Modulation of electronic structure of nickel selenide via iron doping for energy-saving hydrogen production coupled with sulfion upgrading

Shuixiang Xie,^{a,1} Xiaojun Wang,^{a,1} Yuhuan Li,^a Shijie Liu,^a Jiahui Qian,^a Yuhan Zhang,^a Linling Jiang,^a Zhe Cao,^a Zhenhao Yan,^a Xiaoyu Wan,^a Zhaohang Yang,^a Longhua Zou,^{*b} Wei Zhang,^{*a} and Rui-Qing Li^{*a}

^a School of Textile and Clothing, Nantong University, Nantong 226019, PR China.

- E-mail: liruiqing@ntu.edu.cn; zhangwei@ntu.edu.cn
- ^b College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

E-mail: zoulonghua@cdu.edu.cn

Experimental section

Chemicals

Ni(NO)₃·6H₂O, Fe(NO)₃·6H₂O, NH₄F, CO(NH₂)₂ and selenium powder were provided from Aladdin. Na₂S·9H₂O, NaBH₄ and NaOH were purchased from Sinopharm Group and Adamas-beta[®]. Nickel foam (NF) was supplied by Taiyuan source of power company.

Synthesis of Fe-Ni_{0.85}Se

The growth of Fe-Ni_{0.85}Se on the surface of NF was accomplished vis hydrothermal and selenization reaction processes. Initially, 1.6 mmol Ni(NO₃)₂, 0.4 mmol Fe(NO)₃, 10 mmol CO(NH₂)₂, 6 mmol NH₄F were added in 35 mL water under the agitation to form uniform solution, and the NF put into in above solution, which was heated at 120 °C for 6 h to obtain the NiFe LDH precursor. Then, the NiFe LDH precursor was placed in an autoclave containing 0.118 g selenium powder and 5 mL NaBH₄, which was heated up to 140 °C for 12 h to synthesize Fe-Ni_{0.85}Se. For comparison, the Ni_{0.85}Se was also fabricated under similar conditions except for the absence of Fe(NO)₃.

Materials characterization

The crystal phases, morphologies, microstructures, elemental mapping and chemical states of catalysts were analyzed by X-ray diffraction (XRD, Bruker D8), scanning electron microscopy (SEM, FIB-SEM GX4), transmission electron microscopy (TEM, FEI Tecnai G20) and X-ray photoelectron spectrometer (XPS, Thermo ESCALAB 250Xi), respectively.

Electrochemical measurements

The electrochemical tests were performed on the electrochemical workstation (CHI 760E) with a standard three-electrode system using the as-fabricated samples as the working electrodes. The polarization curves were recorded at a scan of 2 mV s⁻¹ to analyze catalytic performances. The electrochemical impedance spectroscopy was tested in the frequency range of 10⁻¹-10⁵ Hz. The double layer capacitances was obtained utilizing cyclic voltammetry (CV) method with various applied potentials from 0.2 to 0.3 V.

Theoretical calculations.

All spin polarized DFT calculations were carried out using the Perdew-Burke-Ernzerhof (PBE) functional with DFT-D3 correction as implemented in the Vienna ab initio simulation package (VASP 5.4).¹⁻⁴ A plane-wave basis set with energy cut-off of 450 eV was employed within the framework of projector augmented-wave (PAW) method.⁵ The Brillouin zone was sampled using a Monkhorst–Pack $2 \times 2 \times 1$ k-points mesh. Gaussian smearing with a smearing width of 0.2 eV was used. A 3 × 3 supercell, four layers of pristine Ni_{0.85}Se (111) and Fe-Ni_{0.85}Se (111) surface were chosen to construct the investigated models. The bottom two layers were fixed, while the top two layers and the adsorbates were allowed to relax. A vacuum region of 15 Å was added to avoid interaction between neighboring layers. All the atoms were allowed to relax until the maximum Hellman-Feynman force on each atom was less than 0.02 eV·Å⁻¹, except the atoms on the boundary which were fixed in all directions. The Gibbs free energy (G) values of the adsorbed species were calculated by using the equation: G = E + ZPE - TS, where G, E, ZPE and TS represent the free energy, total energy from DFT calculations, zero-point energy and entropic contributions (T was set to be 298.15 K), respectively. The adsorption energy (E_{ads}) of species M is calculated by formula of $E_{ads} = E_{M/slab} - E_{M}$ - $E_{slab},$ where $E_{M},$ E_{slab} and $E_{M/slab}$ represent total energy of free molecule, clean substrate and adsorbed complex between them. With this definition, a negative value of E_{ads} means a thermodynamically preferred adsorption process. To investigate the kinetic processes of H₂O dissociation, climbing image nudged elastic band (CI-NEB) method was employed to trace the minimum energy pathways (MEPs) and locate its transitional state (TS).^{6,7} The TS was verified with a single imaginary frequency.

