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1. Supplementary Text

1.1 Experimental Methods

The mass spectrometric experiments for the reactions of [CuL]* and [Cu]* ions were
performed on a LTQ XL linear quadrupole ion-trap mass spectrometer (LTQ XL, Thermo Fisher
Scientific) equipped with an electrospray ionization (ESI) source operating in positive ion mode.
The reasons for choosing an ion trap as the reaction vessel are as follows: (1) lon traps very
efficiently lock ions into stable trajectories so relatively long residence times are possible’; (2)
The trapping field in an ion trap is robust so collisions are not problematic and do not lead to
significant ion loss. In fact, quadrupole ion traps are generally operated with the addition of a
helium buffer gas at a pressure of approximately 1 mtorr’. Therefore, reactions in an ion trap
can be considered as “multi-collision” reaction with the greater collisional stabilization compared
to Fourier-transform ion cyclotron resonance (FT-ICR)?; (3) the reactant ions generally are very
close to the temperature of the helium buffer gas (~300 K)'. The instrument was in-house
modified to allow the introduction of reagent gases into the trap and study the reactivity of mass-
selected ions with limited amount toward neutral species under continuous flow conditions. The
pressure of the neutral gases introduced into the trap was kept constant by a Granville—Phillips
leak valve and measured by a Granville—Phillips Series 342 Stabil lon Vacuum Gauge (accuracy
5% of reading). This modification is feasible as demonstrated in many previous studies®®. In
addition, water and solvent molecules cannot thoroughly be eliminated from the apparatus,
which may lead to some loss of reactant ions. Therefore, the single most intense peak was mass
selected to follow the course of reactions and we calculated the reaction rate branching ratio by
determining the ratio of CO to background gas adsorption signals (Table S1), thus eliminating
background gas interference and obtaining a more accurate reaction rate.

Samples were injected operating at 5 mL min-' via the onboard syringe pump connected to
an ESI source. Nitrogen was used as a sheath and auxiliary gas with a capillary temperature at
275 °C and a spray voltage at 4 kV, and thus the parent ions were initially formed in the source.
Then the clusters of interest were mass-selected by a linear ion trap (LIT), and the target ions
were generated by CID or direct isolation. By spraying a millimolar solution of Cu(NO3)2:3H20
and a sequence of ligands dissolved in methanol, [CuL]* or their precursor ions were generated
and detected taking advantage of the MS" function of the mass spectrometer. Gaseous reactant
CO was introduced into the ion trap via a flowmeter and measured by an ion vacuum gauge,
and ion—molecule reactions were further performed and monitored when Cu-centered species
were isolated.

1.2 Pseudo-first-order Rate Constant Calculation Formula

We monitored and maintained a constant reaction pressure of approximately 1 x 10 Torr
by observing the changes in the ion gauge readings before and after gas flow. Pseudo first-
order rates were estimated by extrapolation of plots of reactant ion intensity vs reaction time.
The reaction time was the time delay between isolation of the reactant ion and its mass analysis’.
By measuring the abundances of reactants at different reaction times, we calculated the reaction
rate. The pseudo-first-order rate constant calculation formula is as follows:

lnI—R == _k,TtR (1)
It
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N = ——— 3)
__ kv

ky = (4)

Ir — Peak area of the reactant after the reaction
I+ — Sum of the peak areas of the reactant and all products after the reaction
kT — First-order reaction rate constant
Pco — The gas pressure of CO in the ion trap, 1x10°7 Torr here
k — Boltzmann constant, 1.38 x 1022 J/K
T — Reaction temperature, generally 298K
tr — Reaction time
V — lon trap volume, 1.30 x 10°> mm?3
N — Number of reacting molecules
However, due to the presence of water and solvent molecules as impurity gases in the
LTQ, the observed reaction rate (kr) is the total reaction rate. According to the characteristics
of parallel reactions, where the product concentration is initially zero, we can get kco through:

kco _ Ico
o =1 ()

