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1 Experimental section

1.1 Chemical reagents

All raw materials of Y2O3 (ChemPur, 99.999 % REO), Lu2O3 (ChemPur, 99.999 %
REO), Pr6O11 (Thermo Fischer Scientific, 99.996 % REO), HNO3 (Sigma Aldrich,
≥65 %), H2O2 (Supelco, 30 %), Al(NO3)3 · 9 H2O (ChemPur, 99.998 %), NH3 (VWR,
25 %), tetraethyl orthosilicate (Thermo Fischer Scientific, ≥99 %), urea (Grüssing,
≥99.5 %), H3BO3 (ChemSolute, ≥99.5 %), (NH4)2CO3 (Thermo Fischer Scientific,
31.5 %), Na2CO3 (Grüssing, ≥99.5 %), NH4F (Thermo Fischer Scientific, ≥98 %), CsCl
(Thermo Fischer Scientific, 99.99 % metal basis), NaCl (Sigma Aldrich, ≥99.5 %), HCl
(Sigma Aldrich, ≥37 %) were used without additional purification. Due to the high
cross relaxation processes and for suppression of energy transfer upconversion in highly
activated Pr3+ compounds[1–3], nominal activator concentrations were set to 0.5 mol %
with respect to the Y or Lu content, respectively. For synthesizing the activated phos-
phors, a stochiometric amount of Y2O3/Lu2O3 was omitted.

1.2 Synthesis of activated YAl3(BO3)4

Microcrystalline powder of Pr3+-activated YAB (Y0.995Pr0.005Al3(BO3)4) was prepared
by a modified urea-nitrate solution-based combustion route[4] as described elsewhere.[5]

Rare earth nitrates were generated by dissolving the oxides in concentrated HNO3 (v%
= 67 %). The solution was evaporated and refilled with dist. H2O until a pH of 7 was
reached. Then Al(NO3)3 · 9 H2O, H3BO3 and urea were added to the solution. The
clear solution was stirred for 30 min. After that, the solution was put in a preheated
500 °C muffle furnace for 10 min. The resulting colorless powder was ground with
H3BO3 and sintered for 17 h at 1100 °C in a muffle furnace.

1.3 Synthesis of activated Na3Y(BO3)2

Microcrystalline powder of Pr3+-activated NYB (Na3Y0.995Pr0.005(BO3)2) was prepared
by a modified co-precipitation method as described elsewhere[6]. Y2O3 and Pr6O11 were
dissolved in concentrated HNO3 (v% = 67 %). A few drops of a concentrated H2O2 (v%
= 67 %) solution were added in order to reduce Pr4+ to Pr3+. A saturated solution of
(NH4)2CO3 was added resulting in a colorless precipitate, which was filtered, washed
with dist. H2O and ethanol and dried at 80 °C for 16 h. The dried precipitate was
ground with a stochiometric amount of Na2CO3 and a 3 w% excess of H3BO3. The
resulting powder was sintered for 18 h at 900 °C.
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1.4 Synthesis of activated β-Y2Si2O7

Microcrystalline powder of Pr3+-activated YPS (β-Y1.99Pr0.01Si2O7) was prepared by
a sol-gel combustion synthesis. Stochiometric amounts of Y2O3 and Pr6O11 were dis-
solved in concentrated HNO3 (v% = 67 %). A few drops of a concentrated H2O2 (v%
= 30 %) solution were added in order to reduce all Pr4+ to Pr3+. The solvent was
repeatedly evaporated and the solid residue re-dissolved in dist. H2O until a pH of 7
was reached. Then, ethanol and a stochiometric excess of tetraethyl orthosilicate were
added. After that urea was added to the solution. The solution was evaporated until
a transparent gel was formed. The gel was dried at 80 °C overnight and then calcined
at 510 °C for 1.5 h. The resulting colorless powder was then ground and calcined at
1350 °C for 24 h. The powder was ground again and then calcined for additional 14 h
at 1350 °C.