The oxidation of S²⁻ into S₈ proceeds in the following steps:⁸⁻¹⁰

$$S^{2-} - 2e \rightarrow S^* \tag{1}$$

$$S^* + S^{2-} - 2e \rightarrow S_2^*$$
 (2)

$$S_2^* + S^{2-} - 2e \rightarrow S_3^*$$
 (3)

$$S_3^* + S^{2-} - 2e \rightarrow S_4^*$$
 (4)

$$2S_4^* \rightarrow S_8^* \tag{5}$$

$$S_8^* \rightarrow S_8 + * \tag{6}$$

The asterisk (*) designates the reaction surfaces of $Ni_{0.85}Se$ and $Fe-Ni_{0.85}Se$ covered by a layer of sulfur atoms. The symbols S*, S₂*, S₃*, S₄*, and S₈* represent the models featuring the respective chemisorbed species on the reaction surfaces.

Fig. S1 XRD pattern of NiFe LDH precursor. Several characteristic diffraction peaks confirm the formation of NiFe LDH.

Fig. S2 SEM image of Fe-Ni_{0.85}Se. The Fe-Ni_{0.85}Se possesses similar nanosheets morphology.

Fig. S3 Cyclic voltammetry curves at various scanning rates for (a) $Ni_{0.85}Se$ and (b) Fe- $Ni_{0.85}Se$. Non-Faradaic scans show that the Fe- $Ni_{0.85}Se$ has higher capacitive tendency than the $Ni_{0.85}Se$.

Fig. S4 SEM image of Fe-Ni_{0.85}Se after the HER measurement. SEM image of Fe-Ni_{0.85}Se after the HER stability shows well-maintained nanosheets morphology.

Fig. S5 LSVs of Fe-Ni_{0.85}Se for SOR in 1.0 M NaOH with various concertations of Na_2S .

Fig. S6 SEM and homologous element mapping images of Fe-Ni_{0.85}Se after the HER measurement. These images show uniform distribution of Ni, Fe and Se elements over the Fe-Ni_{0.85}Se nanosheets.

Fig. S7 SEM image of Fe-Ni_{0.85}Se after the SOR measurement. SEM image of Fe-Ni_{0.85}Se after the SOR stability shows well-maintained nanosheets morphology.

Fig. S8 SEM and homologous element mapping images of $Fe-Ni_{0.85}Se$ after the SOR measurement. These images show uniform distribution of Ni, Fe and Se elements over the Fe-Ni_{0.85}Se nanosheets.

Fig. S9 Structural models of (a) Ni_{0.85}Se and (b) Fe-Ni_{0.85}Se.

Fig. S10 Structural evolution models of H₂O dissociation on the Ni_{0.85}Se. As we know, the HER in alkaline media mainly includes three steps: the initial H₂O adsorption, the H₂O adsorption to generate intermediate H*, and final H₂. Small H₂O dissociation energy guarantees effective H* production on catalyst, which is significant for subsequent reaction. Fig. S9 shows the dissociation process of H₂O molecule on the Ni_{0.85}Se to produce H* intermediate and Ni acts as active site to dissociate H₂O molecule (Fig. 10c, 10d).

Fig. S11 Structural evolution models of H_2O dissociation on the Fe-Ni_{0.85}Se. Fig. S11 shows the adsorption and dissociation process of H_2O molecule on the Fe-Ni_{0.85}Se to generate H* intermediate and Fe acts as active site to dissociate H_2O molecule with low dissociation energy barrier (Fig. 11c, 11d).

Fig. S12 Structural evolution models of H* adsorption on the Ni_{0.85}Se (a,b) and Fe-Ni_{0.85}Se (c,d). Generally, a moderate value of ΔG_{H^*} is beneficial to the HER and neither too strong nor too weak binding would favor the HER process. To reveal the pivotal role of introducing Fe, the ΔG_{H^*} values were calculated based on structural evolution models of Ni_{0.85}Se (Fig. S12a, S12b) and Fe-Ni_{0.85}Se (Fig. S12c, S12d).

Fig. S13 Structural evolution of SOR intermediates adsorbed on the Ni_{0.85}Se. Fig. S13 shows structural adsorption model of *S (Fig. S13a), $*S_2$ (Fig. S13b), $*S_3$ (Fig. S13c), $*S_4$ (Fig. S13d), and $*S_8$ (Fig. S13e) on the Ni_{0.85}Se and corresponding calculated free energy changes were calculated.