1.3 Theoretical Methods

Optimization was carried out using density functional theory within the Gaussian16.A03
program package?, with the PBEO-D3(BJ)%! functional in conjunction with “Ahlrichs” basis sets
def2-TZVPP1%13 for all atoms. Subsequently, the ORCA 4.2.1 program package'* was utilized
for single point energy calculations at the DLPNO-CCSD(T)/cc-pVTZ level'>l7. Zero-point
vibrations and temperature corrections were taken into account at the PBEO-D3(BJ)/def2-
TZVPP level. The input files for the ORCA program were prepared with the assistance of the
Multiwfn'® code. Harmonic vibrational frequency analysis was conducted to confirm that all
optimized structures reside at minima on their respective potential energy surfaces. Calculations
of CO vibrational frequencies were carried out at the B3LYP/def2-TZVP level'® 19, which is
widely used for similar systems?°. To address the tendency of the harmonic approximation to
overestimate vibrational frequencies, we applied an appropriate frequency scaling factor (0.959)
to the calculated results to correct for the systematic errors associated with the computational
level?. In addition, we obtained the optimized C-O bond lengths at the PBEO/def2-TZVPP level
and calculated their deviations from that of free CO. The computational results, as well as the
charge on Cu centers, are summarized in Table S6. Subsequently, we performed Charge
Decomposition Analysis (CDA) calculations to evaluate the Cu«—CO o-donation and Cu—CO
m-back donation electron counts??. Combined with the Energy Dissociation Analysis (EDA)
analysis presented in Table S3, we analyzed the underlying reasons for the changes in C-O
vibrational frequencies (Table S7). Furthermore, Multiwfn was applied for the analysis of
SObEDA, valence electron density, and EST-NOCV. The visualization of donor-acceptor
interactions and orbitals was facilitated through VESTAZ?3,
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1.4 Bonding Nature Details

To show more bonding nature details between the ligands and Cu center, as well as their
interactions with CO, we firstly gave the lowest energy structures of Cu species and their
corresponding CO-coordinated products for the reason that collisions with the helium buffer gas
can cool reactant ions to near room temperature within a few milliseconds?*. Since the cooling
is significantly faster than the time scale of reactions, ion—molecule reactions in our system
proceed at near thermal energies even after subjecting the ion to trapping voltages or CID?>-26,
Please note that [Cu-Pyr]* and [Cu-Cz]* are characterized as doublet states, [Cu-TPP]* is a
triplet state, and the remaining complexes are singlet states. The geometric structures of [CuL]*
in Fig. 2b are in line with the spectral characterization reported previously?®-31, Cu atom
coordinates with N atoms in the ligands, and CO adsorbed on the Cu active site via carbon-end
bonding in the complex, consistent with previously reported findings3°-31. Energy decomposition
analysis (EDA)*? was employed to understand the interactions between Cu atom and the ligands,
as well as that between [CuL]® and CO (Tables S2-S3). The results show that electrostatic
attraction and orbital interactions both played critical role in Cu complexes and CO bound
species. For a deep dive into orbital interactions, we examined the Mayer bond orders, finding
that both the Cu-N and Cu-CO bond orders are close to 1, suggesting a covalent bonding nature
(Table S4). This can be additionally confirmed by the presence of high valence electron
densities at the Cu-CO and Cu-N interfaces (Fig. S8). By means of the extended transition-state
method with natural orbitals for chemical valence3?® (ETS-NOCV), we further investigated this
covalent interaction in [CuL]* and [OC-CuL]* (Fig. S9).For [CuL]*, significant electron transfer
from the ligand to Cu occurs, with the ligands acting as an “electron reservoir” for the Cu center.
In the formation of the Cu-CO bond, two key electron transfer mechanisms were revealed: o-
donation and 1-back-donation. Specifically, the C atom in CO donates electrons from its filled o
orbital to the Cu atom in the complex, forming a stable o bond. Concurrently, the Cu atom in the
complex donates electrons from its filled d orbital to the 1 orbital of CO, a feedback mechanism
that enhances the stability of the complex. Atomic dipole moment corrected Hirshfeld population
(ADCH) charge population®* was chosen for its ability to accurately describe transition metal
systems, clearly demonstrating the charge transfer among the ligands, Cu atom and CO (Fig.
2c).

