S1

Supporting Information

Catalytic Alkoxysilylation of C–H bonds with *tert*-Butyl-Substituted Alkoxysilyldiazenes

Lamine Saadi, Loïc Valade and Clément Chauvier*

Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, 4 Place Jussieu, 75005 Paris, France.

clement.chauvier@sorbonne-universite.fr

1. G	eneral information	2
2. O	ptimization studies	4
2.1.	Alkoxysilylation of N-methylindole (4)	4
2.2.	Alkoxysilation of fluoroarenes	6
2.3.	Alkoxysilylation of electron-rich methylarenes	8
3. Co	omparison with literature protocols	9
3.1.	Preparation of the required starting materials and catalysts	9
3.2.	Silylation of 4 and 21	10
4. M	echanistic studies:	14
4.1.	Anionic ortho-Fries rearrangement	14
4.2.	Benzylic C(sp ³)–H alkoxysilylation: resting state identification	17
5. Sy	ynthesis and characterization of tert-butyl-substituted alkoxysilyldiazenes	21
5.1.	Preparation of alkoxychlorosilanes	21
5.2.	Synthesis and characterization of monoalkoxysilyldiazenes 3a, 3b and 3c	; 23
5.3.	Synthesis and characterization of bis(tert-butoxy)silyldiazene 3d	25
5.4.	Synthesis and characterization of tris(tert-butoxy)silyldiazene 3e	26
5.5.	Stability of diazenes 3a-d under basic conditions	28
6. Sy	ynthesis and characterization of silylated products	30
6.1.	General procedures	30
6.2.	Characterization data for silylated (hetero)arenes	30
6.3.	Characterization data for silylated toluene derivatives	42
6.4.	Applications (Scheme 4A and 4C in the manuscript)	47
7. NI	MR spectra of new compounds	51
8. Re	eferences	

1. General information

Reactions were performed in flame-dried glassware using an MBraun glove box ($O_2 < 0.5$ ppm, $H_2O < 0.5$ ppm) or conventional Schlenk techniques under a static pressure of argon unless otherwise stated. Glassware for reactions was flame-dried under vacuum prior to use. Liquids and solutions were transferred with syringes. All stated temperatures refer to external temperatures.

Tetrahydrofuran (THF) was dried over sodium/benzophenone, thermally distilled, degassed with three freeze-pump-thaw cycles and stored in a glove box over thermally activated 4 Å molecular sieves (MS). *n*-Pentane was obtained from Aldrich and degassed by argon bubbling (> 30 min) prior to use. Unless otherwise stated, standard solvents and reagents were obtained from Doug Discovery, Acros, Alfa Aesar, Sigma-Aldrich,Tokyo Chemical Industry (TCI), or BLD Pharmatech Ltd. and used as received. Me₃SiOK (Aldrich) as well as *t*BuOLi, *t*BuONa (Aldrich) and *t*BuOK (Aldrich) were sublimed under high vacuum prior to use. *N*-methylindoles (**4** and **6-10**) and N-methyl(7-azaindole) (**11**) were prepared following reported procedure.¹ Benzyl potassium was prepared following reported procedure.²

Flash column chromatography was performed on Silica 60 M (40–63 µm, Macherey Nagel) silica gel. Technical grade solvents were distilled prior to use. TLC analyses were performed on Merck 60 F254 silica gel pre-coated aluminum-backed plates with a layer thickness of 200 µm. Product spots were visualized under UV light (λ_{max} = 254 nm) and/or by staining with a potassium permanganate or a phosphomolybdic acid solution.

¹H, ¹³C, ²⁹Si and ¹⁹F NMR spectra were recorded on Bruker AV300 and AV400 instruments. CDCl₃ was purchased from Eurisotop and used as received. THF-*d*₈ (Eurisotop or Sigma-Aldrich) was degassed by freeze-pump-thaw method and stored over activated 4 Å molecular sieves prior to use. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent signals as the internal standard (THF-*d*₈: δ = 3.58 ppm and 1.72 ppm, CDCl₃: δ = 7.26 ppm for ¹H NMR and THF-*d*₈: δ = 67.57 ppm and 25.37 ppm, CDCl₃: 77.16 ppm for ¹³C NMR). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, dt = doublet of triplets, t = triplet, tt = triplet of triplets, q = quartet, hept = heptuplet, m = multiplet, b = broad), coupling constants (Hz) and integration. ²⁹Si and ¹⁹F NMR spectra were calibrated according to the IUPAC recommendation using a unified chemical shift scale based on the proton resonance of Me₄Si as primary reference. Infrared (IR) spectra were recorded on Tensor 27 FT-IR spectrometer (Bruker) at 4 cm⁻¹ resolution equipped with an ATR accessory. Melting points (M.p.) were determined with a Stuart Scientific SMP3 melting point apparatus and are not corrected.

High resolution mass spectrometry (HRMS) analyses were obtained using a S3 mass spectrometer MicroTOF from Bruker with an electron spray ion source (ESI) and a TOF detector at the Institut Parisien de Chimie Moléculaire (Sorbonne Université). Compound names were generated by the computer program ChemDraw according to the guidelines specified by the International Union of Pure and Applied Chemistry (IUPAC).

Gas liquid chromatography (GLC) was performed on an Agilent Technologies 7820A gas chromatograph equipped with a HP-5 capillary column ($30 \text{ m} \times 0.32 \text{ mm}$, $0.25 \mu \text{m}$ film thickness) by Agilent Technologies/CS-Chromatographie Service using the following parameters: H₂ carrier gas, injection temperature 220 °C, detector temperature 300 °C, flow rate: 2.4 mL/min; temperature program: start temperature 35 °C during 10 min then heating rate of 10 °C/min, end temperature 200 °C for 10 min.

2. Optimization studies

2.1. Alkoxysilylation of N-methylindole (4)

<u>Procedure:</u> In a glove box, a 2-mL vial equipped with a magnetic stirring bar was charged with the catalyst (*x* mol%), THF (0.4 mL) and N-methylindole (12.5 μ L, 0.1 mmol 1 eq.). To the resulting vigorously stirred mixture was then added dropwise a solution of the corresponding *N-tert*-butyl-*N*-alkoxydimethylsilyldiazene (*y* eq.) in THF (0.3 mL) at room temperature. After stirring for 1 h, 1,3,5-trimethoxybenzene was added and the resulting crude mixture was concentrated by rotary evaporation. The crude residue was then analyzed by ¹H NMR spectroscopy to determine yield and conversion.

N SiMe₂OtBu . Me			<i>cat.</i> (x THF, R1 – N ₂ , –	mol%) T, time <i>t</i> BuH	≻—SiMe ₂ le	OtBu +	Me Me N S	Me N
4	(3a y equiv.)	- 4a			5		
Entry	Parameter	Cat. [<i>x</i>]	У	Solvent	time	Conv ersion	Yield 4a ª	Yield 5 ª
1	Cation	<i>t</i> BuONa [10]	1.5	THF (0.14 M)	1 h	60%	50% (64%) ^ь	5%
2	eneci	<i>t</i> BuOLi [10]	1.5	THF (0.14 M)	24 h	10%	3%	3%
3	Looding	<i>t</i> BuOK [5]	1.5	THF (0.14 M)	1 h	87%	78%	5%
4	Luaung	<i>t</i> BuOK [20]	1.5	THF (0.14 M)	1 h	95%	70%	10%
5	Concentrati	<i>t</i> BuOK [10]	1.5	THF (0.05 M)	1 h	86%	74%	11%
6	on	<i>t</i> BuOK [10]	1.5	THF (1 M)	1 h	75%	61%	8%
7		<i>t</i> BuOK [10]	1.5	THF (0.14 M)	1 h	91%	78%	7%
8	Equiv	<i>t</i> BuOK [10]	1.8	THF (0.14 M)	1 h	>95%	88%	7%
9		<i>t</i> BuOK [10]	2.0	THF (0.14 M)	1 h	>95%	89%	6%
10	Potassium	KOH [10]	1.8	THF (0.14 M)	1 h	NR	-	-
11	salts	TMSOK [10]	1.8	THF (0.14 M)	1 h	95%	83%	7%

Table S1: Optimization of the C(sp³)-H silylation of N-methylindole with diazene **3a**.

^aYields determined by ¹H NMR on the crude reaction mixture with 1,3,5-trimethoxybenzene as internal standard. NR: no reaction. ^bGC yield after 24h.

Table S2: Optimization of the C(sp³)-H silylation of N-methylindole with diazene **3b**.

Table S3: Optimization of the C(sp³)-H silylation of N-methylindole with diazene 3c.

^a NMR yields were determined using 1,3,5-trimethoxybenzene as internal standard. ^b Isolated yield.

	Me 4	3a- (1.8 ec	Si _ T⊦ •e	tBuOK (10 mol%) ► F (0.14M), RT, time − N ₂ , − tBuH	N Me 4a-e	
Entry	Si	у	time	Conversion	Yield 4a-e	Yield 5
1	SiMe ₂ O <i>t</i> Bu	1.8	1 h	>95%	88% (4a)	7%
2	SiMe ₂ O <i>i</i> Pr	1.8	1 h	70%	51% (4b)	9%
3	SiMe ₂ OEt	1.8	1 h	65%	42% (4c)	10%
4	SiMe(O <i>t</i> Bu) ₂	1.8	16 h	88%	77% (4d)	-
5	Si(O <i>t</i> Bu)₃	1.8	84 h	0%	-	-
6 ^b	Si(O <i>t</i> Bu) ₃	2.2	24 h	75%	68% (4e)	-

Table S4: Influence of the silyl group on the silylation of N-methylindole.

^aNMR yields were determined using 1,3,5-trimethoxybenzene as the internal standard. ^btBuOK 40 mol%.

Table S5: Influence of the silyl group on the formation of bis-indole product 5.

2.2. Alkoxysilation of fluoroarenes

<u>Procedure</u>: In a glove box, a 2-mL vial equipped with a magnetic stirring bar was charged with *t*BuOK (*x* mol%), THF (0.4 mL) and fluorobenzene (9.4 μ L, 0.1 mmol 1 eq.). To the resulting vigorously stirred mixture was then added dropwise a solution of the corresponding *N-tert*-butyl-*N*-alkoxydimethylsilyldiazene (*y* eq.) in THF (0.3 mL) at room temperature. After stirring for 1 h, bis(4-fluorophenyl)methanone was added and the resulting crude mixture was concentrated by rotary evaporation. The crude residue was then analyzed by ¹⁹F NMR spectroscopy to determine the yield of monosilylation and bis-silylation products.

Table S6: Mono vs. bis-alkoxysilylation of fluorobenzene (16).

Entry	Si	x	У	time	Yield 16a/d/e	Yield 16a₂/d₂/e ₂
1		10	1.2	1 h	67%	24%
2	SiMe ₂ O <i>t</i> Bu (3a)	10	3.0	30 min	35%	55%
3		20	3.0	1 h	22%	75%
4	SiMe(O <i>t</i> Bu) ₂ (3d)	10	1.2	1 h	73%	6%
5	Si(O4Pu) (20)	10	1.2	21 h	17%	-
6	Si(O(DU)3 (30)	30	1.4	21 h	71%	2%

Yields were determined by ¹⁹F{¹H} NMR spectroscopy using bis(4-fluorophenyl)methanone as an internal standard.

Table S7: Mono vs. bis-silylation of 2-fluorotoluene (22).

Yields were determined by ¹⁹F{¹H} NMR spectroscopy using (2-fluoro-1,3-phenylene)bis(trimethylsilane) as an internal standard.

2.3. Alkoxysilylation of electron-rich methylarenes

<u>Procedure</u>: In a glove box, a 2-mL vial equipped with a magnetic stirring bar was charged with the cat ($x \mod \%$), THF (0.1 mL) and the corresponding substrate (0.1 mmol). To the resulting vigorously stirred mixture was then added the corresponding silylated *tert*-butyldiazene (3 eq.) in one portion at room temperature at room temperature. After stirring for 16 h, 1,3,5-trimethoxybenzene was added and the resulting crude mixture was concentrated by rotary evaporation. The crude residue was then analyzed by ¹H NMR spectroscopy.

I	RO +		cat. (<i>x</i> mol%) FF (1M), RT, time	RO	∬ Si		
3a (3 equiv.)							
Entry	Substrate	Cat. [<i>x</i>]	Si	ρ	Yield ^a		
1		<i>t</i> BuOK [10]	SiMe ₂ OEt	-	n.d.		
2	Н	<i>t</i> BuOK [10]	SiMe₂O <i>i</i> Pr	-	n.d.		
3		<i>t</i> BuOK [10]	SiMe(O <i>t</i> Bu) ₂	22%	9%		
4		<i>t</i> BuOK [10]		21%	9%		
5	MeO ² 25	25 <i>t</i> BuOK [30]	18%	4%			
6		CsF [10]		-	n.d.		
7		<i>t</i> BuONa [10]	SiMe₂O <i>t</i> Bu	-	n.d.		
8		Me₃SiOK [10]		24%	12%		
9	PhO 27	<i>t</i> BuOK [10]		23%	8%		

Table S8: Silylation of electron-rich para-substituted methylarenes.