1.5 Synthesis of activated X2-Y2SiO5

Microcrystalline powder of Pr3+-activated YSO (X2-Y1.99Pr0.01SiO5) was prepared by
a sol-gel synthesis. Stochiometric amounts of Y2O3 and Pr6O11 were dissolved in nitric
acid. A few drops of a concentraed H2O2 (v% = 67 %) solution were added in order
to reduce all Pr4+ to Pr3+. The solution was repeatedly evaporated and the remaining
residue re-dissolved in dist. H2O until a pH of 7 was reached. Then, ethanol and a
stochiometric amount of tetraethyl orthosilicate were added. The solution was stirred
for 30 minutes and evaporated, forming a transparent gel. The gel was dried at 80 °C
overnight and ground to a fine powder before final calcination 1350 °C for 12 h.

1.6 Synthesis of activated Y3Al5O12 and Lu3Al5O12

Microcrystalline powder of Pr3+-activated YAG (Y2.985Pr0.015Al5O12) and Pr3+-activated
LuAG (Lu2.985Pr0.015Al5O12) were synthesized by a modified co-precipitation method
as described elsewhere[7]. Stochiometric amounts of Y2O3/Lu2O3 and Pr6O11 were
dissolved in concentrated HNO3 (v% = 67 %). A few drops of a concentrated H2O2

(v% = 30 %) solution were added in order to reduce Pr4+ to Pr3+. The solution was
repeatedly evaporated and the remaining residue re-dissolved in dist. H2O until a pH
of 7 was reached. Then a stochiometric amount of Al(NO3)3 · 9 H2O was added to
the solution. NH3 was added dropwise, resulting in a colorless, gelatinous precipitate.
It was washed repeatedly with dist. H2O and ethanol and dried overnight at 80 °C.
The obtained colorless powder was ground and pre-calcined at 400 °C for 1 h before
calcining at 1300 °C for additional 3 h.
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1.7 Synthesis of activated Y7O6F9

Microcrystalline powder of Pr3+-activated V-YOF (Y6.965Pr0.035O6F9) was prepared by
a solid-state reaction. Stochiometric amounts of Y2O3 and Pr6O11 were ground with an
excess of NH4F (ratio 1:2 RE3+:F-) and calcined at 1050 °C for 2 h with intermediate
grinding after every 0.5 h.

1.8 Synthesis of activated Cs2NaYCl6
Microcrystalline powder of Pr3+-activated Cs2NaYCl6 (Cs2NaY1-xPrxCl6, x = 0.0025,
0.005, 0.01) was prepared by evaporating a solution containing the appropiate cations
in hydrochloric acid as described elsewhere[8]. For that purpose, Y2O3, Pr6O11, CsCl
and NaCl were dissolved in concentrated HCl (v% = 37 %) with a few drops of a
concentrated H2O2 (v% = 30 %) solution and the solution was evaporated to dryness.
The resulting white powder was then washed with ethanol several times. Due to the
hygroscopicity of the obtained powder[8,9], it was enclosed in a evacuated thin, optically
transparent quartz ampoule (ilmasil® quality, QSIL GmbH ) right after synthesis and
powder diffraction measurement.

1.9 Characterization and methods

Sample purity was verified by powder X-ray diffraction using a Malvern Panalytical
X’pert Pro powder diffractometer with Cu Kα radiation in a Bragg-Brentano geometry
and reflection. XRPD data was modeled using Rietveld refinement with TOPAS 7[10].

MIR spectra were recorded with a PerkinElmer Spectrum Two FT-IR spectrometer
equipped with a LiTaO3 detector and an ATR unit. For IR spectra below 400 cm−1 a
PerkinElmer Frontier FIR-IR spectrometer was used.

A FLS1000 photoluminescence spectrometer from Edinburgh Instruments was used
for optical measurements. It was equipped with a 450 W Xe arc lamp for excitation,
double excitation and emission monochromators in Czerny-Turner configuration and
a thermoelectrically cooled (−20 °C) photomultiplier tube PMT-980 (Hamamatsu).
Emission spectra were corrected with respect to the grating efficiency and PMT sen-
sitivity, while excitation spectra were additionally corrected with respect to the lamp
intensity. Upconversion spectra were only corrected by PMT sensitivity due to over-
correction. For power-dependent photoluminescence spectra a MDL-F-450-1W laser
diode (PhotonTec, λ = 446.5 nm) with an adjustable power (10 mW ... 1000 mW) was
used as excitation source. The output power was adjusted after the measurement using
a correction function, which was generated by cross-checking the nominal power with
a power meter (Coherent FieldmaxII equipped with a Coherent PS19 power sensor).