Besides, in the competitive adsorption of H20 and CO, thermodynamically, [Cu-Py]* shows
a stronger affinity for H,O (AHu20 = -154.15 kJ/mol) than that for CO. However, for [Cu-bpy]*,
the situation is reversed, i.e., AHn20 = -108.09 kJ/mol vs AHco = -124.03 kJ/mol. Consequently,
the Cu-N1 coordination shows a clear signal of H20 adsorption.

1.5 Effect of Additional Factors on Reaction Kinetics

The number of vibrational degrees of freedom and the collision cross-section play a crucial
role in regulating energy dissipation during CO adsorption3®. In systems with larger and more
flexible ligands, enhanced intramolecular vibrational redistribution and broader collision cross-
sections with inert cooling gases facilitate rapid energy relaxation, stabilize the adsorption
complex, and improve apparent reactivity36-38, By contrast, [Cu-CO]* possesses only three
vibrational modes and a linear geometry that restricts vibrational-rotational coupling, leading to
strong energy localization and poor energy dissipation, despite its high binding energy—
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explaining the inertness of [Cu]* toward CO. This mechanism also rationalizes the higher
reactivity of [Cu-bpy]* over [Cu-py]* and [Cu-Acr]* over [Cu-Qu]*, where increased vibrational
flexibility and conjugation enable more efficient energy redistribution and stabilize the adsorption
products.

1.6 Analysis of CO Stretching Vibrational Frequencies

A comparison of CO stretching frequencies across different cluster models shows that CO
vibrational modes are sensitive to the coordination environment and electronic structure of the
Cu center (Table S6 and Fig. S$15). In Cu*, Cu-N1 (excluding [Cu-P-Py]*), and Cu-N2
configurations, CO exhibits a blue shift3! 3%, whereas Cu-Ns, Cu-N4, and P-doped systems show
a red shift. As ligand conjugation and coordination number increase, the electron density on Cu
increases, leading to a reduced blue shift in CO frequency (Fig. $S15) and an increase in the C-
O bond length (Fig. $16). This blue shift arises from the electronic configuration of the Cu(l)
center, where the fully filled 3d'° orbitals result in weak Cu—CO m-backdonation. The Cu—CO
bonding is primarily governed by Cu—CO o-donation, which is considered to be weakly
antibonding. The blue shift is rather due to an inductive effect of positively charged Cu atoms on
the occupied orbitals of the CO ligand (Table S7), which become less polarized and thus shorter
and stronger40-41,

When Cu(l) coordinates with ligands, electron donation from the ligands enables Cu—CO
m-backdonation, significantly reducing the blue shift in CO vibrational frequency compared to
[Cu-COJ" (as detailed in Table S7). In Cu-N+ configurations, increased ligand conjugation lowers
the Cu center’s positive charge, thereby diminishing the blue shift. Cu-N2 shows even less blue
shift and a longer C-O bond than Cu-N1 configurations. Despite the relatively high Cu charge in
[Cu-phen]* and [Cu-bpy]*, CDA reveals relatively strong m-backdonation, likely due to the Cu-
N2 configuration facilitating efficient electron flow from ligand to CO. With further increases in
coordination number and conjugation, as seen in Cu-N3 and Cu-N4, Tr-backdonation strengthens,
leading to a clear red shift and further bond elongation. In [Cu-P-Py]*, CO forms a stronger
covalent bond with the P atom, receiving more electron density and producing an even greater
red shift than in Cu-CO systems. Notably, CDA results for [Cu-Py2]" and [Cu-bpy2]* may be
underestimated, as calculations were based on post-adsorption geometries and did not capture
electron redistribution during adsorption-induced structural changes.