^aYields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as the internal standard. n.d.: not detected.

3. Comparison with literature protocols

To further assess the utility of our catalytic alkoxysilylation protocol, we set out to compare our results with those obtained by alternative alkoxysilylation methods from the literature. To that end, we first evaluated the outcome of the reaction between two model substrates (**4** and **21**) and H–SiMe₂O*t*Bu promoted by transition metal-based catalysts known to trigger the alkoxysilylation of $C(sp^2)$ –H bonds. The first evaluated catalytic system, described by Lee and coworkers, is composed of the well-defined [RhCl(Ph-BPE)]₂ complex (Ph-BPE = (+)-1,2-bis((2S,5S)-2,5-diphenylphospholano)ethane).³ Alternatively, we also evaluated Hartwig's Ir-based catalytic system ([Ir(cod)(OMe)]₂ + 2,4,7-trimethyl-1,10-phenanthroline) under Yorimitsu and Shimokawa's conditions.⁴ The latter protocol offers more flexibility regarding the silyl groups tolerated in the silylation reaction compared to Hartwig's original conditions,⁵ which were limited to the introduction of the SiMe(OSiMe₃)₂ group from the corresponding disiloxyhydrosilane. Finally, we also compared our methodology to a typical stoichiometric deprotonation/silylation strategy based on a metalation step with *n*BuLi followed by an electrophilic quench with Cl–SiMe₂O*t*Bu.

3.1. Preparation of the required starting materials and catalysts.

2,4,7-Trimethyl-1,10-phenanthroline⁵ and [RhCl(Ph-BPE)]₂ (ref. 3) were prepared according to reported procedures and gave analytical data identical to those described.

Tert-butoxydimethylsilane (HSiMe₂OtBu) was prepared according to the following procedure:

A flame-dried, two-necked round-bottomed flask equipped with a stirring bar and a rubber septum was sequentially charged with urea (1.26 g, 21 mmol, 1.05 eq.) and chlorodimethylsilane (2.22 mL, 20 mmol, 1 eq.). The resulting mixture was cooled to 0 °C and *tert*-butanol (2 mL, 21 mmol, 1.05 eq.) was then added dropwise. The resulting mixture was allowed to warm to room temperature and stirred for 5 h. The volatiles were then separated from the solid byproduct (urea hydrochloride) by vacuum transfer under dynamic vacuum, resulting in a clear solution containing the volatile disiloxane side product [(HSiMe₂)₂O] and the desired hydrosilane. The siloxane was then ultimately removed by heating the mixture at ca.

80 °C under argon, allowing the recovery of the analytically pure title hydrosilane (516.6 mg, 3.91 mmol, 20 %) as a colorless liquid.

 $\begin{array}{l} \mbox{H-SiMe}_2 \mbox{OtBu} \\ C_6 \mbox{H}_{16} \mbox{OSi} \\ \mbox{mw: 132.28 g/mol} \end{array} \begin{tabular}{ll} \mbox{'H NMR (300 MHz, C}_6 \mbox{D}_6) \begin{tabular}{ll} \delta/\mbox{ppm} = 5.02 \end{tabular} (hept, J = 2.8 \mbox{ Hz}, 1 \mbox{H}), 1.23 \end{tabular} (s, 9 \mbox{H}), 0.19 \end{tabular} (d, J = 2.8 \mbox{ Hz}, 6 \mbox{H}). \end{tabular} \begin{tabular}{ll} \mbox{'I} \mbox{Si} \mbox{H}, 1.23 \mbox{(s, 9 \mbox{H})}, 0.19 \end{tabular} (d, J = 2.8 \mbox{ Hz}, 6 \mbox{H}). \end{tabular} \begin{tabular}{ll} \mbox{'I} \mbox{Si} \mbox{H}, 1.23 \mbox{(s, 9 \mbox{H})}, 0.19 \end{tabular} \end{tabular} (d, J = 2.8 \mbox{ Hz}, 6 \mbox{H}). \end{tabular} \begin{tabular}{ll} \mbox{'I} \mbox{I} \mbox{H}, 1.23 \mbox{(s, 6 \mbox{Hz}, 6 \mbox{D}_6)}, \end{tabular} \begin{tabular}{ll} \mbox{H} \mbox{H}, 1.23 \mbox{(s, 6 \mbox{Hz}, 6 \mbox{D}_6)}, \end{tabular} \begin{tabular}{ll} \mbox{H} \mbox{Hz}, 1.23 \mbox{(s, 6 \mbox{Hz}, 6 \mbox{D}_6)}, \end{tabular} \begin{tabular}{ll} \mbox{Hz}, 1.23 \mbox{(s, 6 \mbox{Hz}, 6 \mbox{Hz}, 6 \mbox{D}_6)}, \end{tabular} \begin{tabular}{ll} \mbox{Hz}, 1.23 \mbox{Hz}, 1$

3.2. Silylation of 4 and 21

The results obtained for the silulation of **4** are presented in Table S9 while those involving **21** are presented in Table S10.

N Me	-H <u>conditions</u> SiMe ₂ OtBu +	Me₂ <mark>O<i>t</i>Bu</mark> + ¢		Me N
4	4a 4a'		5	;
Entry	Conditions	4a ª [%]	4a' ª[%]	5 ª[%]
1	[Rh(Ph-BPE)Cl] ₂ (0.5 mol%) HSiMe ₂ O <i>t</i> Bu (1.0 eq) cyclohexene (1.2 eq) THF (1 M), 50 °C, 20 h.	0	0	0
2	[Ir(cod)OMe] ₂ (2.5 mol%) 2,4,7-Me ₃ -phenantroline (5.5 mol%) HSiMe ₂ O <i>t</i> Bu (1.5 eq) <i>t</i> BuCHCH ₂ (1.5 eq) Neat, 100 °C, 60 h	30	25	0
3	<i>n</i> BuLi (1.1 eq), THF (0.2 M), 0 °C to RT, 1 h <i>then</i> ClSiMe₂O <i>t</i> Bu (1.4 eq), RT, 3 h	60	0	4
4	This work: <i>t</i> BuOK (10 mol%), 3a (1.8 eq) THF (0.14 M), RT, 1 h.	88	0	7

Table S9: Comparison of various protocols for the $C(sp^2)$ –H silylation of indole 4.

^a Yields were determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard.

Experimental procedures for experiments described in Table S9:

Entry 1: Following a reported procedure,³ an oven-dried 10 mL microwave vial was charged in a glovebox with [RhCl(Ph-BPE)]₂ (1.9 mg, 1.5 μmol, 0.5 mol%), *N*-methylindole (0.3 mL, 2.4 mmol, 8.0 eq.) and THF (0.3 mL). The vial was sealed and the mixture was stirred at 50 °C for 1 h outside the glovebox. After cooling to room

temperature, the vial was brought back into the glovebox, opened and charged with cyclohexene (36.5 μ L, 0.36 mmol, 1.2 eq.) and *tert*-butoxydimethylsilane (39.7 mg, 0.3 mmol, 1 eq). The vial was sealed again, removed from the glovebox and the reaction mixture was stirred at 50 °C for 20 h. After cooling to room temperature, 1,3,5-trimethoxybenzene was added as an internal standard and the crude mixture was concentrated by rotary evaporation. The crude residue was then analyzed by ¹H NMR spectroscopy to determine the yields.

- Entry 2: Following a reported procedure,⁴ an oven-dried 10 mL microwave vial was charged in a glovebox with [Ir(cod)(OMe)]₂ (5 mg, 8 μmol, 2.5 mol%), 2,4,7-trimethyl-1,10-phenanthroline (3.7 mg, 17 μmol, 5.5 mol%), *N*-methylindole (37 μL, 0.3 mmol, 1.0 eq.), *tert*-butoxydimethylsilane (59.5 mg, 0.45 mmol, 1.5 eq) and 3,3-dimethyl-1-butene (58 μL, 0.45 mmol, 1.5 mmol). The vial was sealed, removed from the glovebox and the reaction mixture was stirred at 100 °C for 60 h. After cooling to room temperature, 1,3,5-trimethoxybenzene was added as an internal standard and the crude mixture was concentrated by rotary evaporation. The crude residue was then analyzed by ¹H NMR spectroscopy to determine the conversion and the yields.
- Entry 3: A flame-dried 25 mL Schlenk flask equipped with a stirring bar and a rubber septum was charged with N-methylindole (37 µL, 0.3 mmol, 1 eq.) and THF (1.5 mL, 0.2M). The resulting pale-yellow solution was cooled to 0 °C, and freshly titrated nBuLi (0.15 mL, 2.2 M in hexanes, 0.33 mmol, 1.1 eq.) was added dropwise. The mixture was warm allowed temperature stirred for 1 h. to to room and Tertbutoxychlorodimethylsilane (0.6 mL, 0.7M in THF, 0.42 mmol, 1.4 eq) was then added and the mixture was stirred for 3 h. After exposure of the crude reaction mixture to air, 1,3,5-trimethoxybenzene was added and the volatiles were removed by rotary evaporation. The resulting crude residue was then analyzed by ¹H NMR spectroscopy to determine the conversion and the yields.

Table S10: Comparison of various protocols for the $C(sp^2)$ -H silylation of fluorobenzene 21.

+ other isomers

Entry	Conditions	21aª	mono-silylated isomers			
1	[Rh(Ph-BPE)Cl] ₂ (0.5 mol%), HSiMe ₂ O <i>t</i> Bu (1.0 eq) cyclohexene (1.2 eq) THF (1 M), 100 °C, 20 h	1 %	2 %	2 %	1 %	
2	[Ir(cod)OMe] ₂ (1.5 mol%) 2,4,7-Me ₃ -phenantroline (3.5 mol%) HSiMe ₂ O <i>t</i> Bu (1.5 eq) cyclohexene (1.0 eq) THF (0.9 M), 100 °C, 24 h	7 %	7 %	6 %	6 %	
3	[Ir(cod)OMe] ₂ (2.5 mol%) 2,4,7-Me ₃ -phenantroline (5.5 mol%) HSiMe ₂ O <i>t</i> Bu (1.5 eq) <i>t</i> BuCHCH ₂ (1.5 eq) THF (1 M), 100 °C, 60 h	3 %	4 %	4 %	4 %	
4	<i>n</i> BuLi (1.1 eq), THF (0.2 M), 0 °C to RT, 1 h <i>then</i> ClSiMe₂O <i>t</i> Bu (1.4 eq), RT, 3 h	0 %	-	-	-	
5	This work: <i>t</i> BuOK (10 mol%), 3a (1.5 eq) THF (0.14 M), RT, 1 h	95 % [♭]	_	_	_	

^a Yields were determined by ¹⁹F{¹H} NMR spectroscopy using 2-fluoro-1,3-dimethylbenzene as an internal standard. ^bIsolated yield.

Experimental procedures for experiments described in Table S10:

Entry 1: Following a reported procedure,³ an oven-dried 10 mL microwave vial was charged in a glovebox with [RhCl(Ph-BPE)]₂ (1.9 mg, 1.5 µmol, 0.5 mol%), 2-fluoro-1,1'-biphenyl (56.8 mg, 0.33 mmol, 1.1 eq) and THF (0.3 mL). The vial was sealed and the mixture was stirred at 100 °C for 1 h outside the glovebox. After cooling to room temperature, the vial was brought back into the glovebox, opened and charged with cyclohexene (36.5 µL, 0.36 mmol, 1.2 eq.) and *tert*-butoxydimethylsilane (39.7 mg, 0.3 mmol, 1 eq). The vial was sealed again, removed from the glovebox and the reaction mixture was stirred at 100 °C for 20 h. After cooling to room temperature and removal of the volatiles under reduced pressure, 2-fluoro-1,3-dimethylbenzene (internal)

standard) was added to the crude residue, which was then analyzed by ¹⁹F{¹H} NMR spectroscopy to determine the yields.