Photoluminescence decay traces of the 4f15d1 → 4f2-based emission were recorded
on a FS5 photoluminescence spectrometer from Edinburgh Instruments using an EPLED-
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250 (Edinburg Instruments, 40 µW average peak power, λ = 257.1 nm, ∆τ = 718 ps
temporal pulse width) and an EPLED-270 (Edinburg Instruments, 40 µW average peak
power, λ = 278.8 nm, ∆τ = 747.6 ps temporal pulse width) for excitation using time-
correlated single-photon counting (TCSPC) as the detection mode. The signal count
rate was kept below 10 % of the repetition rate to avoid pile-up effects. For time-
resolved measurements on the 4f2 → 4f2-based emission, a VPL-450 (Edinburgh In-
struments, 53 mW average peak power in CW mode, λ = 450.9 nm) with adjustable
temporal pulse width (0.1 µs ... 1 ms) and a variable repetition rate (0.1 Hz ... 5 MHz)
was used as excitation source using single-photon mulitchannel scaling (MCS) as the
detection mode. Average decay times were estimated using an intensity-weighting
scheme:

⟨τ⟩ = A1τ
2
1 + ... + Anτ 2

n

A1τ1 + ... + Anτn

(1)

Temperature-dependent measurements were performed with a Linkam Scientific
THMS600 temperature cell with an accuracy of ±0.1 °C in the temperature range
between −196 °C (liquid nitrogen) and 500 °C. Constant temperature intervals of
∆T = 25 °C were set for temperature-dependent measurements.

Absolute quantum yields of the upconversion luminescence at room temperature
were measured with a BenFlect®-coated integrating sphere using the VPL-450 in CW
mode for excitation. The irradiated area was estimated to be 9 mm2 giving a power
density about 0.59 W cm−2.

The scattering light I(λ)observed was measured using a NDUV240B neutral density
filter (O.D. = 4, Thorlabs) to increase the accuracy in the comparably low upconversion
emission intensity assessment and corrected for the transmission of the neutral density
filter T (λ)filter

[11]:

I(λ)corrected = I(λ)observed

T (λ)filter
(2)

To check the measured values, measurements were carried out according to the
method described by Schröder et al.[11] A FGUV5S bandpass filter (Thorlabs) was
used in front of the detector. To measure over the excitation range, an additional
NDUV230B neutral density filter (O.D. = 3, Thorlabs) was placed between the ex-
citation source and the sample. The measured intensities were corrected by the cor-
responding transmissions of the respective filters (the excitation range was therefore
corrected by both filters) for evaluation. The values obtained in this way matched
within the margin of error.
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2 Rietveld refinements

Figure S1: Rietveld-refined XRPD patterns of the synthesized materials activated with
0.5 mol % Pr3+.
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Table S1: Cell parameters and refinement parameters of YAB:Pr3+ obtained from Rietveld
refinement compared to single-crystal structural data of YAB (ICSD repository no. 20223)[12].

YAB:Pr3+ YAB (ICSD: 20223)
Crystal system trigonal trigonal

Space group R32 (155) R32 (155)
a / Å 9.2903(0) 9.295
b / Å 9.2903(0) 9.295
c / Å 7.2405(0) 7.243
α / ° 90 90
β / ° 90 90
γ / ° 120 120

Cell volume / Å3 541.198 541.94
RBragg / % 8.79 -
Rexp / % 3.00 -
Rwp / % 11.60 -
Rp / % 7.52 -

G.o.o.F. 3.86 -

Table S2: Cell parameters and refinement parameters of NYB:Pr3+ obtained from Rietveld
refinement compared to polycrystalline powder structural data of NYB (ICSD depository
no.: 94981)[13].