In addition, we calculated CO vibrational frequencies for the theoretically modeled Cu-N+
and Cu-N2 systems with extended conjugation (Table S8). Although the resulting changes in Cu
center charge are minor and cause negligible variations in bonding strength (AE < 5 kd/mol),
these subtle electronic modulations still lead to red shifts in CO frequency due to enhanced -
back donation. A comparison of the data in Table S8 with the Cu-Nu12 data in Table S6 shows
that the direction of conjugation extension also influences the degree of frequency shift. We thus
speculate that in practical catalytic systems, where support materials often exhibit stronger
conjugation, CO vibrational red shifts may be more pronounced than those observed in our
models. Nevertheless, the general trend of the redshift influenced by the N coordination number,
conjugation size, and extension direction should remain valid.

Previous studies have primarily focused on Cu-N4 systems, with some attention to Cu-N2
and Cu-Ns configurations. However, due to the weak CO adsorption tendency on Cu—Nz3 sites
during COz2 reduction reactions (CO2RR)*?>4, infrared spectroscopic data of CO remain scarce.
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For example, Yang et al.* reports a CO adsorption energy of only —0.36 eV on Cu-Ns3 single-
atom catalysts (SACs), indicating that CO desorption is facile. Similarly, Guo et al.** reported
that Cu-Ns could not effectively adsorb *CO, as evidenced by the absence of corresponding
Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS) signals. Moreover, Wu
et al.*> observed no C-O stretching peak for Cu-Na4, consistent with its unfavorable adsorption
enthalpy of +0.58 eV, whereas Cu-N2 exhibits stronger CO binding (-1.79 eV) and a red-shifted
C-O stretching frequency at 2025 cm-. This trend in Cu-N2 system agrees with our findings that
increased ligand conjugation and electron density at the Cu center enhances Cu—CO -
backdonation, leading to further red shifts in CO vibrational frequencies (Table S8 and Fig. $15).
Additionally, Nielsen et al.*> showed that higher electron density on Cu (from Cu* to Cu® and
then to Cu-) systematically lowers CO stretching frequenciest. Together, these studies provide
valuable experimental benchmarks that support and enrich the interpretations in our work.

2. Supplementary Figures

A : B (a) Mass spectra of Cu(NO), and tpy dissolved in CH;OH
@ | Mass spectra of Cu(NO), dissolved in CH,OH

(b)

S

i

| [Cu]*-isolated

(b)

i [Cu-tpy]*-isolated

N 2

2,2".6',2"-Terpyridine

1 )
100 150
m/z

)
200

L
200

1
250

a1 1 L
300 350 400

miz

)
450

[Cu-bpy,]*-isolated

: C‘D, — ,.,.,.,,m,.,,,v
ol e ey H‘HHN‘)

(©)

L[Cwbpy]wsolated

2,2-Bipyridine

| N

Lo

D ()

(b)

[Cu-Py,]*-isolated

oD - S _
" -PYCHN)

(c)

E [Cu-Py]*-isolated

Pyridine

L
150

! L L
200 250 300
m/z

!
350

i
400

L
150

!
200

! f 1
250 300 350
m/z

1
400

Fig. S1. Mass spectra of isolated and collision induced dissociation process of [Cu]* and [CuL]*

(A) [Cu]"; (B) [Cu-tpy]"; (C) [Cu-bpyn]" and (D) [Cu-Pyn]" (n = 1-2).
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Fig. S2. Mass spectra of collision induced dissociation process of [CuL]* (A) [Cu-Qu]*; (B) [Cu-
Acr]*; (C) [Cu-Cz]*; (D) [Cu-phen]*; (E) [Cu-Mpy]* and (F) [Cu-P-Py]* and [Cu-PhPy]*, where
[Cu-Cz]* complex undergoes a loss of the hydrogen on the pyrrole N during its formation, better
simulating the actual catalytic environment.
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including Cu, N, C, P, S, and others. Under the QE conditions, the signals for Cu adsorbing only
Cz or MPy were not prominent. Therefore, the displayed results correspond to the target ion

adsorbing solvent molecules.
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Fig. S6a. lon current profile of [CuL]* and their mass spectra after 20 ms CO exposure. The
distinct peaks are as follows: [CuL]*, [CuL-H20]*, [CuL-CQ]J*, and [CuL-CH3OH]*. The absence
of fragment ion peaks of [CuL]* and other extraneous signals, along with the stable ion current,
confirms that the cluster ions are inherently stable and do not undergo fragmentation upon CO
exposure.
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Fig. S7. Details of the calculation of the rate constants (k).
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Reaction time is 30 ms.