- Entry 2: Following a reported procedure,⁵ an oven-dried 10 mL microwave vial was charged in a glovebox with [Ir(cod)(OMe)]₂ (3 mg, 4.5 μmol, 1.5 mol%), 2,4,7-trimethyl-1,10-phenanthroline (2.1 mg, 9.3 μmol, 3.1 mol%), 2-fluoro-1,1'-biphenyl (51.7 mg, 0.3 mmol, 1.0 eq.),THF (0.34 mL), *tert*-butoxydimethylsilane (59.5 mg, 0.45 mmol, 1.5 eq.) and cyclohexene (30.4 μL, 0.3 mmol, 1.0 eq.). The vial was sealed, removed from the glovebox and the reaction mixture was stirred at 100 °C for 24 h. After cooling to room temperature and removal of the volatiles under reduced pressure, 2-fluoro-1,3-dimethylbenzene (internal standard) was added to the crude residue, which was then analyzed by ¹⁹F{¹H} NMR spectroscopy to determine the yields.
- Entry 3: Following a reported procedure,⁴ an oven-dried 10 mL microwave vial was charged in a glovebox with [Ir(cod)(OMe)]₂ (5 mg, 8 μmol, 2.5 mol%), 2,4,7-trimethyl-1,10-phenanthroline (3.7 mg, 17 μmol, 5.5 mol%), 2-fluoro-1,1'-biphenyl (51.7 mg, 0.3 mmol, 1 eq) ,THF (0.3 mL), *tert*-butoxydimethylsilane (59.5 mg, 0.45 mmol, 1.5 eq) and 3,3-dimethyl-1-butene (58 μL, 0.45 mmol, 1.5 mmol). The vial was sealed, removed from the glovebox and the reaction mixture was stirred at 100 °C for 60 h. After cooling to room temperature and removal of the volatiles under reduced pressure, 2-fluoro-1,3-dimethylbenzene (internal standard) was added to the crude residue, which was then analyzed by ¹⁹F{¹H} NMR spectroscopy to determine the yields.
- Entry 4: A flame-dried 25 mL Schlenk flask equipped with a stirring bar and a rubber septum was charged with 2-fluoro-1,1'-biphenyl (51.7 mg, 0.3 mmol, 1.0 eq.) and THF (1.5 mL, 0.2M). The resulting colorless solution was cooled to 0 °C, and freshly titrated *n*BuLi (0.15 mL, 2.2 M in hexanes, 0.33 mmol, 1.1 eq.) was added dropwise. The mixture was allowed to warm to room temperature and stirred for 1 h. *Tert*-butoxychlorodimethylsilane (0.6 mL, 0.7M in THF, 0.42 mmol, 1.4 eq) was then added and the mixture was stirred for 3 h. After exposure of the crude reaction mixture to air, the volatiles were removed by rotary evaporation and 2-fluoro-1,3-dimethylbenzene (internal standard) was added to the crude residue, which was then analyzed by ¹⁹F{¹H} NMR spectroscopy to determine the yields.

- 4. Mechanistic studies:
 - 4.1. Anionic ortho-Fries rearrangement

Procedure for the catalytic run: In a glove box, a 2-mL vial equipped with a magnetic stirring bar was charged with *t*BuOK (1.1 mg, 10 mol%, 0.1 eq.), 3-fluorocarbamate (24 mg, 0.1 mmol, 1 eq.) and THF (0.35 mL). To the resulting vigorously stirred mixture was then added dropwise a solution of **3a** (65 mg, 0.3 mmol, 3 eq.) in THF (0.35 mL) at room temperature. An aliquot of the mixture was removed at different reaction times, diluted with 0.6 mL of CDCl₃ and submitted

 F_{Me_3Si} to multinuclear NMR spectroscopy and GC/MS analyses. Yields were determined by ${}^{19}F{}^{1}H{}$ NMR using (2-fluoro-1,3-phenylene)bis(trimethylsilane) as an internal standard.

Note: Structures of **39a** and **40**_{si} were further confirmed by GC/MS analysis.

Table S11: Reaction evolution over time.

Entry	Time	Conversion Yield of 40 <i>si</i>		Yield of 39a	
1	2 h	7%	1%	-	
2	16 h	14%	7%	7%	
3	40 h	33%	9%	13%	
4	117 h	59%	15%	35%	
5	166 h	74%	18%	47%	

Stoichiometric experiment:

In a glove box, a 5-mL vial equipped with a magnetic stirring bar was charged with *t*BuOK (28.1 mg, 0.25 mmol, 1 eq.), 3-fluorophenyl diisopropylcarbamate (60 mg, 0.25 mmol, 1 eq.) and THF (1 mL). To the resulting solution was added dropwise a solution of diazene **3a** (162 mg, 0.75 mmol, 3 eq.) in THF (0.8 mL). The reaction mixture was stirred at RT overnight and then concentrated *in vacuo* by rotary evaporation. Purification by column chromatography on silica gel using PE/AcOEt (9:1 then 8:2 v/v) as eluent afforded the two rearranged products **40**_H (29.4 mg, 0,13 mmol, 49%) and **40**_H**a** (36.4 mg, 0,1 mmol, 39%) as white solids.

40_H: ¹**H NMR** (400 MHz, CDCl₃): δ /ppm = 8.66 (b s, 1H), 7.05 (td, *J* = 8.3, 6.7 Hz, 1H), 6.64 (d, *J* = 8.3 Hz, 1H), 6.51 (t, *J* = 8.7 Hz, 1H), 3.71 (b s, 2H), 1.36 (b s, 12H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ /ppm = 165.8, 158.7 (d, *J* = 245.3 Hz), 156.9 (d, *J* = 6.7 Hz), 130.6 (d, *J* = 10.4 Hz), 113.2 (d, *J* = 2.9 Hz), 112.9 (d, *J* = 20.5 Hz), 106.3 (d, *J* = 22.1 Hz), 20.8.¹⁹F{¹H} **NMR** (376 MHz, CDCl₃): δ /ppm = -114.80. The spectroscopic data match the reported literature.⁶

40_Ha: M.p $(CH_2Cl_2) = 190-192 \, ^{\circ}C. \, ^{1}H \, \text{NMR} (300 \, \text{MHz}, CDCl_3): \, \delta/\text{ppm} = 8.02 (b s, 1H), 7.38 (dd, <math>J = 8.1, 6.5 \, \text{Hz}, 1H), 6.76 (d, <math>J = 8.2 \, \text{Hz}, 1H), 3.74 (s, 2H), 1.44 (b s, 12H), 1.26 (s, 9H), 0.38 (d, <math>J = 1.3 \, \text{Hz}, 6H). \, ^{13}C\{^{1}H\} \, \text{NMR} (75 \, \text{MHz}, CDCl_3): \, \delta/\text{ppm} = 166.2, 162.6 (d, J = 241.1 \, \text{Hz}), 158.4 (d, J = 7.1 \, \text{Hz}), 136.5 (d, J = 14.2 \, \text{Hz}), 116.06 (d, J = 31.1 \, \text{Hz}), 113.1 (d, J = 2.8 \, \text{Hz}), 112.1 (d, J = 24.9 \, \text{Hz}), 73.0, 32.1, 20.8, 2.2 (d, J = 1.6 \, \text{Hz}). \, ^{19}F\{^{1}H\} \, \text{NMR} (282 \, \text{MHz}, CDCl_3): \, \delta/\text{ppm} = -101.90. \, ^{1}H/^{29}Si \, \text{HMQC} \, \text{NMR} (300/60 \, \text{MHz}, CDCl_3): \, \delta/\text{ppm} = 7.38, 0.38/-4.3. \, \text{HRMS} (ESI) \, \text{m/z:} \, [\text{M+Na}]^+ \, \text{Calcd for } C_{19}H_{32}FO_3SiNa \, 369.2028. \, \text{Found } 369.2027.$

Potassium 2-(diisopropylcarbamoyl)-3-fluorophenolate

Following a reported procedure,⁷ a 10-mL vial equipped with a magnetic stirring bar was charged in a glovebox with potassium *tert*-butoxide (56.1 mg, 0.5 mmol, 1 eq.), 3-fluorophenyl diisopropylcarbamate (120 mg, 0.50 mmol, 1.0 eq.) and THF (2 mL). To the resulting vigorously stirred mixture was then added dropwise a solution of diazene **3a** (162 mg, 0.75 mmol, 1.5 eq.) in THF (1.5 mL) at room temperature. The vial was capped with a rubber septum and vigorously stirred for 3 h. The THF was evaporated under reduced pressure affording a dark foamy solid residue, which was taken up in pentane (5 mL). The resulting suspension was sonicated for 3 min and then left settling for ca. 10 min upon which a yellow powder separated from the liquid layer. The supernatant was carefully removed and the solid residue was further dissolved in CH₂Cl₂, prior to being transferred to a round-bottomed flask. The solvent was

removed under reduced pressure to afford the title compound 40_{κ} (0.131 g, 0.41 mmol, 82%) as a yellow solid.

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 6.80 (q, J = 8.2 Hz, 1H), 6.15 (d, J = 8.3 Hz, 1H), 5.98 (t, J = 8.5 Hz, 1H), 3.93 (hept, J = 6.7 Hz, 1H), 3.46 (hept, J = 6.8 Hz, 1H), 1.41 (dd, J = 6.8, 2.4 Hz, 6H), 1.12 (d, J = 6.6 Hz, 3H), 1.04 (d, J = 6.6 Hz, 3H). ¹⁹**F** {¹**H**} **NMR** (282 MHz, CDCl₃): δ/ppm = -117.28. The spectroscopic data match the reported literature.⁷

4.2. Benzylic C(sp³)–H alkoxysilylation: resting state identification

Procedure: In a glovebox, a 2-mL dram vial equipped with a stirring bar was charged with *t*BuOK (1.1 mg, 0.01 mmol,10 mol%), THF- d_8 (0.3 mL) and toluene (10.6 µL, 0.1 mmol, 1 eq.). To the vigorously stirred mixture was then added in one portion a solution of diazene **3a** (65 mg, 0.3 mmol, 3 eq.) in THF- d_8 (0.3 mL). After stirring for ca. 5 min, the resulting light brown mixture was transferred with a Pasteur pipet to an NMR tube equipped with a J-Young valve. The NMR tube was sealed under argon, brought out of the glovebox and the reaction mixture was analyzed by multinuclear NMR spectroscopy after 17 h.

Figure S1: ¹H NMR (600 MHz, CDCl₃) of the crude mixture obtained after 17 h of reaction between toluene (23) diazene 3a and *t*BuOK (10 mol%).

Careful analysis by NMR spectroscopy of the crude reaction mixture obtained upon reaction of toluene with diazene **3a** allowed to detect a small amount the α -silylbenzyl potassium species **41**. Beyond this organopotassium species, unreacted toluene, the silylation product

23a, isobutene, isobutane as well as $Me_2Si(OtBu)_2$ have also been detected among other unidentified side products. The formulation of **41** as an α -silylbenzyl potassium species was confirmed by its independent synthesis by deprotonation of **23a** with benzylpotassium (BnK):

Independent synthesis of 41:

In a glovebox, a 2-mL dram vial equipped with a stirring bar was charged with benzyl(*tert*butoxy)dimethylsilane **23a** (22.4 mg, 0.1 mmol, 1 eq.) followed by THF (0.3 mL). To the resulting clear solution was added in one portion and at room temperature a solution of benzyl potassium (13.0 mg, 0.1 mmol, 1 eq.) in THF (0.3 mL). The resulting light brown reaction mixture was stirred for 5 min and then transferred with a Pasteur pipet to an NMR tube equipped with a J-Young valve. The tube was sealed under argon, brought out the glovebox and the volatiles were removed under high vacuum. The crude residue was taken up in THF- d_8 and analyzed by multinuclear NMR spectroscopy.

The title compound 41 could be characterized by NMR spectroscopy:

¹**H NMR** (600 MHz, THF-d₈): δ /ppm = 6.40 (d, *J* = 7.6 Hz, 1H, *m*), 6.33 (d, *J* = 7.7 Hz, 1H, *m*'), 6.22 (d, *J* = 7.2 Hz, 1H, *o*), 6.03 (d, *J* = 7.4 Hz, 1H, *o*'), 5.42 (tt, *J* = 6.9, 1.2 Hz, 1H, *p*), 2.14 (s, 1H, PhC<u>H</u>KSi) 1.28 (s, 9H), 0.08 (s, 6H). ¹³C{¹H} NMR (151 MHz, THF): δ /ppm = 157.7 (C_{ipso}), 129.6 (br, C_m), 129.5 (br, C_m'), 120.1 (C_o), 114.9 (C_o'), 104.6 (C_p), 71.2 (SiO<u>C</u>(CH₃)₃), 54.4 (C_{benzyl}), 32.7(SiOC(<u>C</u>H₃)₃), 4.0 (Si<u>C</u>H₃). ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ /ppm 2.14, 0.08/-7.8.

Figure S3: ¹³C{¹H} NMR (151 MHz, THF-*d*₈) of compound **41**.

f1 (ppm) S19

Figure S4: ¹H/²⁹Si HMQC NMR (300/60 MHz, THF-*d*₈) of compound **41**.