NYB:Pr3+ NYB (ICSD: 94981)
Crystal system monoclinic monoclinic

Space group P21/c (14) P21/c (14)
a / Å 6.5053(0) 6.505
b / Å 8.5176(0) 8.5172
c / Å 12.0215(4) 12.0213
α / ° 90 90
β / ° 118.73 118.73
γ / ° 90 90

Cell volume / Å3 585.772 584.04
RBragg / % 8.02 -
Rexp / % 6.50 -
Rwp / % 13.53 -
Rp / % 10.07 -

G.o.o.F. 2.08 -
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Table S3: Cell parameters and refinement parameters of YPS:Pr3+ obtained from Ri-
etveld refinement compared to single-crystal structural data of YPS (ICSD depository no.:
281313)[14].

YPS:Pr3+ YPS (ICSD: 281313)
Crystal system monoclinic monoclinic

Space group C2/m (12) C2/m (12)
a / Å 6.8694(3) 6.8667
b / Å 8.9630(4) 8.959
c / Å 4.7127(0) 4.7167
α / ° 90 90
β / ° 101.724 101.724
γ / ° 90 90

Cell volume / Å3 284.077 284.11
RBragg / % 2.83 -
Rexp / % 17.22 -
Rwp / % 10.88 -
Rp / % 8.60 -

G.o.o.F. 0.63 -

Table S4: Cell parameters and refinement parameters of YSO:Pr3+ obtained from Rietveld
refinement compared to crystal structural data of YSO (ICSD depository no.: 28021)[15].

YSO:Pr3+ YSO (ICSD: 28021)
Crystal system monoclinic monoclinic

Space group C2/c (15) C2/c (15)
a / Å 10.4210(5) 10.41
b / Å 6.7261(8) 6.721
c / Å 12.4924(0) 12.49
α / ° 90 90
β / ° 102.65 102.65
γ / ° 90 90

Cell volume / Å3 854.177 852.66
RBragg / % 4.62 -
Rexp / % 8.28 -
Rwp / % 12.36 -
Rp / % 9.42 -

G.o.o.F. 1.49 -
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Table S5: Cell parameters and refinement parameters of LuAG:Pr3+ obtained from Rietveld
refinement compared to polycrystalline powder structural data of LuAG (ICSD depository
no.: 182354)[16].

LuAG:Pr3+ LuAG (ICSD: 182354)
Crystal system cubic cubic

Space group Ia3̄d (230) Ia3̄d (230)
a / Å 11.9362(3) 11.9361
b / Å 11.9362(3) 11.9361
c / Å 11.9362(3) 11.9361
α / ° 90 90
β / ° 90 90
γ / ° 90 90

Cell volume / Å3 1700.598 1700.54
RBragg / % 4.88 -
Rexp / % 4.28 -
Rwp / % 10.31 -
Rp / % 7.51 -

G.o.o.F. 2.41 -

Table S6: Cell parameters and refinement parameters of YAG:Pr3+ obtained from Ri-
etveld refinement compared to single-crystal structural data of YAG (ICSD depository no.:
170158)[17].

YAG:Pr3+ YAG (ICSD: 170158)
Crystal system cubic cubic

Space group Ia3̄d (230) Ia3̄d (230)
a / Å 12.0026(4) 12.0003
b / Å 12.0026(4) 12.0003
c / Å 12.0026(4) 12.0003
α / ° 90 90
β / ° 90 90
γ / ° 90 90

Cell volume / Å3 1729.142 1728.13
RBragg / % 1.75 -
Rexp / % 3.63 -
Rwp / % 7.72 -
Rp / % 5.93 -

G.o.o.F. 2.13 -
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Table S7: Cell parameters and refinement parameters of V-YOF:Pr3+ obtained from Ri-
etveld refinement compared to single-crystal structural data of V-YOF (ICSD depository no.:
1893)[18].