Fig. S14. Structural details of the [CoL]* cluster models. Unlike [CuL]*, the lowest-energy
structures of the [CoL]* complexes adopt a triplet state at PBE0-D3(BJ)/def2tzvpp levell?8-29],
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1 3. Supplementary Tables

2 Table S1. Details of the calculation of the rate constants (k).

kco 1.00x107°

Model KT (s Adjusted R- *kr (10° cm? Keofkr (£30%) cm?
clusters Squared /(molecule*s)

/(moleculess)
[Cu-Py]* 10.18 0.99778 3.14 0.58 1.81
[Cu-bpy]* 16.39 0.99946 5.06 0.98 4.96
[Cu-Qu]* 22.76 0.99850 7.03 0.90 6.32
[Cu-Acr]* 38.76 0.99747 11.97 0.95 11.37
[Cu-Cz]* 38.15 0.99747 11.78 0.97 11.46
[Cu-phen]* 15.58 0.99001 4.81 0.97 4.66
[Cu-PhPy]* 20.89 0.99881 6.45 0.92 5.92
[Cu-MPy]* 9.33 0.99214 2.88 0.84 2.42
[Cu-P-Py]* 8.18 0.99833 2.53 0.80 2.02
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1 Table S2. Energy decomposition analysis (EDA) of the interactions between Cu atom and the
2 ligandsin [CuL]*. Numbers in parentheses are the percentage of electrostatic/orbital interactions
3 in the total attractive forces.

Complexes AE_els AE_x AE_xrep AE_orb AE_c Total
kcal/mol kcal/mol kcal/mol  kcal/mol kcal/mol kcal/mol
[Cu-Py]* -67.7(49%) -38.6 89.7 -62.4 (25%) -18.2 -68.9
[Cu-bpy]* -138.3(49%) -55.5 120.8 -68.8(25%) -17.4 -103.7
[Cu-tpy]* -172.8(48%) -69.00 1487 -91.6(26%) -23.1 -138.7
[Cu-bpy2]* -215.4(48%) -88.1 187.7 -115.1(26%) -30.0 -172.8
[Cu-phen]* -135.6(49%) -54.4 117.9 -69.4(25%) -17.2 -104.2
[Cu-Py2]* -183.4(48%) -76.8 1735 -100.3(26%) -21.7 -131.8
[Cu-PhPy]* -97.4(43%) -45.3 96.1 -67.5(30%) -16.6 -85.5
[Cu-Qu]* -96.6(48%) -40.0 89.46 -53.9(27%) -12.2 -73.2
[Cu-Acr]* -98.6(46%) -41.6 92.91 -58.9(28%) -13.4 -78.0
[Cu-Cz]* -102.4(46%) -42.3 95.60 -57.427%) -12.3 -76.5
[Cu-MPy]* -92.0(45%) -40.5 84.30 -57.5(28%) -14.2 -79.5
[Cu-P-Py]* -28.7 (15%) -29.2 97.50 -100.2(63%) -12.6 -100.9
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1 Table S3. Energy Decomposition Analysis of the Interactions between [CuL]® and CO in [OC-
2 CulL]*. Numbers in Parentheses are the Percentage of Electrostatic/orbital Interactions in the
3  Total Attractive Interaction.