Catalysts	Overpotential at 10	Stability (h)	Reference
	mA cm ⁻² (mV)		
Fe-Ni _{0.85} Se	114	50	This work
NiFeP/SG	115	30	S11
Co-Fe ₂ P	117	22	S12
Ti ₃ CN(OH) _x /MoS ₂	120	10	S13
MC-M ₂ C/PNCDs	121	24	S14
Ni ₂ P-Ni ₅ P ₄	128	48	S15
Al-Ni ₂ P/TM	129	20	S16
c-NiP ₂ /m-NiP ₂	134	14	S17
P-CoNi ₂ S ₄	135	40	S18
Ni-N ₃	139	14	S19
MoS ₂ /CeO ₂	147	200	S20
Co-BNCNTs	155	20	S21
1T-MoS ₂	158	24	S22
N,O-carbon	161	24	S23
СоР	173		S24
Co ₁ Mn ₁ CH/NF	180	10	S25
Mn-Ni ₂ P/NiFe LDH	184	20	S26
WS ₂ -NSs	214	14	S27
MoS ₂	248	10	S28
Ni _{1.5} Fe _{0.5} P	282		S29
Co _{0.25} Fe _{0.75} -LDH	365	8	S30

Table S1 The comparison of HER performance of Fe-Ni $_{0.85}$ Se with developed catalysts.

Catalysts	Potential (V) at 10 mA	Stability (h)	Reference	
	cm ⁻²			
Fe-Ni _{0.85} Se	0.340	20	This work	
Ni-MoS ₂ /SM	0.35	~22	S31	
HEDP-Rh	0.385	20	S32	
v-NiS ₂	0.41	4	S33	
IrO ₂	0.43		S34	
WS ₂ NSs	0.48	1	S35	
V _{Pd} -Pd ₄ S MNRs/CP	0.511	20	S36	
SP-Rhlene	0.550	30	S37	
PdCo/C	0.69		S38	
TiO ₂ /GC	0.77		S39	
CoS	0.90		S40	-

Table S2 The comparison of SOR performances of Fe-Ni $_{0.85}$ Se with reported catalysts.

References

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 2. S. Grimme, J. Comput. Chem., 2010, 27, 1787.
- 3. G. Kresse and J. Furthmüller, *Physical Review B*, 1996, 54, 11169.
- 4. G. Kresse and J. Furthmüller, *Comp.mat.er.sci*, 1996, 6, 15-50.
- 5. G. J. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, 1999.
- 6. G. Henkelman, J. Chem. Phys., 2000, 113, 9901.
- 7. G. Henkelman and H. Jónsson, J. Chem. Phys., 2000, 113, 9978.
- S. Semwal, R. Shakir, J. Karthikeyan, A. Sinha and U. Ojha, ACS Appl. Nano Mater., 2023, 6, 18945.
- D. He, P. Yang, K. Yang, J. Qiu and Z. Wang, Adv. Funct. Mater., 2024, 34, 2407601.
- 10. L. Zhang, Z. Wang and J. Qiu, Adv. Mater., 2022, 34, 2109321
- 11. R. Li, B. Wang, T. Gao, R. Zhang, C. Xu, X. Jiang, J. Zeng, Y. Bando, P. Hu, Y. Li and X. Wang, *Nano Energy*, 2019, **58**, 870.
- 12. S. Wang, P. Yang, X. Sun, H. Xing, J. Hu, P. Chen, Z. Cui, W. Zhu and Z. Ma, *Appl. Catal. B-Environ.*, 2021, **297**, 120386.
- J. Jiang, F. Li, S. Bai, Y. Wang, K. Xiang, H. Wang, J. Zou and J. Hsu, *Nano Res.*, 2023, 16, 4656.
- 14. X. Lu, L. Yu, J. Zhang and X. Lou, Adv. Mater., 2019, **31**, 1900699.
- 15. L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen and Z. Ren, *Adv. Funct. Mater.*, 2021, **31**, 2006484.
- 16. H. Du, L. Xia, S. Zhu, F. Qu and F. Qu, Chem. Commun., 2018, 54, 2894.
- Q. Fu, X. Wang, J. Han, J. Zhong, Z. Tongrui, T. Yao, C. Xu, T. Gao, S. Xi, C. Liang, L. Xu, P. Xu and B. Song, *Angew. Chem., Int. Ed.*, 2021, **133**, 263.
- 18. X. Lu, S. Zhang, W. Sim, S. Gao and X. Lou, Angew. Chem. Int. Ed., 2021, 133, 23067.
- 19. W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y. Feng, J. Wang, S. Pennycook, *Adv. Mater.*, 2021, **33**, 2003846.
- 20. R. Li, C. Wang, S. Xie, T. Hang, X. Wan, J. Zeng and W. Zhang, Chem. Commun.,

2023, **59**, 11512.