V-YOF:Pr3+ V-YOF (ICSD: 1893)
Crystal system orthorhombic orthorhombic

Space group Abm2 (39) Abm2 (39)
a / Å 5.3996(0) 5.42
b / Å 38.7705(1) 38.58
c / Å 5.5301(0)) 5.527
α / ° 90 90
β / ° 90 90
γ / ° 90 90

Cell volume / Å3 1157.692 1155.72
RBragg / % 10.13 -
Rexp / % 4.65 -
Rwp / % 16.89 -
Rp / % 10.91 -

G.o.o.F. 3.63 -

Table S8: Cell parameters and refinement parameters of Cs2NaYCl6: 0.5 mol % Pr3+ ob-
tained from Rietveld refinement compared to single-crystal structural data of Cs2NaYCl6
(ICSD depository no.: 245353)[19].

Cs2NaYCl6: 0.5 mol %
Pr3+

Cs2NaYCl6 (ICSD:
245353)

Crystal system cubic cubic
Space group Fm3̄m (225) Fm3̄m (225)

a / Å 10.7279(0) 10.7275
b / Å 10.7279(0) 10.7275
c / Å 10.7279(0) 10.7275
α / ° 90 90
β / ° 90 90
γ / ° 90 90

Cell volume / Å3 1234.643 1234.51
RBragg / % 13.08 -
Rexp / % 4.57 -
Rwp / % 12.63 -
Rp / % 8.24 -

G.o.o.F. 2.76 -
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Figure S2: Rietveld-refined XRPD pattern of Cs2NaYCl6 activated with 0.25 mol % Pr3+.

Table S9: Cell parameters and refinement parameters of Cs2NaYCl6: 0.25 mol % Pr3+ ob-
tained from Rietveld refinement compared to single-crystal structural data of Cs2NaYCl6
(ICSD depository no.: 245353)[19].

Cs2NaYCl6: 0.25 mol %
Pr3+

Cs2NaYCl6 (ICSD:
245353)

Crystal system cubic cubic
Space group Fm3̄m (225) Fm3̄m (225)

a / Å 10.7278(1) 10.7275
b / Å 10.7278(1) 10.7275
c / Å 10.7278(1) 10.7275
α / ° 90 90
β / ° 90 90
γ / ° 90 90

Cell volume / Å3 1234.631 1234.51
RBragg / % 4.35 -
Rexp / % 6.94 -
Rwp / % 13.75 -
Rp / % 10.65 -

G.o.o.F. 1.98 -
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Figure S3: Rietveld-refined XRPD pattern of Cs2NaYCl6 activated with 1 mol % Pr3+.

Table S10: Cell parameters and refinement parameters of Cs2NaYCl6: 1 mol % Pr3+ ob-
tained from Rietveld refinement compared to single-crystal structural data of Cs2NaYCl6
(ICSD depository no.: 245353)[19].

Cs2NaYCl6: 1 mol %
Pr3+

Cs2NaYCl6 (ICSD:
245353)

Crystal system cubic cubic
Space group Fm3̄m (225) Fm3̄m (225)

a / Å 10.7287(1) 10.7275
b / Å 10.7287(1) 10.7275
c / Å 10.7287(1) 10.7275
α / ° 90 90
β / ° 90 90
γ / ° 90 90

Cell volume / Å3 1234.930 1234.51
RBragg / % 7.36 -
Rexp / % 5.49 -
Rwp / % 12.08 -
Rp / % 8.94 -