5. Synthesis and characterization of tert-butyl-substituted alkoxysilyldiazenes

5.1. Preparation of alkoxychlorosilanes

All alkoxychlorosilanes were synthesized from commercially available chlorosilanes Me₂SiCl₂, MeSiCl₃ and SiCl₄ and the corresponding absolute alcohols (EtOH, *i*PrOH and *t*BuOH dried over 4 Å MS) according to the procedures described below. Tri-*tert*-butoxychlorosilane (CISi(O*t*Bu)₃) was prepared according to reported procedure.⁸

Chloro(ethoxy)dimethylsilane

CI-SiMe₂OEt

C₄H₁₁ClOSi mw: 138.67 g/mol

A flame-dried, two-necked round-bottomed flask equipped with a stirring bar and a rubber septum was charged with urea (12.62 g, 210 mmol, 1.05 eq.) and dichlorodimethylsilane (6.45 mL, 200 mmol, 1 eq.). The resulting suspension was cooled to 0 °C and ethanol (12.25 mL, 210 mmol, 1.05 eq.) was then added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. The title compound was purified by simple distillation (vacuum transfer) and obtained as a colorless liquid (22.7 g, 164 mmol, 82 %).

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 3.81 (q, *J* = 7.0 Hz, 2H), 1.23 (t, *J* = 7.0 Hz, 3H), 0.46 (s, 6H). ¹**H**/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.46/13.7.

Chloro(isopropoxy)dimethylsilane

CI-SiMe₂O/Pr

C₅H₁₃CIOSi

mw: 152.69 g/mol

A flame-dried, two-necked round-bottomed flask equipped with a stirring bar and a rubber septum was charged with urea (12.62 g, 210 mmol, 1.05 eq.) and dichlorodimethylsilane (6.45 mL, 200 mmol, 1 eq.). The resulting suspension was cooled to 0 °C and isopropanol (16.08 mL, 210 mmol, 1.05 eq.) was then added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. The title compound was purified by simple distillation (vacuum transfer) and obtained as a colorless liquid (27.2 g, 178 mmol, 89 %).

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 4.23 (hept, *J* = 6.1 Hz, 1H), 1.21 (d, *J* = 6.1 Hz, 6H), 0.46 (s, 6H). ¹**H**/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.46/11.1.

Tert-butoxychlorodimethylsilane

C₆H₁₅ClOSi mw: 166.72 g/mol

A flame-dried, two-necked round-bottomed flask equipped with a stirring bar and a rubber septum was sequentially charged with urea (3.47 g, 57.8 mmol, 1.05 eq.), dichlorodimethylsilane (6.7 mL, 55 mmol, 1 eq.) and THF (78 mL, 0.7 M). The resulting mixture was cooled to 0 °C and *tert*-butanol (5.5 mL, 57.8 mmol, 1.05 eq.) was then added dropwise. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. The title compound was isolated as a solution in THF (0.7 M) by simple distillation (vacuum transfer) and used without further processing in the hydrazine synthesis step (*vide infra*).

¹H NMR (300 MHz, CDCl₃): δ /ppm = 1.30 (s, 9H), 0.41 (s, 6H). ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ /ppm = 0.41/3.3. The spectroscopic data match the literature report.⁹

Di-tert-butoxychloro(methyl)silane

CI-SiMe(OtBu)₂

C₉H₂₁ClO₂Si mw: 224.80 g/mol

A flame-dried, two-necked round-bottomed flask equipped with a stirring bar and a rubber septum was sequentially charged with urea (7.4 g, 123 mmol, 2.05 eq.), methyltrichlorosilane (7.1 mL, 60 mmol, 1 eq.) and THF (60 mL, 1M). The resulting mixture was cooled to -8 °C and *tert*-butanol (11.8 mL, 123 mmol, 2.05 eq.) was then added dropwise. The resulting mixture were allowed to warm to room temperature and stirred for ca. 16 h. The title compound was purified by simple distillation (vacuum transfer) and obtained as a colorless liquid (12.2 g, 54.6 mmol, 91 %).

¹H NMR (300 MHz, CDCl₃) δ/ppm 1.36 (s, 18H), 0.42 (s, 3H) ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.42/-43.2. The spectroscopic data match the literature report.¹⁰

5.2. Synthesis and characterization of monoalkoxysilyldiazenes 3a, 3b and 3c

GP1: A flame-dried two-necked round-bottomed flask equipped with a stirring bar and a rubber septum was charged with finely ground and thoroughly dried *tert*-butylhydrazine hydrochloride (1 eq.), THF (20 mL) and DBU (2.1 eq). Under vigorous stirring, a solution of the chloro(alkoxy)dimethylsilane (1.1 eq) in THF (0.7 M) was then added dropwise at room temperature. The reaction mixture was further stirred at room temperature for 16 h, time after which full conversion of the chlorosilane was confirmed by ¹H/²⁹Si HMQC NMR. The crude suspension was cooled to 0 °C, then cold degassed pentane (40 mL) was added to precipitate most of the hydrochloride salt. The resulting suspension was then filtered under air and the solid washed with *n*-pentane (40 mL). The filtrate, collected in a Schlenk flask, was concentrated *in vacuo* by rotary evaporation to afford the crude silylated hydrazine, which was directly used in the oxidation step without further purification.

Note: the silylated hydrazines were of sufficient purity to be fully characterized by multinuclear NMR spectroscopy.

To the Schlenk flask containing the crude hydrazine was added *n*-pentane (98%, degassed by argon bubbling, 0.7 M). To the resulting solution was added di-*tert*-butylazodicarboxylate (DBAD, 1.0 eq. assuming 100 % yield from the previous reaction) in one portion by quickly opening the rubber septum under a positive pressure of argon. The resulting orange suspension was vigorously stirred at room temperature for 1 h, time after which the reaction mixture was deep red in color. The volatiles were removed *in vacuo* by rotary evaporation to afford a red slurry. The diazene was then separated from the solid residue ([BocNH]₂) by simple distillation (vacuum transfer) under dynamic vacuum.

(E)-1-(*tert*-butoxydimethylsilyl)-2-(*tert*-butyl)diazene (3a)

Prepared according to **GP1** from *tert*-butylhydrazine hydrochloride (6.23 g, 50.0 mmol, 1.0 eq.), DBU (15.7 mL, 105.0 mmol, 2.1 eq.) and CISiMe₂(O*t*Bu) (9.17 g, 55.0 mmol, 1.1 eq.) followed by the addition of di-*tert*-butylazodicarboxylate (11.52 g, 50.0 mmol, 1 eq.). Careful removal of *n*-pentane by rotary evaporation followed by dynamic vacuum transfer afforded the title compound **3b** as a deep red liquid (9.14 g, 42.24 mmol, 84% over 2 steps).

Note: $Me_2Si(OtBu)_2$ (4 %) was identified as a side-product; corrected yield = 79% over 2 steps.

¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 1.26 (s, 9H), 0.98 (s, 9H), 0.07 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 71.7, 53.4, 32.2, 27.0, -0.3. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.07/-11.4.

¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 1.32 (s, 9H), 1.17 (s, 9H), 0.18 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ /ppm = 73.92, 73.81, 32.24, 25.93, -1.69. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.18/-8.4. Note: HRMS could not be obtained for this compound as ionization using APCI technique led to unidentified ions.

(E)-1-(*tert*-butyl)-2-(*iso*propoxydimethylsilyl)diazene (3b)

Prepared according to GP1 from tert-butylhydrazine hydrochloride (6.23 g, 50.0 mmol, 1.0 eg.), DBU (15.7 mL, 105.0 mmol, 2.1 eq.) and CISiMe₂(OiPr) (8.40 g, 55.0 mmol, 1.1 eq.) followed by the addition of di-tert-butylazodicarboxylate (11.52 g, 50.0 mmol, 1 eq.). Careful removal of n-pentane by rotary evaporation followed by dynamic vacuum transfer afforded the title compound **3b** as a deep red liquid (7.64 g, 35.75 mmol, 75% over 2 steps).

Note: $Me_2Si(O_iPr)_2$ (7 %) was identified as a side-product; corrected yield = 68% over 2 steps.

C₉H₂₂N₂OSi mw: 202.37 g/mol

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 4.07 (hept, *J* = 6.1 Hz, 1H), 1.14 (d, J = 6.1 Hz, 6H), 0.98 (s, 9H), 0.06 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 64.3, 53.3, 26.9, 25.9, -2.8. ¹H/²⁹Si HMQC NMR $(300/60 \text{ MHz}, \text{CDCl}_3): \delta/\text{ppm} = 0.06/-5.9.$

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 4.27 (hept, J = 6.1 Hz, 1H), 1.21 (d, J = 6.1 Hz, 6H), 1.17 (s, 9H), 0.22 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ /ppm = 73.9, 65.8, 25.6, 25.4, -4.2. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.22/-4.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₂₂N₂OSiH 203.1574. Found 203.1572.

(E)-1-(*tert*-butyl)-2-(ethoxydimethylsilyl)diazene (3c)

Prepared according to GP1 from tert-butylhydrazine hydrochloride (6.23 g, 50 mmol, 1.0 eq.), DBU (15.7 mL, 105 mmol, 2.1 eq.) and CISiMe₂OEt (7.63 g, 55 mmol, 1.1 eq.) followed by the addition of di-tert-butylazodicarboxylate (11.52 g, 50.0 mmol, 1 eq.). Careful removal of npentane by rotary evaporation followed by dynamic vacuum transfer afforded the title compound 3c as a deep red liquid (5.50 g, 29.2 mmol, 58 % over 2 steps).

Note: $Me_2Si(OEt)_2$ (3 %) was identified as a side-product; corrected yield = 55 % over 2 steps.

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 3.71 (q, *J* = 7.0 Hz, 2H), 1.19 (t, *J* = 7.0 Hz, 3H), 1.00 (s, 9H), 0.08 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 58.0, 53.5, 26.9, 18.6, -3.4. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ /ppm = 0.08/-4.3.

SiMe₂OEt 3c C₈H₂₀N₂OSi mw: 188.35 g/mol

SiMe₂OEt

2c

C₈H₂₂N₂OSi

mw: 190.36 g/mol

¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 3.89 (q, J = 7.0 Hz, 2H), 1.24 (t, J) = 7.0 Hz, 3H), 1.17 (s, 9H), 0.23 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 74.5, 59.4, 26.0, 18.6, -4.3. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ /ppm = 0.24/-3.0. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₈H₂₀N₂OSiH 189.1418. Found 18.1415

5.3. Synthesis and characterization of bis(*tert*-butoxy)silyldiazene **3d**

Hydrazine preparation: A flame-dried two-necked round-bottomed flask equipped with a stirring bar and a rubber septum was charged with finely ground and thoroughly dried tertbutylhydrazine hydrochloride (2.49 g, 20 mmol,1 eq.), THF (28 mL, 0.7 M) and DBU (6.4 mL, 42 mmol, 2.1 eq.). The resulting white suspension was vigorously stirred and neat ClSiMe(OtBu)₂ (4.95 g, 22 mmol, 1.1 eq.) was then added dropwise at room temperature. The reaction mixture was stirred for 16 h, cooled to 0 °C, then cold degassed pentane (40 mL) was added to precipitate most of the hydrochloride salt. The resulting suspension was then filtered under air and the solid washed with n-pentane (40 mL). The filtrate, collected in a flame-dried Schlenk flask, was concentrated in vacuo by rotary evaporation to afford the crude silylated hydrazine 2d, which was directly used in the oxidation step without further purification.

Oxidation: To the Schlenk flask containing the crude hydrazine 2d was added n-pentane (28 mL, 0.7 M). The resulting solution was cooled to 0 °C and a solution of di-tert-butyl azodicarboxylate (3.68 g, 16 mmol, 0.8 eq.) in CH₂Cl₂ (5 mL) was then added dropwise. After 10 min of stirring at 0 °C, a second portion of di-tert-butyl azodicarboxylate (0.69 g, 3.0 mmol, 0.15 eq. in 1 mL CH₂Cl₂) was added to oxidize the remaining quantity of hydrazine 2d (as judged by ¹H NMR spectroscopy). The resulting deep red reaction mixture was further stirred for 10 min and then concentrated in vacuo by rotary evaporation to remove ca. half of the pentane. The resulting suspension was cooled to -20 °C and filtered twice to get rid of the solid byproduct ([BocNH]₂), which was washed with cold pentane (-20 °C). The filtrate was concentrated by rotary evaporation and the crude red-colored residue was purified by flash column chromatography on silica gel using PE/Et₃N (96:4 v/v) as eluent to afford the title compound **3d** as a deep red liquid (4.38 g, 16.0 mmol, 80 % yield over 2 steps).

Note: To facilitate the purification process, it is preferable to carefully adjust the amount of ditert-butyl azodicarboxylate to match the exact quantity of the crude hydrazine, adding it portionwise. We indeed observed that even a slight excess of di-tert-butyl azodicarboxylate can coelute with the diazene during column chromatography.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 1.29 (s, 18H), 1.01 (s, 9H), 0.16 __SiMe(OtBu)₂ H (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 71.8, 53.4, 31.8, 27.0, -1.0. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.16/-C₁₃H₃₂N₂O₂Si 43.8. mw: 276.50 g/mol

.SiMe(OtBu)₂ 3d C₁₃H₃₀N₂O₂Si mw: 274.48 g/mol

2d

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 1.31 (s, 18H), 1.18 (s, 9H), 0.12 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 73.9, 73.7, 32.1, 25.9, -3.6.¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.12/-49.6. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₁₃H₃₀N₂O₂SiH 275.2149. Found 275.2150.