Complexes AE_els AE_x AE_xrep AE_orb AE_c Total
kcal/mol kcal/mol kcal/mol kcal/mol kcal/mol kcal/mol

[OC-Cu]* -69.9(44%) -38.7 82.8 -41.9(26%) -9.7 -38.7
[OC-Cu-Py]* -73.3(44%) -40.7 84.2 -41.1(24%) -10.9 -41.0
[OC-Cu-Pyr]* -79.4(44%) -46.5 97.24 -43.6(24.0%) -12.1 -37.85
[OC-Cu-bpy]* -86.9(43%) -52.1 109.1 -48.2(24%) -13.4 -39.3
[OC-Cu-tpy]* -91.4(42%) -59.1 127.3 -42.3(23%) -15.5 -29.6
[OC-Cu-bpy2]* -92.0(42%) -61.0 130.6 -49.6(26%) -17.1 -28.1
[OC-Cu-phen]* -86.5(43%) -52.0 109.1 -47.8(24%) -13.3 -38.5
[OC-Cu-Py2]* -86.5(43%) -54.2 1154 -47.8 (24%) -14.0 -32.8
[OC-Cu-PhPy]* -79.7(44%) -46.7 97.8 -43.5(24%) -12.6 -37.9
[OC-Cu-Qu]* -74.1(44%) -41.6 86.0 -41.3 (25%) -11.2 -40.5
[OC-Cu-Acr]* -75.1(46%) -42.6 88.3 -41.6 (28%) -11.6 -39.9
[OC-Cu-Cz]* -73.5(44%) -41.1 85.3 -41.1(25%) -11.1 -40.4
[OC-Cu-MPy]* -79.4(44%) -46.5 97.2 -43.6(24%) -12.1 -37.9
[OC-Cu-P-Py]* -132.5(29%) -107.5 295.0 -195.3(43%) -23.2 -56.0
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1 Table S4. Mayer Bond Order of Cu-N Bond in [CuL]* and Cu-CO Bond in [OC-CuL]*.

Cu-CM bond
Complexes Cu-N Mayer bond order Complexes ) ayerbon

order
[Cu]* - [OC-Cu]* 0.96
[Cu-Py]* 0.82 [OC-Cu-Py]* 0.76
[Cu-bpy]* 0.58, 0.58 [OC-Cu-bpy]* 0.88
[Cu-tpy]* 0.51, 0.35,0.51 [OC-Cu-tpy]* 0.82
[Cu-bpy2]* 0.43, 0.43,0.43,0.43 [OC-Cu-bpy2]* 0.83
[Cu-phen]* 0.60, 0.60 [OC-Cu-phen]* 0.91
[Cu-Py2]* 0.71,0.71 [OC-Cu-Py2]* 0.87
[Cu-PhPy]* 0.62 (Cu-C:0.30) [OC-Cu-PhPy]* 0.81
[Cu-Qu]* 0.87 [OC-Cu-Qu]* 0.76
[Cu-Acr]* 0.92 [OC-Cu-Acr]* 0.75
[Cu-Cz]* 0.91 [OC-Cu-Cz]* 0.75
[Cu-MPy]* 0.57 (Cu-S:0.54) [OC-Cu-MPy]* 0.84
[Cu-P-Py]* 0.34 (Cu-P:1.12) [OC-Cu-P-Py]* Cu-P:1.34
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1 Table S5. DFT Calculated Values of Gibbs Free Energy (AG), Charge on Cu of [CuL]*, Enthalpy
2 (AH), Scaled C-O Frequencies, and Active Gap for the Reaction of [CuL]* with CO, along with
3 the Experimental Rate Constants (kco).

Model
clusters

[Cu]*
[Cu-Py]*
[Cu-bpy]*
[Cu-tpy]*
[Cu-bpy2]*
[Cu-Qu]*
[Cu-Acr]*
[Cu-Cz]*
[Cu-phen]*
[Cu-Py2]*
[Cu-PhPy]*
[Cu-MPy]*
[Cu-P-Py]*

AG
kJd/mol

-78.88
-97.56
-80.94
-27.01
22.00
-96.38
-94.43
-94.13
-81.01
1.78
-83.12
-83.43
-123.15

Charge
le|

1.00
0.74
0.56
0.28
0.17
0.71
0.68
0.72
0.56
0.27
0.53
0.58

AH
kJ/mol

-124.37
-138.02
-124.03
-59.41

-16.94

-136.91
-135.50
-134.81
-121.97
—-26.84

-122.27
-122.98
-167.94

Scaled
0(C-0)
(cm™)