G.o.o.F. 2.20 -
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3 Luminescence spectra and decay times
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Figure S4: Normalized photoluminescence excitation spectra of the synthesized powders at
298 K, monitoring the emission maximum around 650 nm. The spectra show the 3PJ (J =
0, 1, 2), 1I6 ← 3H4 excitation.
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Figure S5: Photoluminescence decay curves of the synthesized samples of the 1D2 level at
298 K monitoring the 1D2 → 3H4-based emission around 600 nm. Due to strongly differing
decay times, decay curves are shown for different delay times. Values of the measured decay
times are given in Table 1 in the main manuscript.
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Figure S6: Normalized photoluminescence emission (solid lines) and excitation spectra (dot-
ted lines) of the synthesized samples at 77 K in UV range showing emission and excitation
of 4f15d1 states. Spectra were measured against wavelengths and converted to wavenumbers
using a Jacobian transformation[20].
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Figure S7: Decay curves of the 4f15d1 states of the synthesized samples at 77 K in the
range of nanoseconds. For the garnets, an EPLED-270 was used as excitation source. For
the other samples, an EPLED-250 was used. Decay curves of Pr3+ in YAB and V-YOF are
not depicted because of limitation in the experimental setup.
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4 IR spectra
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Figure S8: Infrared spectrum of the Pr3+-activated YAl3(BO3)4 at room temperature. The
cut-off phonon energy is given in the spectrum.
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Figure S9: Infrared spectrum of the Pr3+-activated Na3Y(BO3)2. The cut-off phonon energy
is given in the spectrum.
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Figure S10: Infrared spectrum of the Pr3+-activated β-Y2Si2O7. The cut-off phonon energy
is given in the spectrum.
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Figure S11: Infrared spectrum of the Pr3+-activated X2-Y2SiO5. The cut-off phonon energy
is given in the spectrum.
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Figure S12: Infrared spectrum of the Pr3+-activated Lu3Al5O12. The cut-off phonon energy
is given in the spectrum.
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Figure S13: Infrared spectrum of the Pr3+-activated Y3Al5O12. The cut-off phonon energy
is given in the spectrum.
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Figure S14: Infrared spectrum of the Pr3+-activated Y7O6F9. The cut-off phonon energy
is given in the spectrum.
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Figure S15: Infrared spectrum of the Pr3+-activated Cs2NaYCl6. The cut-off phonon energy
is given in the spectrum.
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5 Upconversion luminescence

YAl3(BO3)4: 0.5% Pr3+

lex = 446.5 nm
Integral: 280 - 335 nm
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Figure S16: Left: Double logarithmic plot of integrated upconversion intensity of Pr3+-
activated YAl3(BO3)4 against laser pump power with linear regression. The slope for the
linear regression is given in the diagram. Right: UV upconversion spectra of Pr3+-activated
YAl3(BO3)4 used for the double logarithmic plot. The slope of 1 results from the strong
scattered light compared to the UC luminescence.

Na3Y(BO3)2: 0.5% Pr3+
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Figure S17: Left: Double logarithmic plot of integrated upconversion intensity of Pr3+-
activated Na3Y(BO3)2 against laser pump power with linear regression. The slope for the
linear regression is given in the diagram. Right: UV upconversion spectra of Pr3+-activated
Na3Y(BO3)2 used for the double logarithmic plot. The increasing slope results from the in-
teraction of scattered light (dominates at low pump power) and UC luminescence (dominates
at higher pump power).
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b-Y2Si2O7: 0.5% Pr3+

lex = 446.5 nm
Integral: 255 - 340 nm
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Figure S18: Left: Double logarithmic plot of integrated upconversion intensity of Pr3+-
activated β-Y2Si2O7 against laser pump power with linear regression. The slope for the
linear regression is given in the diagram. Right: UV upconversion spectra of Pr3+-activated
β-Y2Si2O7 used for the double logarithmic plot.
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Figure S19: Left: Double logarithmic plot of integrated upconversion intensity of Pr3+-
activated X2-Y2SiO5 against laser pump power with linear regression. The slope for the
linear regression is given in the diagram. Right: UV upconversion spectra of Pr3+-activated
X2-Y2SiO5 used for the double logarithmic plot.
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Lu3Al5O12: 0.5% Pr3+

lex = 446.5 nm
Integral: 285 - 365 nm
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Figure S20: Left: Double logarithmic plot of integrated upconversion intensity of Pr3+-
activated Lu3Al5O12 against laser pump power with linear regression. The slope for the
linear regression is given in the diagram. Right: UV upconversion spectra of Pr3+-activated
Lu3Al5O12 used for the double logarithmic plot.