5.4. Synthesis and characterization of tris(tert-butoxy)silyldiazene 3e

Hydrazine preparation: A flame-dried two-necked round-bottomed flask equipped with a stirring bar and a rubber septum was charged with finely ground and thoroughly dried tertbutylhydrazine hydrochloride (0.98 g, 7.9 mmol,1 eq.), THF (11 mL, 0.7 M) and DBU (2.5 mL, 16.6 mmol, 2.1 eq.). The resulting white suspension was vigorously stirred and neat ClSi(OtBu)₃ (2.46 g, 8.7 mmol, 1.1 eq.) was then added dropwise at room temperature. The reaction mixture was stirred for 43 h (conversion monitored by GC/MS), cooled to 0 °C, then cold degassed pentane (10 mL) was added to precipitate most of the hydrochloride salt. The resulting suspension was then filtered under air and the solid washed with cold *n*-pentane (20 mL). The filtrate, collected in a flame-dried Schlenk flask, was concentrated in vacuo by rotary evaporation to afford the crude silvlated hydrazine 2e, which was directly used in the oxidation step without further purification.

Oxidation: To the Schlenk flask containing the crude hydrazine 2e was added n-pentane (11 mL, 0.7 M). The resulting solution was cooled to 0 °C and a solution of di-tert-butyl azodicarboxylate (1.09 g, 4.74 mmol, 0.6 eq.) in CH_2CI_2 (1.5 mL) was then added dropwise. After 10 min of stirring at 0 °C, a second portion of di-*tert*-butyl azodicarboxylate (0.18 g, 0.79 mmol, 0.1 eq. in 0.5 mL CH_2CI_2) was added to oxidize the remaining quantity of hydrazine **2e** (as judged by ¹H NMR spectroscopy). The resulting deep red reaction mixture was further stirred for 10 min and then concentrated *in vacuo* by rotary evaporation to remove ca. half of the pentane. The resulting suspension was cooled to -20 °C and filtered twice to get rid of the solid byproduct ([BocNH]₂), which was washed with cold pentane (-20 °C). The filtrate was concentrated by rotary evaporation and the crude red-colored residue was purified by flash column chromatography on silica gel using PE/Et₃N (96:4 v/v) as eluent to afford the title compound **3e** as a deep red liquid (1.66 g, 5 mmol, 63% over 2 steps).

H N H 2e C₁₆H₃₈N₂O₃Si mw: 334.58 g/mol

^HN_NSi(OtBu)₃ ¹H NMR (300 MHz, CDCl₃): δ /ppm = 1.30 (s, 27H), 1.03 (s, 9H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ /ppm = 72.4, 53.7, 31.7, 27.4.

C₁₆H₃₆N₂O₃Si mw: 332.56 g/mol ¹H NMR (300 MHz, CDCl₃): δ /ppm = 1.29 (s, 27H), 1.19 (s, 9H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ /ppm = 74.0, 73.6, 31.7, 25.8. ²⁹Si NMR (60 MHz, CDCl₃): δ /ppm = -95.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₃₆N₂O₃SiH 333.2568. Found 333.2569.

5.5. Stability of diazenes 3a-d under basic conditions

<u>Procedure</u>: In a glove box, a 2-mL vial equipped with a magnetic stirring bar was charged with *t*BuOK (1.1 mg, 10 mol%) and THF (0.4 mL). Another 2-mL dram vial was charged with tetracosane, *t*BuN₂*Si* (0.1 mmol, *Si* as described in Figure S5) and THF (0.3 mL). An aliquot (ca. 10 μ L) was withdrawn from the latter solution, diluted with 1 mL of *n*-heptane and submitted to GC/MS analysis to set the initial tetracosane/diazene ratio. The diazene solution was then added dropwise to the vigorously stirred solution of *t*BuOK at room temperature. Aliquot of the resulting reaction mixture were withdrawn at different times, diluted with 1 mL of *n*-heptane and submitted to GC/MS analysis.

Figure S5: Stability of various alkoxysilyldiazenes under basic conditions in THF (tBuOK, 10 mol%). Note that the data points for **3b**, **3c** and *t*BuN₂SiMe₃ overlap and therefore cannot be distinguished.

As can be deduced from the plot in Figure S5, all the monoalkoxysilyldiazenes (**3a-c**) as well as the bis-*tert*-butoxysilyldiazenes (**3d**) were found reactive towards a catalytic amount of *t*BuOK (10 mol with respect to each diazene) in the absence of a hydrocarbon substrate. While the lightest congeners **3b** and **3c** were fully decomposed in less than 2 min under such basic conditions, slightly increased stability was observed for **3a** as its complete decomposition took ca. 3 h at room temperature. The behavior of the bulkiest diazene **3d** was more contrasted as ca. 58 % rapidly decomposed upon mixing, but the remaining quantity was found to decrease

only slowly (only 6 % decomposed between 30 min and 360 min of reaction). As far as the monoalkoxysilyldiazenes are concerned, the major decomposition products identified by GC/MS include the following compounds (R = tBu, *i*Pr or Et):

The stability trends discussed above are similar to those observed for the trialkylsilylsubstituted diazenes bearing Me₃Si or bulkier *t*BuMe₂Si groups, stability of which under basic conditions primarily depends on the steric bulkiness of the silyl group.

- 6. Synthesis and characterization of silylated products
 - 6.1. General procedures

GP2 (silylation of C(sp²)–H bonds): A 10-mL vial equipped with a magnetic stirring bar was charged with potassium *tert*-butoxide (10 to 40 mol%), THF (2.0 mL) and the corresponding substrate (0.5 mmol, prior to adding the solvent when solid). To the resulting vigorously stirred mixture was then added dropwise a solution of the corresponding silylated *tert*-butyldiazene in THF (1.5 mL). The reaction mixture was stirred at room temperature for the indicated time, concentrated by rotary evaporation and the resulting residue was directly purified by flash column chromatography on silica gel.

GP3 (silylation of benzylic C(sp³)–H bonds): A 5-mL microwave vial equipped with a magnetic stirring bar was charged with potassium *tert*-butoxide, THF (0.5 mL, 1 M) and the corresponding substrate (0.5 mmol, prior to adding the solvent). To the resulting vigorously stirred mixture was then added neat the corresponding silylated *tert*-butyldiazene in one portion. After stirring at room temperature for the indicated time, the reaction mixture was concentrated by rotary evaporation and the resulting crude residue was directly purified by column chromatography on silica gel.

Caution: the silylation reaction with *tert*-butyl silyldiazenes rapidly generates gaseous byproducts, including N_2 . Reactions must therefore be carried out in well-vented open systems or using pressure-proof glassware while applying the appropriate safety procedures.

6.2. Characterization data for silylated (hetero)arenes

2-(*tert*-butoxydimethylsilyl)-1-methyl-1*H*-indole

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.), 1-methyl-1*H*-indole (62.5 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%, 0.1 eq). The reaction mixture was stirred for 1 h at room temperature. Purification by flash column chromatography on silica gel using PE then PE/EtOAc 99:1 as eluent afforded the title compound **4a** (119.1 mg, 0.46 mmol, 91 %) as a yellowish solid.

M.p (CH₂Cl₂) = 46-48 °C. ¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.62 (d, *J* = 1.2 Hz, 1H), 7.34 (d, *J* = 8.4 Hz, 1H), 7.28 – 7.20 (m, 1H), 7.08 (dd, *J* = 8.1, 6.9 Hz, 1H), 6.71 (s, 1H), 3.95 (s,

3H), 1.26 (s, 9H), 0.50 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ /ppm = 141.5, 140.2, 122.2, 121.0, 119.2, 111.2, 109.3, 73.5, 33.1, 32.0, 2.0. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ /ppm = 0.50/-8.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₃NOSiH 262.1622. Found 262.1623.

2-(isopropoxydimethylsilyl)-1-methyl-1H-indole

Prepared according to **GP2** from the corresponding diazene **3b** (394 mg, 1.5 mmol, 3.0 eq.), 1-methyl-1*H*-indole (62.5 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 2 h. Purification by flash column chromatography on silica gel using PE/CH₂Cl₂ (100:0 \rightarrow 95:5 \rightarrow 90:10 \rightarrow 80:20 \rightarrow 70:30 v/v) as eluent afforded the title compound **4b** (60.7 mg, 0.25 mmol, 49 %) as a yellowish oil.

Note: 4b slightly decomposed on silica gel (NMR yield: 73 %).

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.64 (dd, J = 7.9, 1.0 Hz, 1H), 7.36 (dt, J = 8.3, 1.0 Hz, 1H), 7.32 – 7.20 (m, 1H), 7.10 (ddt, J = 7.9, 6.9, 1.0 Hz, 1H), 6.75 (s, 1H), 4.04 (hept, J = 0.9 Hz, 1H), 3.94 (s, 3H), 1.15 (dd, J = 6.1, 0.9 Hz, 6H), 0.51 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 140.3, 139.4, 128.4, 122.5, 121.1, 119.3, 112.5, 109.4, 65.8, 33.1, 25.7, -0.4. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.50/-1.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₁NOSiH 248.1465. Found 248.1466.

2-(ethoxydimethylsilyl)-1-methyl-1H-indole

Prepared according to **GP2** from the corresponding diazene **3c** (57 mg, 0.30 mmol, 3.0 eq.), 1-methyl-1*H*-indole (12.5 μ L, 0.10 mmol, 1.0 eq.) and potassium *tert*-butoxide (1.1 mg, 10 mol%). The reaction mixture was stirred for 1 h at room temperature. 1,3,5- trimethoxybenzene was then added to the crude mixture, which was then concentrated by rotary evaporation and analyzed by ¹H NMR spectroscopy. NMR yield = 63 %.

The title compound could be *in-situ* characterized using NMR spectroscopy.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.64 (d, J = 8.1 Hz, 1H), 7.36 (d, J = 8.2 Hz, 1H), 7.26 (d, J = 7.9 Hz, 1H), 7.11 (d, J = 7.0 Hz, 1H), 6.77 (s, 1H), 3.93 (s, 3H), 3.69 (q, J = 7.1 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H), 0.50 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 140.4, 138.9, 128.3, 122.6, 121.6, 121.1, 119.3, 112.8, 58.9, 30.3, 18.5, -0.9. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.50/1.4. The spectroscopic data match the literature report.³

2-(di-tert-butoxy(methyl)silyl)-1-methyl-1H-indole

Prepared according to **GP2** from the corresponding diazene **3d** (302 mg, 1.1 mmol, 2.2 eq.), 1-methyl-1*H*-indole (62.5 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred overnight. Purification by flash column chromatography on deactivated silica gel (1% Et₃N) using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **4d** (165 mg, 0.50 mmol, >99 %) as a yellow oil.

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.64 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 7.25 (t, J = 8.2 Hz, 1H), 7.09 (t, J = 7.3 Hz, 1H), 6.79 (s, 1H), 3.98 (s, 3H), 1.34 (s, 18H), 0.58 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 140.6, 140.1, 128.4, 122.1, 121.0, 119.0, 112.1, 109.4, 73.6, 33.1, 32.0, 2.4. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.58/-89.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₂₉NO₂SiH 320.2040. Found 320.2041.

1-methyl-2-(tri-tert-butoxysilyl)-1H-indole

Prepared according to **GP2** from the corresponding diazene **3e** (293 mg, 0.88 mmol, 2.2 eq.), 1-methyl-1*H*-indole (50 µL, 0.40 mmol, 1.0 eq.) and potassium *tert*-butoxide (18 mg, 40 mol%, 0.4 eq.). The reaction mixture was stirred for 24 h. Purification by flash column chromatography on silica gel using PE/CH₂Cl₂ (95:5 \rightarrow 90:10, v/v) as eluent afforded the title compound **4e** (68.9 mg, 0.19 mmol, 46 %) as a light-yellow solid.

Note: The same reaction carried out on a smaller scale (0.1 mmol) gave **4e** in 68 % yield as determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard.

M.p (CH₂Cl₂) = 71-73 °C. ¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.64 (d, J = 7.7 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.23 (ddd, J = 8.2, 7.1, 1.4 Hz, 1H), 7.08 (ddd, J = 7.9, 6.9, 1.1 Hz, 1H), 6.91 (s, 1H), 3.97 (s, 3H), 1.42 (s, 27H). ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ/ppm = 139.9, 139.1, 128.2, 122.0, 121.0, 118.9, 113.2, 109.4, 74.1, 33.2, 32.0. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 6.91/-182.5. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₁H₃₅NO₃SiH 378.2459. Found 378.2460.