2219.5
2188.3
2133.0
2109.7
2087.7
2183.0
2176.1
2179.5
2133.0
2127.6
2166.1
2167.1
2042.5

Active Gap
eV

Kco

1.00x10°
(£30%) cm?3
molecule? s
1.81

4.96
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1 Table S6. Calculated and Scaled C-O Frequencies, C-O Bond Lengths, C-O Stretching
2 Frequency and Bond Length Shift Relative to Free CO, Charges on Cu Centers in Cluster
3 Models.
0(C-0) Scaled v? AuvP r(C-0) Arc Charge
Cu-Nx  Cluster model
(em™)  (em™) (em™) (A (A) (lel)
— co 22145 21237 — 1.1234 — —
Cu-No  [OC-Cu]* 23144 22195 95.7 1.1100 -0.0134 1.00
[OC-Cu-Py]* 2281.8  2188.3 64.5 1.1156  -0.0078 0.74
[OC-Cu-Pyr]* 2280.6 21871 63.3 1.1165  -0.0069 0.74
[OC-Cu-Qu]* 2276.4  2183.0 59.3 1.1170  -0.0064 0.71
Cu-N1  [OC-Cu-Cz]* 2272.7  2179.5 55.7 1.1171 -0.0063 0.72
[OC-Cu-Acr]* 2269.1 21761 52.3 1.1177  -0.0057 0.68
[OC-Cu-MPy]* 2259.8 21671 43.4 1.1192  -0.0042 0.58
[OC-Cu-PhPy]* 2258.7 2166.1 42.3 1.1194  -0.0040 0.53
[OC-Cu-phen]* 22242  2133.0 9.3 1.1223  -0.0011 0.56
Cu-N2  [OC-Cu-bpy]* 22242  2133.0 9.3 1.1223  -0.0011 0.56
[OC-Cu-Py2]* 22185 2127.6 3.9 1.1233  -0.0001 0.27
Cu-Ns  [OC-Cu-tpy]* 2199.9  2109.7 -14.0 1.1253  0.0019 0.28
Cu-N4  [OC-Cu-bpy2]* 2176.9  2087.7 -36.0 1.1280  0.0046 0.17
Cu-N1  [OC-Cu-P-Py]* 2129.8 20425 -81.3 1.1351 0.0117 —

4
5
6
7
8

a: Scale factor value of B3LYP/def2-TZVP is 0.959 according to Database of Frequency Scale
Factors for Electronic Model Chemistries.

b:Frequency shift relative to free CO based on scaled values.

¢: C-O bond length shift relative to free CO based on calculated values.
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1 Table S7. C-O Stretching Frequency Shift, Analysis of Cu«—CO o-Donation and Cu—CO T1-
2 Back Donation Electron Counts With Its Percentage Contribution to the Total Electron Transfer,
3 and Classical Electrostatic Interaction Energy (E_els) along with its Relative Contribution to the
4 Total Attractive Interactions in the Cluster Models

JA\Y) o-donation  Tr-back donation E els
Cu-Ny Cluster model

(cm?t)  (e) (e) (kcal/mol)

Cu-No [OC-Cu]* 95.7 0.3209 0.0484 (13.11%) -69.94 (43.66%)
[OC-Cu-py]* 64.5 0.3207 0.0621 (16.23%) -73.27 (44.16%)
[OC-Cu-pyr]* 63.3 0.3200 0.0647 (16.82%) -73.37 (44.17%)
[OC-Cu-Qu]* 59.3 0.3198 0.0634 (16.54%) -74.08 (44.07%)

Cu-N1 [OC-Cu-Cz]* 55.7 0.3198 0.0626 (16.37%) -73.54 (44.07%)
[OC-Cu-Acr]* 52.3 0.3185 0.0646 (16.85%) -75.05 (43.93%)
[OC-Cu-MPy]* 43.4 0.3180 0.0703 (18.94%) =79.40 (43.73%)
[OC-Cu-PhPy]* 42.3 0.3137 0.0733 (18.85%) -79.65 (43.65%)
[OC-Cu-phen]* 9.3 0.3160 0.0734 (21.81%) -86.54 (43.33%)