Y3Al5O12: 0.5% Pr3+

lex = 446.5 nm
Integral: 285 - 365 nm

lo
g(

in
te

gr
at

ed
 U

C
 in

te
ns

ity
)

log(pump power / mW)

1.53 ± 0.04

300 320 340 360
0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
te

ns
ity

 / 
10

6  c
ou

nt
s

Wavelength l / nm

 1046.4 mW  901.6 mW  829.1 mW
 727.7 mW  640.7 mW  524.8 mW
 408.9 mW  336.5 mW  249.5 mW
 162.6 mW  61.2 mW

Figure S21: Left: Double logarithmic plot of integrated upconversion intensity of Pr3+-
activated Y3Al5O12 against laser pump power with linear regression. The slope for the
linear regression is given in the diagram. Right: UV upconversion spectra of Pr3+-activated
Y3Al5O12 used for the double logarithmic plot.
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7.2 Y7O6F9: 0.5% Pr3+
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Figure S22: Left: Double logarithmic plot of integrated upconversion intensity of Pr3+-
activated Y7O6F9 against laser pump power with linear regression. The slope for the linear
regression is given in the diagram. Right: UV upconversion spectra of Pr3+-activated Y7O6F9
used for the double logarithmic plot.
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Figure S23: Left: Double logarithmic plot of integrated upconversion intensity of Pr3+-
activated Cs2NaYCl6 against laser pump power with linear regression. The slope for the
linear regression is given in the diagram. Right: UV upconversion spectra of Pr3+-activated
Cs2NaYCl6 used for the double logarithmic plot.

24



6 Decay curves of Cs2NaY1-xPrxCl6, (x = 0.005,
0.01)
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Figure S24: Photoluminescence decay curves of the 3P0 level of Cs2NaY1-xPrxCl6, (x =
0.0025, 0.005, 0.01) under 450.9 nm excitation (3P2 ← 3H4) at 77 K. Monoexponential fits
are given as black lines.
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7 Rate equations of the upconversion mechanism

Figure S25: Simplified energy diagram of Pr3+ showing the involving states of the blue-to-
UV upconversion process.

The rate equations for ESA mechanism involving a two sequential one-photon absorp-
tion step are given by

dn1

dt
= n2 · k2nr(T )− n1 ·

Iσ13

h̄ω
− n1 · [k1r + k1nr(T )] (3)

dn2

dt
= n0 ·

Iσ02

h̄ω
− n2 ·

Iσ23

h̄ω
− n2 · [k2r + k2nr(T )] (4)

dn3

dt
= n1 ·

Iσ13

h̄ω
+ n2 ·

Iσ23

h̄ω
− n3 · [k3r + k3nr(T )] (5)

with subscripts 0, 1, 2, 3 refering to the 3H4 ≡ |0⟩ ground level, the 1D2 ≡ |1⟩ and
the 3P0 ≡ |2⟩ levels as intermediate levels and the 4f15d1 ≡ |3⟩ configuration states,
respectively (see Figure S25). The population densities ni of state |i⟩ depends on the
pump light intensity I (in W cm−2), the absorption cross-section from |i⟩ to |j⟩ level
σij, the pump photon energy h̄ω, the radiative decay rate k ir of the corresponding level
and the non-radiative decay rate k inr. Under the assumption of steady-state conditions
(dni

dt
= 0), the rate Equations 3, 4 and 5 can be described as

n2 · k2nr(T ) = n1 · [k1r + k1nr(T )] + n1 ·
Iσ13

h̄ω
(6)

n0 ·
Iσ02

h̄ω
= n2 ·

{
Iσ23

h̄ω
+ [k2r + k2nr(T )]

}
(7)

n3 · [k3r + k3nr(T )] = n2 ·
Iσ23

h̄ω
+ n1 ·

Iσ13

h̄ω
(8)
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According to that, the population of the 1D2 level, the 3P0 level and the 4f15d1-
derived states become

n1 =
n0 · Iσ02

h̄ω
· k2nr(T ){

Iσ23
h̄ω

+ [k2r + k2nr(T )]
}
·

{
Iσ13
h̄ω

+ [k1r + k1nr(T )]
} (9)

n2 =
n0 · Iσ02

h̄ω
Iσ23
h̄ω

+ [k2r + k2nr(T )]
(10)

n3 =
n0

σ02σ23
(h̄ω)2 · I2{

Iσ23
h̄ω

+ [k2r + k2nr(T )]
}

[k3r + k3nr(T )]