- R. Li,, X. Xu, J. Zeng, X. Zhang, X. Wan, S. Guo, X. Wang, S. Xie, Z. Cao, Y. Zhang, C. Wang, J. Deng, O. Fontaine, M. Ge, J. Dai, G. Zhang, W. Zhang, X. Wang and Y. Zhu, *Nano Lett.*, 2025, **25**, 4, 1272.
- 22. X. Guo, E. Song, W. Zhao, S. Xu, W. Zhao, Y. Lei, Y. Fang, J. Liu and F. Huang, *Nat. Commun.*, 2022, **13**, 5954.
- Q. Liu, S. Sun, L. Zhang, Y. Luo, Q. Yang, K. Dong, X. Fang, D. Zheng, A. Alshehri and
 X. Sun, *Nano Res.*, 2022, **15**, 8922.
- 24. J. Xie, H. Liu, Y. Zhen, Y. Dong, R. Luan, N. Yu, D. Liu, Y. Chai and B. Dong, J. Colloid Interf. Sci., 2022, 614, 84.
- 25. T. Tang, W. Jiang, S. Niu, N. Liu, H. Luo, Y. Chen, S. Jin, F. Gao, L. Wan and J. Hu, *J. Am. Chem. Soc.*, 2017, **139**, 8320.
- 26. B. Sang, Y. Liu, X. Wan, S. Xie, G. Zhang, M. Ge, J. Dai, W. Zhang and R. Li, *Chem. Commun.*, 2023, **59**, 8743.
- 27. L. Yi, Y. Ji, P. Shao, J. Chen, J. Li, H. Li, K. Chen, X. Peng and Z. Wen, *Angew. Chem. Int. Ed.*, 2021, **60**, 21550.
- 28. B. Chen, P. Hu, F. Yang, X. Hua, F. Yang, F. Zhu, R. Sun, K. Hao and Z. Yin, *Small*, 2023, **19**, 2207177.
- 29. H. Huang, C. Yu, C. Zhao, X. Han, J. Yang, Z. Liu, S. Li, M. Zhang and J. Qiu, *Nano Energy*, 2017, **34**, 472.
- S. Naik, J. Theerthagiri, F. Nogueira, S. Lee, A. Min, G. Kim, G. Maia, L. Pinto and M. Choi, ACS Catal., 2023, 13, 1477.
- 31. F. Liu, X. Cai, Y. Tang, W. Liu, Q. Chen, P. Dong, M. Xu, Y. Tan and S. Bao, *Energy Environ. Mater.*, 2024, **7**, e12644.
- 32. Z. Wang, G. Yang, P. Tian, X. Li, K. Deng, H. Yu, Y. Xu, H. Wang and L. Wang, *Chem. Eng. J.*, 2023, **473**, 145147.
- 33. S. Zhang, Q. Zhou, Z. Shen, X. Jin, Y. Zhang, M. Shi, J. Zhou, J. Liu, Z. Lu, Y. Zhou and
 H. Zhang, Adv. Funct. Mater., 2021, **31**, 2101922.
- M. Zhang, J. Guan, Y. Tu, S. Chen, Y. Wang, S. Wang, L. Yu, C. Ma, D. Deng and X. Bao, *Energy Environ. Sci.*, 2020, **13**, 119.

- 35. L. Yi, Y. Ji, P. Shao, J. Chen, J. Li, H. Li, K. Chen, X. Peng and Z. Wen, *Angew. Chem. Int. Ed.*, 2021, **60**, 21550.
- 36. W. Wang, Q. Mao, S. Jiang, K. Deng, H. Yu, Z. Wang, Y. Xu, L. Wang and H. Wang, *Appl. Catal. B-Environ.*, 2024, **340**, 123194.
- H. Wang, Y. Liang, S. Liu, X. Mu, H. Yu, K. Deng, Z. Wang, Y. Xu and L. Wang, *Inorg. Chem. Front.*, 2023, 10, 5686.
- 38. K. Kim and J. Han, Int. J. Hydrogen Energy, 2015, 40, 4567.
- 39. P. Sahoo, K. Kim, J. Lee, J. Han and Y. Oh, ACS Sustain. Chem. Eng., 2015, 3, 1764.
- 40. K. Kim, J. Son and J. Han, Int. J. Hydrogen Energy, 2014, **39**, 10493.