Dimethylbis(1-methyl-1H-indol-2-yl)silane

Prepared according to **GP2** from diazene **3c** (236 mg, 1.25 mmol, 2.5 eq.), 1-methyl-1*H*-indole (62.5 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (28.1 mg, 50 mol%). The reaction mixture was stirred for 1 h. Purification by flash column chromatography on silica gel using PE/CH₂Cl₂ (95:5 \rightarrow 90:10, v/v) as eluent afforded the title compound **5** (37.9 mg, 0.12 mmol, 48 %) as a yellow solid. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a concentrated solution of **5** in CDCl₃.

M.p (CH₂Cl₂) = 103-105°C. ¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.68 (dt, J = 7.9, 1.0 Hz, 2H), 7.31 (m, 2H), 7.26 (ddd, J = 8.3, 6.9, 1.2 Hz, 2H), 7.13 (ddd, J = 7.9, 6.7, 1.3 Hz, 2H), 6.90 (s, 2H), 3.64 (s, 6H), 0.78 (s, 6H). ¹³C{¹H} **NMR** (75 MHz, CDCl3): δ/ppm = 140.6, 138.1, 128.5, 122.5, 121.0, 119.5, 113.0, 109.4, 32.7, - 1.4. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.78/-23.3. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₀H₂₂N₂SiH 319.1625. Found 319.1619.

2-(tert-butoxydimethylsilyl)-1-methyl-4-methoxy-1H-indole

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.), 4-methoxy-1-methyl-1*H*-indole (80.6 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 2 h. Purification by flash column

chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **6a** (148.7 mg, 0.50 mmol, >99 %) as a white solid.

M.p (CH₂Cl₂) = 65-67 °C. ¹H NMR (400 MHz, CDCl₃): δ/ppm = 7.17 (dd, J = 8.3, 7.7 Hz, 1H), 6.98 (d, J = 8.3 Hz, 1H), 6.82 (s, 1H), 6.50 (d, J = 7.6 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 1.25 (s, 9H), 0.49 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ/ppm = 153.5, 141.8, 140.0, 123.12, 119.1, 108.3, 102.9, 73.5, 55.4, 33.4, 32.0, 1.9. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ/ppm = 0.49/-8.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₅NO₂SiH 292.1727. Found 292.1728.

2-(tert-butoxydimethylsilyl)-6-methoxy-1-methyl-1H-indole

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.) and 1-methyl-6-methoxy-1*H*-indole (80.6 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 2 h. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **7a** (114.8 mg, 0.40 mmol, 79 %) as a white solid.

M.p (CH₂Cl₂) = 81-83 °C·¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 7.52 – 7.48 (m, 2H), 6.78 (d, J = 7.9 Hz, 1H), 6.65 (d, J = 0.8 Hz, 1H), 3.91 (s, 6H), 1.27 (s, 9H), 0.49 (s, 6H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ/ppm = 156.9, 141.0, 140.3, 122.9, 121.6, 111.3, 109.6, 92.5, 73.4, 55.8, 33.2, 32.0, 1.9. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ/ppm = 0.49/-8.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₂₅NO₂SiH 292.1727. Found 292.1726.

2-(tert-butoxydimethylsilyl)-1,4-dimethyl-1H-indole

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.) and 1,5-dimethyl-1*H*-indole (72.6 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 2 h. Purification by flash column

chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **8a** (113.8 mg, 0.41 mmol, 83 %) as pinkish solid.

M.p (CH₂Cl₂) = 63-65 °C. ¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 7.30 – 7.25 (m, 1H), 7.11 (d, *J* = 8.1 Hz, 1H), 6.94 (dd, *J* = 8.4, 1.7 Hz, 1H), 6.50 (s, 1H), 3.80 (s, 3H), 2.33 (s, 3H), 1.13 (s, 9H), 0.37 (s, 6H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ/ppm = 141.5, 138.7, 128.7, 128.3, 124.0, 120.5, 110.6, 109.0, 73.5, 33.1, 32.0, 21.5, 1.9. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ/ppm = 0.37/-8.4. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₁₆H₂₅NOSiH 276.1778. Found 276.1779.

2-(tert-butoxydimethylsilyl)-1-methyl-5-phenyl-1H-indole

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.) and 1-methyl-5-phenyl-1*H*-indole (103.7 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 2 h. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **9a** (171.6 mg, 0.50 mmol, >99 %) as a yellow solid.

M.p (CH₂Cl₂) = 68-70 °C. ¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.86 (s, 1H), 7.74 – 7.63 (m, 2H), 7.58 – 7.39 (m, 4H), 7.38 – 7.27 (m, 1H), 6.78 (s, 1H), 4.00 (s, 3H), 1.30 (s, 9H), 0.54 (s, 6H). ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ/ppm = 142.8, 142.4, 139.8, 132.8, 129.0, 128.8, 127.5, 126.3, 122.2, 119.5, 111.6, 109.5, 73.6, 33.3, 32.0, 1.9. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.54/-8.4. **HRMS (ESI)** m/z: [M+H]+ Calcd for C₂₁H₂₇NOSiH 338.1935. Found 338.1933.

2-(tert-butoxydimethylsilyl)-5-chloro-1-methyl-1H-indole

Prepared according to **GP2** from the corresponding diazene **3a** (275 mg, 1.0 mmol, 2.0 eq.) and 5-chloro-1-methyl-1*H*-indole (82.7 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%, 0.2 eq.). The reaction mixture was stirred for 2 h. Purification by flash

column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 95:5 v/v) as eluent afforded the title compound **10a** (97.8 mg, 0.33 mmol, 66 %) as a yellow oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.57 (d, J = 2.0 Hz, 1H), 7.25 (d, J = 8.8 Hz, 1H), 7.17 (dd, J = 8.8, 2.0 Hz, 1H), 6.63 (s, 1H), 3.93 (s, 3H), 1.26 (s, 9H), 0.50 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 143.1, 138.6, 129.4, 125.0, 122.5, 120.2, 110.6, 110.2, 73.6, 33.3, 32.0, 1.9. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.50/-8.4. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₂CINOSiH 296.1232. Found 296.1233.

2-(tert-butoxydimethylsilyl)-1-methyl-1H-pyrrolo[2,3-b]pyridine

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.) and 1-methyl-1*H*-pyrrolo[2,3-*b*]pyridine (66.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 2 h. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **11a** (104.8 mg, 0.40 mmol, 80 %) as an orange oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 8.35 (dd, J = 4.7, 1.6 Hz, 1H), 7.88 (dd, J = 7.8, 1.6 Hz, 1H), 7.01 (dd, J = 7.8, 4.7 Hz, 1H), 6.65 (s, 1H), 4.05 (s, 3H), 1.26 (s, 10H), 0.51 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 150.8, 143.6, 142.1, 128.8, 120.5, 115.4, 109.1, 73.7, 32.0, 31.5, 1.8. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.51/-8.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₂N₂OSiH 263.1574. Found 263.1574.

benzo[b]thiophen-2-yl(tert-butoxy)dimethylsilane

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.) and benzo[*b*]thiophene (67.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 2 h. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **13a** (119.5 mg, 0.45 mmol, 90 %) as a light-yellow oil.
¹**H NMR** (400 MHz, CDCl₃): δ /ppm = 7.94 – 7.88 (m, 1H), 7.86 – 7.79 (m, 1H), 7.54 (s, 1H), 7.40 – 7.30 (m, 2H), 1.30 (s, 9H), 0.49 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ /ppm = 143.8, 142.6, 141.1, 131.3, 124.4, 124.1, 123.8, 122.4, 73.6, 32.1, 2.4. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ /ppm = 0.49/-6.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₀OSSiH 265.1077. Found 265.1078.

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.) and benzo[*b*]thiophene (58.1 μ L, 59 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 2 h. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **12a** (109.7 mg, 0.44 mmol, 88 %) as a light-yellow oil.

¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 7.60 (ddd, J = 7.7, 1.4, 0.7 Hz, 1H), 7.54 (dd, J = 8.1, 1.1 Hz, 1H), 7.30 (ddd, J = 8.3, 7.2, 1.4 Hz, 1H), 7.21 (d, J = 1.1 Hz, 1H), 7.05 (s, 1H), 1.28 (s, 9H), 0.47 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ/ppm = 204.1, 199.1, 169.2, 165.8, 163.6, 162.5, 157.8, 152.7, 114.7, 73.1, 42.0. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ/ppm = 0.47/-10.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₂₀O₂SiH 249.1305. Found 249.1306.

tert-butoxydimethyl(5-pentylfuran-2-yl)silane

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.90 mmol, 1.8 eq.), 2-pentylfuran (78 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%, 0.1 eq.). The reaction mixture was stirred for 1 h. Purification by flash column chromatography on silica gel using PE/NEt₃ (99:1 v/v) as eluent afforded the title compound **14a** (86 mg, 0.32 mmol, 64 %) as a colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 6.58 (d, *J* = 3.1 Hz, 1H), 5.96 (d, *J* = 3.1 Hz, 1H), 2.65 (t, *J* = 7.5 Hz, 2H), 1.72 – 1.59 (m, 2H), 1.39 – 1.28 (m, 4H), 1.21 (s, 9H), 0.95 – 0.84 (m, 3H), 0.34 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ /ppm = 161.0, 158.0, 121.2, 104.9, 73.0, 31.9, 31.5, 28.3, 28.0, 22.6, 14.2, 0.8. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ /ppm = 0.34/-12.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₂₈O₂SiH 269.1931. Found 269.1933.

2,5-bis(di-tert-butoxy(methyl)silyl)thiophene

Prepared according to **GP2** from the corresponding diazene **3d** (439 mg, 1.6 mmol, 3.2 eq.), thiophene (40 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%, 0.1 eq.). The reaction mixture was stirred for 16 h. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **15d**₂ (223.5 mg, 0.49 mmol, 97 %) as a colorless oil.

Note: The non-volatile disiloxane side product [(*t*BuO)₂MeSi]₂O proved inseparable by column chromatography (ca. 13%).

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.38 (s, 2H), 1.30 (s, 36H), 0.42 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 145.5, 135.7, 73.5, 32.0, 2.8. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 7.38, 0.42/-37.1. *Note*: HRMS could not be obtained for this compound as ionization using ESI or APCI techniques coupled with MeCN elution did not occur.

(2-fluoro-1,3-phenylene)bis(tert-butoxydimethylsilane)

Prepared according to **GP2** from the corresponding diazene **3a** (379 mg, 1.75 mmol, 3.5 eq.), fluorobenzene (48.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%). The reaction mixture was stirred for 2 h. Purification by flash column chromatography on silica gel using PE/NEt₃ (99:1 v/v) as eluent afforded the title compound **16a**₂ (155.5 mg, 0.44 mmol, 87 %) as a colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.59 (dd, J = 7.2, 5.8 Hz, 2H), 7.15 (td, J = 7.2, 1.7 Hz, 1H), 1.27 (s, 18H), 0.43 (d, J = 1.3 Hz, 12H). ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ/ppm = 171.3 (d, J = 237.6 Hz), 137.5 (d, J = 11.4 Hz), 125.5 (d, J = 34.2 Hz), 123.5 (d, J = 2.8 Hz), 73.1, 32.1, 2.2 (d, J = 1.9 Hz).¹⁹F{¹H} **NMR** (282 MHz, CDCl₃): δ/ppm = -87.38. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.4, 7.59, 0.4/-3.9. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₃₃FO₂Si₂Na 379.1895. Found 379.1895.

S38

Tri-tert-butoxy(2-fluorophenyl)silane

16e C₁₈H₃₁FO₃Si mw: 342.53 g/mol

Prepared according to **GP2** from the corresponding diazene **3e** (291 mg, 0.85 mmol, 1.7 eq.), fluorobenzene (48.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (16.8 mg, 30 mol%). The reaction mixture was stirred for 21 h. Purification by flash column chromatography on silica gel using PE/NEt₃ (99:1 v/v) as eluent afforded the title compound **16e** (125.8 mg, 0.39 mmol, 73 %) as a colorless oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.69 (ddd, J = 7.5, 5.9, 1.9 Hz, 1H), 7.39 – 7.29 (m, 1H), 7.09 (tt, J = 7.3, 0.9 Hz, 1H), 6.94 (ddd, J = 9.1, 8.2, 1.0 Hz, 1H), 1.35 (s, 27H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 166.8 (d, J = 244.0 Hz), 137.7 (d, J = 10.1 Hz), 131.5 (d, J = 8.4 Hz), 124.8 (d, J = 27.3 Hz), 123.5 (d, J = 3.0 Hz), 114.9 (d, J = 25.6 Hz), 73.8, 31.9. ¹⁹F{¹H NMR (282 MHz, CDCl₃): δ/ppm = -97.46. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 7,69/-180,6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₃₁FO₃SiNa 365.1919. Found 365.1921.

