Supporting Information

Li_{3.6}In₇S_{11.8}Cl: An Air- and Moisture-Stable Superionic Conductor

Ifeoluwa P. Oyekunle,^{1,3} Erica Truong, ^{1,3} Tej P. Poudel,^{2,3} Yudan Chen,^{1,3} Yongkang Jin,^{1,3} Islamiyat A. Ojelade,^{1,3} Michael J. Deck,^{1,3} Bright Ogbolu,^{1,3} Md. Mahinur Islam,^{1,3} Pawan K. Ojha,^{1,3} J.S Raaj Vellore Winfred,¹ Dewen Hou,⁴ Hui Xiong,⁵ Chen Huang,⁶ Yan-Yan Hu^{1,2,3}*

- 1. Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306
- 2. Materials Science and Engineering Program, Florida State University, Tallahassee, FL 32306
- Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, FL 32310
- Center for Nanoscale Materials Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 60439, USA
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, 83725, USA
- 6. Department of Scientific Computing, Florida State University, Tallahassee, FL 32306

Orcid:

Ifeoluwa P. Oyekunle: 0000-0001-7623-4493 Erica Truong: 0000-0001-6140-2853 Tej P. Poudel: 0000-0003-4787-5739 Yudan Chen: 0000-0003-1495-4289 Michael J. Deck: 0000-0001-6439-8634 Bright Ogbolu: 0000-0003-1048-0506 Md. Mahinur Islam: 0000-0002-3042-0204 Pawan K. Ojha: 0000-0003-1503-0029 J.S Raaj Vellore Winfred: 0000-0002-4495-4653 Dewen Hou: 0009-0006-8779-6559 Hui Xiong: 0000-0003-3126-1476 Chen Huang: 0000-0003-2934-8118 Yan-Yan Hu: 0000-0003-0677-5897 *Corresponding author: <u>yhu@fsu.edu</u>

Keywords: solid electrolytes; energy storage; all-solid-state-batteries; ionic conductivity; moisture stability

Supplementary Figure 1: The Nyquist plot of nominal Li_{3.6}In₇S_{11.8}Cl, yielding an ionic conductivity of 0.8 mS cm⁻¹ at 25 °C.

Supplementary Figure 2. ⁷Li NMR peak line-width of Li_{3.6}In₇S_{11.8}Cl as a function of temperature.

Supplementary Figure 3. Lithium-ion migration pathway analysis of Li_{3.6}In₇S_{11.8}Cl using bond valance site energy (BVSE). (a) Migration barrier energy as a function of reaction coordinates obtained from BVSE calculation. (b) Lithium migration pathway illustration, oct-tet-oct, using the structure obtained from refining the high-resolution XRD pattern.

Supplementary Figure 4. DC polarization curve of the moisture-exposed $Li_{3.6}In_7S_{11.8}Cl$ for the cell set up SS|SE|SS for determining the electronic conductivity.

Supplementary Figure 5. ¹H NMR of the as-prepared, air/moisture-exposed, and dried $Li_{3.6}In_7S_{11.8}Cl$.

Supplementary Figure 6. ⁷Li NMR T_1 inversion-recovery curve for the as-prepared and moisture-exposed Li_{3.6}In₇S_{11.8}Cl

ntary Figure 7. Stability test of a Li_{3.6}In₇S_{11.8}Cl pellet against water.

Supplementary Figure 8. (a) TGA–DTGA curve for moisture-exposed Li_{3.6}In₇S_{11.8}Cl (b) TGA–DSC curve for moisture-exposed Li_{3.6}In₇S_{11.8}Cl.

Supplementary Figure 9. SEM image and EDS elemental mapping of In, S, Cl, and O for the cross-section of Li_{3.6}In₇S_{11.8}Cl pellet dried at 350 °C.

Table S1. Rietveld-refinement results of high-resolution X-ray diffraction data for Li₄In₇S₁₂Cl.

Refined composition: $Li_{3.6}In_7S_{11.8}Cl$

Lattice parameter: a = b = c = 10.78014(5), $\alpha = \beta = \gamma = 90.000$,

Unit-cell volume = 1252.776(7) Å³

Density of $Li_{3.6}In_7S_{11.8}Cl = 4.127 \text{ g/cm}^3$

 $R_{wp} = 7.675$ %, Space group *Fd-3m*, Impurity phase: 6.6 wt% of LiInS₂

Name	Atom	Wycoff	Atomic coordinates			Occupancy	U _{iso}
		position	Х	У	Z	-	
Lil	Li	8a	0.125	0.125	0.125	0.540(3)	0.017(4)
Li2	Li	16c	0	0	0	0.161(5)	0.016(3)
Li3	Li	16d	0.5	0.5	0.5	0.132(4)	0.016(4)
In1	In	8a	0.125	0.125	0.125	0.460(3)	0.017(4)
In2	In	16d	0.5	0.5	0.5	0.868(4)	0.016(4)
S 1	S	32e	0.258(3)	0.258(3)	0.258(4)	0.926(3)	0.022(2)
C11	Cl	32e	0.258(3)	0.258(3)	0.258(4)	0.074(3)	0.022(2)

Element	Mole ratio	Mole ratio	
	(SXRD)	(SEM-EDX)	
In	7.00	6.80	
S	11.80	11.87	
Cl	1.00	1.00	

Table S2. SEM-EDX elemental analysis of $Li_{3.6}In_7S_{11.8}Cl$ pellet.

Table S3. ⁶Li NMR shift, calculated using CASTEP.

Sample	Chemical Shift [ppm]	η	C _q (MHz)
LiInS ₂	-0.8	0.58	-0.05

Table S4. Li (%) distribution in various components in $Li_{3.6}In_7S_{11.8}Cl$ from ⁶Li NMR analysis.

Sample	⁶ Li (%)			
	Li8a	Li16c	Li16d	Impurity
Li _{3.6} In ₇ S _{11.8} Cl (AP)	37.4	29.1	24.5	9.00
Li _{3.6} In ₇ S _{11.8} Cl (E)	31.9	32.0	22.3	13.8

 Table S5. ⁶Li line width of as-prepared-, exposed-, and dried- Li_{3.6}In₇S_{11.8}Cl.

Sample		⁶ Li, Line	2	
		width [Hz	width [Hz]	
	Li8a	Li16c	Li16d	
Li _{3.6} In ₇ S _{11.8} Cl (As-prepared)	55.7	56.5	51.7	
Li _{3.6} In ₇ S _{11.8} Cl (Exposed)	45.3	43.8	30.8	
Li _{3.6} In ₇ S _{11.8} Cl (Dried)	59.4	64.6	52.4	

Table S6. The resistance and fitted capacitance values from the EIS analysis on as-prepared (AP) and moisture-exposed (E) $Li_{3.6}In_7S_{11.8}Cl_{.5}at$ 25 °C. The fitted capacitances agree with the bulk and grain boundary contribution (GB) capacitance range.

Sample	R_1 (Bulk)	C_1 (Bulk)	$R_2(GB)$	<i>C</i> ₂ (GB)
	$[\Omega]$	[pF]	$[\Omega]$	[nF]
Li _{3.6} In ₇ S _{11.8} Cl (AP)	780.2	0.89	171.7	0.56
$Li_{3.6}In_7S_{11.8}Cl(E)$	197.8	0.31	46.6	0.67