+
n0

σ02σ13
(h̄ω)2 · I2{

Iσ23
h̄ω

+ [k2r + k2nr(T )]
} {

Iσ13
h̄ω

+ [k1r + k1nr(T )]
}

[k3r + k3nr(T )]

(11)

A further consideration of Equations 9, 10 and 11 results in two limiting cases for
the populations depending on the intensity:

For a fast decay of the intermediate levels or a low pump light intensity(
[kir + kinr(T )]≫ Iσi3

h̄ω
; i = 1, 2

)
, the population of the 3P0 and the 1D2 level are pro-

portional to the intensity (n1,2 ∝ I), while the population of the 4f15d1 configuration
states is proportional to the square of the intensity (n3 ∝ I2) for a two-photon process.

For a slow decay of the intermediate levels or a high pump light intensity(
[kir + kinr(T )]≪ Iσi3

h̄ω

)
, the population of the 1D2 level is proportional to I−1 and

the population of the 3P0 level levels off and becomes constant (n2 ∝ const.), while the
population of the 4f15d1 configuration states is proportional to the intensity (n3 ∝ I).

For the ETU mechanism, the rate equations are given by

dn1

dt
= k2nr(T ) · n2 − [k1r + k1nr(T )] · n1 − [w12 + w21] · n1 · n2 (12)

dn2

dt
= n0 ·

Iσ02

h̄ω
− [k2r + k2nr(T )] · n2 − 2w22 · n2

2 − [w12 + w21] · n1 · n2 (13)

dn3

dt
= w22 · n2

2 + [w12 + w21] · n1 · n2 − [k3r + k3nr(T )] · n3 (14)

with the upconversion rate wij between the two states |i⟩ and |j⟩. It is assumed that
there is no upconversion starting from two Pr3+ ions in the 1D2 level (w11 = 0), as the
resonance condition is not fulfilled here for most compounds (??). Under steady-state
conditions, the rate equations can be described as

k2nr(T ) · n2 = [k1r + k1nr(T )] · n1 + [w12 + w21] · n1 · n2 (15)

n0 ·
Iσ02

h̄ω
= [k2r + k2nr(T )] · n2 + 2w22 · n2

2 + [w12 + w21] · n1 · n2 (16)

[k3r + k3nr(T )] · n3 = w22 · n2
2 + [w12 + w21] · n1 · n2 (17)

For the ETU mechanism, again, two limiting cases can occur:
For a fast decay of the intermediate levels or a low upconversion rate
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(wij ≪ [kir + kinr(T )]), Equations 15 and 16 can be written as

k2nr(T ) · n2 ≈ [k1r + k1nr(T )] · n1 (18)

n0 ·
Iσ02

h̄ω
≈ [k2r + k2nr(T )] · n2 (19)

which reveals that the population of the 3P0 and the 1D2 levels are proportional to
the pump light intensity (n1,2 ∝ I). For the population of the 4f15d1-derived states,
Equation 17 then results in a quadratic dependence on the intensity (n3 ∝ I2), in
complete analogy to the case of the ESA mechanism.

For a slow decay of the intermediate levels or a high upconversion rate
(wij ≫ [kir + kinr(T )]), Equations 15 and 16 can be written as

k2nr(T ) · n2 ≈ [w12 + w21] · n1 · n2 (20)

n0 ·
Iσ02

h̄ω
≈ 2w22 · n2

2 + [w12 + w21] · n1 · n2 (21)

which shows the population of the 1D2 level is independent of the irradiated in-
tensity and becomes constant (n1 ∝ const.), while the population of the 3P0 level is
proportional to the square root of the pump light intensity (n2 ∝ I

1
2 ). For the popu-

lation of the 4f15d1-derived states, Equation 17 then results in a linear dependence on
the intensity (n3 ∝ I).
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