(2,4,6-trifluorobenzene-1,3,5-triyl)tris(tert-butoxydimethylsilane)

Prepared according to **GP2** from the corresponding diazene **3a** (433 mg, 2 mmol, 4.0 eq.), 1,3,5-trifluorobenzene (51.7 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%). The reaction mixture was stirred for 2 h. Purification by flash column chromatography on silica gel using PE/NEt₃ (99:1 v/v) then PE/AcOEt (98:2 \rightarrow 95:5 v/v) as eluents afforded the title compound **17a**₂ (240.1 mg, 0.46 mmol, 92 %) as a light-yellow oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 1.22 (s, 27H), 0.44 (s, 18H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 173.0 (dt, J = 244.9, 20.0 Hz), 109.3 (t), 73.3, 31.8, 3.7. ¹⁹F{¹H} NMR (282 MHz, CDCl₃) δ -78.44. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.44/-5.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₄₅F₃O₃Si₃Na 545.2521. Found 545.2519.

(2-fluoro-4-methoxy-1,3-phenylene)bis(*tert*-butoxydimethylsilane)

mw: 386.65 g/mol

Prepared according to **GP2** from the corresponding diazene **3a** (433 mg, 2 mmol, 4 eq.), 3fluoroanisole (63.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%). The reaction mixture was stirred for 1 h. Purification by flash column chromatography on silica gel using PE/Et₂O (100:0 \rightarrow 99:1 \rightarrow 98:2 v/v) as eluent afforded the title compound **18a**₂ (154.4 mg, 0.40 mmol, 80 %) as a light-yellow oil.

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.52 (dd, J = 8.1, 6.8 Hz, 1H), 6.64 (d, J = 8.1 Hz, 1H), 3.80 (s, 3H), 1.26 (s, 9H), 1.21 (s, 9H), 0.43 (d, J = 2.4 Hz, 6H), 0.39 (d, J = 1.3 Hz, 6H). ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ/ppm = 171.9 (d, J = 238.7 Hz), 167.0 (d, J = 15.9 Hz), 138.5 (d, J = 14.7 Hz), 117.8 (d, J = 36.4 Hz), 113.4 (d, J = 35.5 Hz), 105.9 (d, J = 2.7 Hz), 72.9, 72.9, 55.4, 32.1, 31.8, 4.2 (d, J = 4.1 Hz), 2.3 (d, J = 1.9 Hz). ¹⁹F{¹H} **NMR** (282 MHz, CDCl₃): δ/ppm = -84.24. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.4/-4.9, 0.4/-4.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₃₅FO₃Si₂Na 409.2001. Found 409.2000.

tert-butoxy(2-fluoro-3-methoxyphenyl)dimethylsilane

Prepared according to **GP2** from the corresponding diazene **3a** (162 mg, 0.75 mmol, 1.5 eq.), 1-fluoro-2-methoxybenzene (63.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 1 h. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **19a** (131 mg, 0.50 mmol, >99 %) as a colorless oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.15 – 7.04 (m, 2H), 6.98 (ddd, J = 9.4, 7.2, 2.6 Hz, 1H), 3.88 (s, 3H), 1.29 (s, 9H), 0.44 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 156.1 (d, J =240.4 Hz), 147.0 (d, J = 14.0 Hz), 127.2 (d, J = 27.0 Hz), 126.3 (d, J = 10.5 Hz), 124.0 (d, J =3.6 Hz), 114.6 (d, J = 2.2 Hz), 73.1, 56.1, 31.9, 2.1 (d, J = 1.7 Hz). ¹⁹F{¹H} NMR (282 MHz, CDCl₃): δ/ppm = -124.11. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.44/-4.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₂₁FO₂SiH 257.1368. Found 257.1368.

(2-fluoro-5-phenoxy-1,3-phenylene)bis(tert-butoxydimethylsilane)

Prepared according to **GP2** from the corresponding diazene **3a** (357 mg, 1.65 mmol, 3.3 eq.), 1-fluoro-4-phenoxybenzene (94.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%). The reaction mixture was stirred for 1 h. Purification by flash column chromatography on silica gel using PE/NEt₃ (99:1 v/v) as eluent afforded the title compound **20a**₂ (180.1 mg, 0.40 mmol, 80 %) as a light-yellow oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.37 – 7.28 (m, 2H), 7.19 (d, J = 4.3 Hz, 2H), 7.11 – 7.03 (m, 1H), 7.01 – 6.95 (m, 2H), 1.23 (s, 18H), 0.40 (d, J = 1.2 Hz, 12H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ/ppm = 166.8 (d, J = 233.5 Hz), 158.2, 152.4 (d, J = 2.3 Hz), 129.8, 127.7 (d, J = 12.4 Hz), 127.5 (d, J = 37.1 Hz), 122.8, 118.2, 73.2, 32.0, 2.1 (d, J = 1.8 Hz). ¹⁹F{¹H} NMR (282 MHz, CDCl₃): δ/ppm = -95.73. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 0.40/-4.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₃₇FO₃Si₂Na 471.2157. Found 471.2155.

tert-butoxy(2-fluoro-[1,1'-biphenyl]-3-yl)dimethylsilane

Prepared according to **GP2** from the corresponding diazene **3a** (162 mg, 0.75 mmol, 1.5 eq.), 2-fluoro-1,1'-biphenyl (86.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%, 0.1 eq.). The reaction mixture was stirred for 1 h. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **21a** (143 mg, 0.47 mmol, 95 %) as a white solid.

Note: The same reaction carried out on a larger scale (2 mmol) gave a similar yield (**21a**: 564 mg, 1.86 mmol, 93 %).

M.p (CH₂Cl₂) = 41-43 °C. ¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 7.60 – 7.53 (m, 3H), 7.50 – 7.42 (m, 3H), 7.41 – 7.34 (m, 1H), 7.26 – 7.20 (m, 1H), 1.33 (s, 9H), 0.48 (s, 6H). ¹³C{¹H} NMR (101

MHz, CDCl₃): δ /ppm = 163.7 (d, J = 243.0 Hz), 136.5, 135.1 (d, J = 11.6 Hz), 132.5 (d, J = 3.7 Hz), 129.3 (d, J = 2.7 Hz), 128.5, 128.5 (d, J = 17.8 Hz), 127.6, 127.2 (d, J = 31.8 Hz), 124.2 (d, J = 3.3 Hz), 73.2, 32.2, 2.4 (d, J = 1.9 Hz).¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ /ppm = -105.98. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ /ppm = 0.48/-3.9. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₂₃FOSiNa 325.1394. Found 325.1390.

tert-butoxy(2-fluoro-3-methylphenyl)dimethylsilane

mw: 240.39 g/mol

Prepared according to **GP2** from the corresponding diazene **3a** (195 mg, 0.9 mmol, 1.8 eq.), 2-fluorotoluene (55 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 1 h. The yield of **22a** was determined by ¹⁹F{¹H} NMR spectroscopy (see Table S7). Purification by flash column chromatography on silica gel using PE as eluent allowed to isolate pure fractions containing the title compound (colorless oil) for analytical purpose.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.39 (t, J = 5.3 Hz, 1H), 7.20 (t, J = 7.3 Hz, 1H), 7.04 (t, J = 7.3 Hz, 1H), 2.27 (s, 3H), 1.29 (s, 9H), 0.44 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 165.5 (d, J = 240.4 Hz), 133.2 (d, J = 15.2 Hz), 133.2 (d, J = 1.3 Hz), 125.9 (d, J = 30.7 Hz), 124.1 (d, J = 21.0 Hz), 123.6 (d, J = 3.4 Hz), 73.1, 32.1, 14.8 (d, J = 3.9 Hz), 2.3 (d, J = 1.8 Hz). ¹⁹F{¹H} NMR (282 MHz, CDCl₃): δ/ppm = -105.42. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 7.39, 0.44/-3.9.

6.3. Characterization data for silylated toluene derivatives

benzyl(tert-butoxy)dimethylsilane

Prepared according to **GP3** from the corresponding diazene **3a** (325 mg, 1.50 mmol, 3.0 eq.), toluene (53.2 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred for 4 h at room temperature. Purification by column

chromatography on silica gel using PE as eluent afforded the title compound **23a** (57.2 mg, 0.25 mmol, 51 %) as a colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.20 (dd, *J* = 8.1, 7.0 Hz, 1H), 7.12 – 7.01 (m, 3H), 2.14 (s, 2H), 1.24 (s, 9H), 0.09 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 140.1, 128.6, 128.1, 124.1, 72.5, 32.2, 29.0, 0.7. ¹H/²⁹Si HMQC NMR (300/60, CDCl₃): δ/ppm = 0.09/4.7.

benzyldi-tert-butoxy(methyl)silane

Prepared according to **GP3** from the corresponding diazene **3d** (412 mg, 1.50 mmol, 3.0 eq.), toluene (53.2 μ L, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%). The reaction mixture was stirred overnight at room temperature. Purification by column chromatography on silica gel using PE/NEt₃ (99:1 v/v) afforded the title compound **23d** as a colorless oil.

Note: because of the presence of the siloxane and its coelution with the title compound, a pure fraction was isolated for the full characterization.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.24 – 7.16 (m, 2H), 7.16 – 7.10 (m, 2H), 7.10 – 7.02 (m, 1H), 2.12 (s, 2H), 1.27 (s, 18H), 0.07 (s, 3H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 139.8, 128.9, 127.8, 123.9, 72.5, 31.9, 28.8, 0.5. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 2.12, 0.07/- 24.6, 0.07/- 24.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₂₈O₂SiNa 303.1751. Found 303.1751.

tert-butoxy(3-methoxybenzyl)dimethylsilane

Prepared according to **GP3** from the corresponding diazene **3a** (325 mg, 1.50 mmol, 3.0 eq.), 3-methylanisole (61.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred overnight at room temperature. Purification by flash column chromatography on silica gel using PE/NEt₃ (99:1 v/v) as eluent afforded the title compound **24a** (87.1 mg, 0.35 mmol, 69 %) as a yellowish oil.

¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 7.17 – 7.09 (m, 1H), 6.69 – 6.60 (m, 3H), 3.79 (s, 3H), 2.13 (s, 2H), 1.25 (s, 9H), 0.10 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ /ppm = 159.6, 141.7, 129.0, 121.3, 114.3, 109.6, 72.5, 55.2, 32.2, 29.1, 0.8. ¹H/²⁹Si HMQC NMR (300/60, CDCl₃): δ /ppm = 2.13, 0.10/4.9. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₄H₂₄O₂SiNa 275.1438. Found 275.1439.

tert-butoxydimethyl(3-phenoxybenzyl)silane

Prepared according to **GP3** from the corresponding diazene **3a** (325 mg, 1.50 mmol, 3.0 eq.), 3-phenoxytoluene (92.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred overnight at room temperature. Purification by flash column chromatography on silica gel using petroleum ether then PE/CH_2Cl_2 (95:5 \rightarrow 90:10 v/v) as eluent afforded the title compound **26a** (110.4 mg, 0.35 mmol, 70 %) as a colorless oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.32 (dd, J = 8.5, 7.3 Hz, 2H), 7.17 (dd, J = 8.8, 7.6 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 8.2 Hz, 2H), 6.82 (d, J = 7.6 Hz, 2H), 6.76 – 6.71 (m, 2H), 2.12 (s, 2H), 1.22 (s, 9H), 0.09 (s, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 157.8, 157.1, 142.3, 129.8, 129.3, 123.8, 123.0, 119.3, 118.8, 114.9, 72.6, 32.2, 29.0, 0.8. ¹H/²⁹Si HMQC NMR (300/60, CDCl₃): δ/ppm = 2.12, 0.09/4.7. HRMS (APCI) m/z: [M-H]⁻ Calcd for C₁₉H₂₅O₂Si 313.1629. Found 313.1629.

(4-((tert-butoxydimethylsilyl)methyl)phenyl)diphenylphosphane

Prepared according to **GP3** from the corresponding diazene **3a** (325 mg, 1.50 mmol, 3.0 eq.), diphenyl(*p*-tolyl)phosphane (138.2 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%). The reaction mixture was stirred overnight at room temperature. The crude was then quenched under argon with 6.5 mL of a degassed 0.5 M HCl solution. The aqueous layer was extracted with Et_2O (3 × 10 mL), the combined organic phases were dried over MgSO₄, filtrated and evaporated. Purification by column chromatography on silica gel using PE/EtOAc

 $(100:0 \rightarrow 98:2 \text{ v/v})$ as eluent afforded the title compound **28a** (166.2 mg, 0.41 mmol, 82 %) as a white solid.

