to the previous latent vector in the
optimization trajectory, reduce the learning rate by a factor of 10,
and restart the optimization. If at another point in the optimiza-
tion, with the reduced learning rate, another latent vector fails to
generate a valid ligand over 10 attempts, the optimization of that
trajectory is stopped.

S.5 Visualization of Latent Vectors
Latent vector visualization was performed with UMAP86 and vi-
sualized in Fig. S3.

+PVSOBM�/BNF�<ZFBS>�<WPM�>1–18 | 17



Fig. S3 Latent vector visualizations of IDOLpro when generating ligands

for 14gs. The points are coloured by Vina score (darker implies lower

scores), and a green star marks the end of each optimization trajectory.

Supplementary References
80 B. Zdrazil, E. Felix, F. Hunter, E. J. Manners, J. Blackshaw,

S. Corbett, M. de Veij, H. Ioannidis, D. M. Lopez, J. F. Mos-
quera et al., Nucleic acids research, 2024, 52, D1180–D1192.

81 K. Schütt, O. Unke and M. Gastegger, International Confer-
ence on Machine Learning, 2021, pp. 9377–9388.

82 L. Chanussot, A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riv-
iere, K. Tran, J. Heras-Domingo, C. Ho, W. Hu et al., Acs Catal-
ysis, 2021, 11, 6059–6072.

83 R. Tran, J. Lan, M. Shuaibi, B. M. Wood, S. Goyal, A. Das,
J. Heras-Domingo, A. Kolluru, A. Rizvi, N. Shoghi et al., ACS
Catalysis, 2023, 13, 3066–3084.

84 R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez and
I. Stoica, arXiv preprint arXiv:1807.05118, 2018.

85 I. Loshchilov and F. Hutter, International Conference on
Learning Representations, 2019.

86 L. McInnes, J. Healy and J. Melville, arXiv preprint
arXiv:1802.03426, 2018.

18 | 1–18+PVSOBM�/BNF�<ZFBS>�<WPM�>


	Introduction
	Results
	Workflow
	Datasets
	Validation of Latent Vector Optimization
	Comparison to Regressor Guidance
	Comparison to Deep Learning
	Comparison to Virtual Screening
	Comparison to Other Methods
	Lead Optimization

	Discussion
	Methods
	Generator Module
	Molecule size
	Ligand Validity Checks
	Scoring Module
	Latent Vector Optimization
	Structural Refinement
	Regressor Guidance

	Data Availability
	Author Contributions
	Conflicts of Interest
	Acknowledgements
	Supplementary Information
	Computational Resources
	More Details on Training the TorchSA Model
	More Details on Training the Regressor Guidance Model 
	Hyperparameter Tuning
	Accelerating Diffusion
	Tuning Optimization Horizon
	Structural Refinement with Torchvina and ANI2x
	Stopping Criteria, Backtracking, and Decaying Learning Rate

	Visualization of Latent Vectors