Cu-N2 [OC-Cu-bpy]* 9.3 0.3091 0.0862 (22.39%) -86.87 (43.32%)
[OC-Cu-Py2]* 3.9 0.3097 0.0894 (19.10%) -86.50 (42.73%)

Cu-Ns [OC-Cu-tpy]* -14.0  0.3017 0.0712 (20.20%) -91.44 (42.31%)

Cu-N4 [OC-Cu-bpy2]* -36.0 0.2906 0.0735 (20.36%) -92.02 (41.86%)

Cu-N1 [OC-Cu-P-Py]* -81.3  0.3004 0.0768 (33.87%) -132.49 (28.90%)

5
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1 Table S8. Scaled C-O Stretching Frequencies, C-O Bond Lengths, Frequency and C-O bond
2  Length Shift Relative to Free CO, Charges on Cu Centers in the Theoretical Cluster Models with
3  Conjugation Extension.

0(C-0) Scaled v Ao r(C-0) Ar Charge
Cluster model ) ) )
(cm™) (cm™) (cm™) A) (A) (lel)
2276.6 2183.2 59.5 1.1170 -0.0064 0.72
2276.2 2182.9 59.2 1.1170 -0.0064 0.73
2276.1 2182.8 59.1 1.1171 -0.0063 0.72
2270.2 2177.2 53.4 1.1175 -0.0059 0.74
2220.6 2129.6 5.8 1.1235 0.0001 0.55
2210.8 2120.2 -3.5 1.1245 0.0011 0.51
2209.9 2119.3 -4.4 1.1248 0.0014 0.53
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1 Table S9. The Structure Diagrams of [Cu-Py]*, [Cu-Pyr]*, [Cu-Acr]*and [Cu-Cz]*, along with their
2 Active Gap Values, the Charge on the Cu Center, and AH for CO Adsorption. Hydrogen Atoms
3 were Omitted for Clarity.

Complexes Structure diagram  AH (kJ/mol) Charge (le|) Active gap (eV)
0-Q
[Cu-Py]* Q PO -138.02 0.74 5.71
oo
[Cu-Pyry £3 _
(simulated) -0 136.12 0.74 5.15
0
[Cu-Acr]* m -122.32 0.68 3.57
O

[Cu-Cz]* if{}, -136.17 0.72 3.52
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1 Table S10. The Structure Diagrams of Cu-Nz (including [Cu-Py]* and Theoretical Models), along
2  with their Active Gap Values and the Charge on the Cu Center. Hydrogen AToms were Omitted
3 for ClLarity.

Structure diagram Charge (le]) Active gap (eV)
{2
0.74 5.71
[Cu-Py]*
O
0.72 5.10

0.72 5.55

Theoretical model 2

S ij 0.73 5.67

Theoretical model 3

0.74 5.75

Theoretical model 4
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1 Table S11. The Structure Diagrams of Cu-N2 Structure with Ligands of Different Sizes (including
2  [Cu-bpy]*, [Cu-phen]* and Theoretical Models), along with their Active Gap Values, the Charge
3 on the Cu Center, and AH for CO Adsorption. Hydrogen Atoms were Omitted for Clarity.

Structure diagram AH (kJ/mol) Charge (le]) Active gap (eV)
Qni: -124.03 0.56 4.93
[Cu-bpy]*
d%} -121.97 0.56 4.99
-122.59 0.55 491
-123.48 0.53 4.80

Theoretical model 2

{m} ~120.09 0.51 4.95

Theoretical model 3
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1 Table S12. The Structure Diagrams of Cu-NiCi Structure with Ligands of Different Sizes
2  (including [Cu-PhPy]*, [Cu-Benzoquinoline]* and Theoretical Models), and the Charge on the
3  Cu Center. Hydrogen Atoms were Omitted for Clarity.

Structure Q?ﬁ
diagram '

[Cu-PhPy]* [CL_J‘ _ Theoretical | thooretical model 2
Benzoquinoline]* model 1
Charge (le|) 0.53 0.58 0.57 0.53
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