M.p (CH₂Cl₂) = 48-50 °C. ¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 7.36 – 7.28 (m, 10H), 7.20 – 7.15 (m, 2H), 7.08 – 7.03 (m, 2H), 2.15 (s, 2H), 1.22 (s, 9H), 0.10 (s, 6H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ/ppm = 141.3, 138.0 (d, J = 10.8 Hz), 133.9 (d, J = 20.0 Hz), 133.7 (d, J = 19.2 Hz), 131.6 (d, J = 8.5 Hz), 128.9 (d, J = 7.5 Hz), 128.6, 128.5 (d, J = 6.9 Hz), 72.6, 32.2, 29.1, 0.9. ³¹P{¹H} **NMR** (162 MHz, CDCl₃): δ/ppm = -6.34. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ/ppm = 0.10/4.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₃₁POSiH 407.1955. Found 407.1960.

([1,1'-biphenyl]-4-ylmethyl)(tert-butoxy)dimethylsilane

mw: 298.50 g/mol

Prepared according to **GP3** from the corresponding diazene **3a** (325 mg, 1.50 mmol, 3.0 eq.), 4-methyl-1,1'-biphenyl (84.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (10 mol%, 5.6 mg, 0.1 eq.). The reaction mixture was stirred overnight at room temperature. Purification by column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 95:5 v/v) as eluent afforded the title compound **29a** (125.8 mg, 0.42 mmol, 84 %) as a light yellow solid.

M.p (CH₂Cl₂) = 41-43 °C. ¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 7.62 – 7.55 (m, 2H), 7.47 (d, J = 8.2 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.34 – 7.28 (m, 1H), 7.14 (d, J = 8.2 Hz, 2H), 2.19 (s, 2H), 1.26 (s, 9H), 0.13 (s, 6H). ¹³C{¹H} **NMR** (101 MHz, CDCl3): δ/ppm = 141.4, 139.3, 136.9, 129.0, 128.8, 126.9, 126.9, 126.8, 72.6, 32.2, 28.7, 0.8. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ/ppm = 0.13/4.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₂₆OSiNa 321.1645. Found 321.1646

tert-butoxydimethyl(naphthalen-2-ylmethyl)silane

Prepared according to **GP3** from the corresponding diazene **3a** (325 mg, 1.50 mmol, 3.0 eq.), 2-methylnaphthalene (71.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%). The reaction mixture was stirred overnight at room temperature. Purification by column

chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 98:2 v/v) as eluent afforded the title compound **30a** (107.4 mg, 0.40 mmol, 79%) as a pale-yellow solid.

M.p (CH₂Cl₂) = 46-48 °C. ¹**H NMR** (400 MHz, CDCl₃): δ/ppm = 7.77 (d, J = 7.5 Hz, 1H), 7.72 (dd, 2H), 7.50 (s, 1H), 7.42 (ddt, J = 8.1, 6.8, 1.3 Hz, 1H), 7.37 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 7.25 (d, J = 8.3 Hz, 1H), 2.32 (s, 2H), 1.26 (s, 9H), 0.12 (d, J = 1.4 Hz, 6H). ¹³C{¹H} **NMR** (101 MHz, CDCl₃): δ/ppm = 137.8, 134.0, 131.2, 128.4, 127.7, 127.5, 127.1, 125.8, 125.8, 124.4, 72.6, 32.2, 29.3, 0.9. ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃): δ/ppm = 0.12/4.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₄OSiH 273.1669. Found 273.1671.

4-((tert-butoxydimethylsilyl)methyl)pyridine

Prepared according to **GP3** from the corresponding diazene **3a** (325 mg, 1.50 mmol, 3.0 eq.), 4-picoline (46.6 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (5.6 mg, 10 mol%). The reaction mixture was stirred overnight at room temperature. Purification by column chromatography on silica gel using PE/EtOAc (90:10 \rightarrow 80:20 v/v) as eluent afforded the title compound **31a** (68.3 mg, 0.31 mmol, 61%) as a light-yellow oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 8.37 (d, J = 6.1 Hz, 1H), 6.97 (d, J = 5.8 Hz, 1H), 2.12 (s, 1H), 1.21 (s, 6H), 0.10 (s, 4H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 149.9, 149.3, 124.1, 72.8, 32.1, 29.2, 0.8. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 2.12, 0.10/3.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₂₁NOSiH 224.1465. Found 224.1464.

tert-butoxydimethyl((methylthio)(phenyl)methyl)silane

Prepared according to **GP3** from the corresponding diazene **3a** (325 mg, 1.50 mmol, 3.0 eq.), benzyl(methyl)sulfane (69.1 mg, 0.50 mmol, 1.0 eq.) and potassium *tert*-butoxide (11.2 mg, 20 mol%). The reaction mixture was stirred for 4 h at room temperature. Purification by flash column chromatography on silica gel using PE/EtOAc (100:0 \rightarrow 99:1 v/v) as eluent afforded the title compound **32a** (113.1 mg, 0.42 mmol, 84 %) as a light-yellow oil.

¹H NMR (300 MHz, CDCl₃): δ/ppm = 7.34 – 7.22 (m, 4H), 7.18 – 7.10 (m, 1H), 3.14 (s, 1H), 1.21 (s, 9H), 0.15 (d, J = 5.4 Hz, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 141.0, 128.7, 128.1, 125.5, 73.0, 43.3, 32.0, 16.2, 0.2 (d, J = 5.4 Hz). ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 3.14, 0.18/2.1. *Note:* HRMS could not be obtained for this compound as ionization using APCI technique led to unidentified ions.

6.4. Applications (Scheme 4A and 4C in the manuscript)

Tert-butoxy(dodec-1-yn-1-yl)dimethylsilane

Prepared according to **GP2** from the corresponding diazene **3a** (162.1 mg, 0.6 mmol, 1.5 eq.), potassium hydroxide (2.8 mg, 0.05 mmol, 10 mol%) and 1-dodecyne (83.1 mg, 0.50 mmol, 1.0 eq.). The reaction mixture was stirred for 3 h at room temperature. Purification by column chromatography on silica gel using petroleum ether as eluent afforded the title compound **33a** (99.0 mg, 0.34 mmol, 67 %) as a colorless liquid.

R_{*f*} (petroleum ether) = 0.38. ¹**H NMR** (300 MHz, CDCl₃) δ /ppm = 2.22 (t, *J* = 7.0 Hz, 2H), 1.51 (q, *J* = 7.1 Hz, 2H), 1.32-1.27 (m, 23H), 0.93 – 0.83 (m, 3H), 0.22 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ /ppm = 107.2, 85.1, 73.3, 32.1, 31.8 (3C), 29.7, 29.7, 29.5, 29.2, 29.0, 28.6, 22.8, 19.9, 14.2, 3.1 (2C). ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ /ppm = 0.20/-20.30. HRMS (APCI) m/z: [M+H]⁺ Calcd for C₁₈H₃₆OSiH 297.2608. Found 297.2610.

Tert-butoxy(3-decyl-1-methyl-1H-inden-2-yl)dimethylsilane

Following a reported procedure,¹¹ a flame-dried, 25-mL microwave vial equipped with a magnetic stirring bar was charged under argon with potassium carbonate (138.1 mg, 1.0 mmol, 5.0 eq.), lithium chloride (8.4 mg, 0.2 mmol, 1.0 equiv), palladium acetate (2.3 mg, 0.01 mmol, 5 mol%), triphenylphosphine (2.6 mg, 0.01 mmol, 5 mol%) and DMF (1.0 mL). Another ovendried 8-mL dram vial was charged with 2-iodo-N-methylaniline (46.4 mg, 0.2 mmol, 1.0 eq.), the silylated alkyne **33a** (118.4 mg, 0.4 mmol, 2.0 equiv) and DMF (0.5 mL). The resulting solution was transferred to the palladium-containing 25-mL microwave vial, and the vial was further rinsed with additional DMF (0.5 mL). The reaction flask was then immerged in a preheated oil bath (100 °C) and stirred (900 rpm) for 5 h. After cooling to room temperature, the crude reaction mixture was passed through a plug of silica gel (0.5 g) eluted with ethyl acetate (20 mL). To the resulting solution, collected in a 100-mL round-bottomed, was added a solution of saturated NH₄Cl (5 mL). The phases were separated, the organic layer was then washed with H₂O (2 × 10 mL), and the combined organic layer was dried over MgSO₄, filtered and concentrated by rotary evaporation. Purification by column chromatography on silica gel using PE/AcOEt (50:1 v/v) as eluent afforded the title compound **34** (49.6 mg, 0.12 mmol, 62 %) as a brownish liquid.

R_f (PE/AcOEt = 50:1) = 0.53. ¹H NMR (300 MHz, CDCI₃) δ/ppm = 7.61 (d, J = 7.9 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.25 (t, 1H), 7.08 (t, 1H), 3.94 (s, 3H), 2.92 – 2.81 (m, 2H), 1.71 – 1.57 (m, 2H), 1.49 – 1.21 (m, 23H), 0.91 (t, J = 6.6 Hz, 3H), 0.55 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCI₃) δ/ppm = 139.9, 135.4, 128.6, 125.7, 122.3, 119.4, 118.4, 109.1, 73.6, 33.2, 33.1, 32.1, 30.3, 29.8, 29.8, 29.8, 29.5, 25.9, 22.8, 14.3, 4.1. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCI₃): δ/ppm = 0.61/-6.82. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₄₃NOSiH 402.3187. Found 402.3186.

Alkyl group modification :

Adapting a reported procedure,¹² a flame-dried Schlenk equipped with a magnetic stirring bar was charged with **21a** (105.9 mg, 0.35 mmol, 1 eq.) and degassed pentane (0.4 mL). To the resulting solution was then added at room temperature a solution of bismuth trichloride (5.5 mg, 17.5 µmol, 5 mol%) in dry acetonitrile (1.2 mL) and chlorotrimethylsilane (133.3 µL, 1.05 mmol, 3eq.). The resulting mixture was then stirred at room temperature for 3 h. The volatiles were removed *in vacuo* by rotary evaporation. Purification of the crude residue by column chromatography on silica gel using PE then PE:CH₂Cl₂ (98:2 \rightarrow 95:5 v/v) as eluent afforded compound **35** (70.4 mg, 0.22 mmol, 63 %) as a white solid.

M.p (CH₂Cl₂) = 56-58 °C. ¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 7.57 (d, *J* = 1.5 Hz, 2H), 7.52 – 7.42 (m, 4H), 7.42 – 7.33 (m, 1H), 7.24 (t, *J* = 7.4 Hz, 1H), 0.42 (d, *J* = 1.2 Hz, 6H), 0.15 (d, *J* = 0.9 Hz, 9H). ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ /ppm = 163.5 (d, *J* = 242.6 Hz), 136.2 (d, *J* = 1.2 Hz, 6H), 0.15 (d, *J* = 0.9 Hz, 9H).

1.3 Hz), 134.4 (d, J = 11.8 Hz), 132.5 (d, J = 3.8 Hz), 129.2 (d, J = 2.9 Hz), 128.4, 128.3 (d, J = 17.3 Hz), 127.5, 126.8 (d, J = 32.3 Hz), 124.1 (d, J = 3.4 Hz), 1.9, 1.5 (d, J = 1.6 Hz). ¹⁹F{¹H} NMR (282 MHz, CDCl₃): δ /ppm = -106.40. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ /ppm = 7.5, 0.42/-3.5, 0.15/9.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₂₃FOSi₂H 319.1344. Found 319.1345.

Silanol synthesis:

Adapting a reported procedure,¹¹ an aqueous solution of HCI (0.1M, 0.4 mL, 4 mol%) was added at room temperature to a solution of **21a** (302.5 mg, 1 mmol, 1 eq.) in acetonitrile (10 mL). The reaction mixture was stirred at room temperature for 10 min and the medium neutralized by adding a saturated aqueous solution of NaHCO₃ until pH = 8 (ca. 5 mL). The aqueous layer was extracted with toluene (3 × 20 mL). The combined organic phases were dried over MgSO₄, filtrated and concentrated by rotary evaporation. Purification on a pad of silica gel using PE/CH₂Cl₂ (90:10 v/v) then AcOEt (200 mL) afforded **36** (195.1 mg, 0.79 mmol, 79%) as a colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ/ppm = 7.58 – 7.53 (m, 2H), 7.52 – 7.42 (m, 4H), 7.41 – 7.34 (m, 1H), 7.25 (t, J = 7.4 Hz, 1H), 2.12 (br s, 1H), 0.48 (d, J = 1.1 Hz, 6H). ¹³C{¹H} NMR (75 MHz, CDCl₃): δ/ppm = 163.8 (d, J = 241.6 Hz), 136.1, 134.2 (d, J = 11.5 Hz), 133.0 (d, J = 4.0 Hz), 129.3 (d, J = 2.9 Hz), 128.8, 128.6, 127.8, 126.1 (d, J = 31.8 Hz), 124.6 (d, J = 3.3 Hz), 0.7 (d, J = 1.5 Hz). ¹⁹F{¹H} NMR (282 MHz, CDCl₃): δ/ppm = -106.91. ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃): δ/ppm = 7.5, 0.48/7.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₅FOSiH 247.0949. Found 247.0947.

Tamao-Fleming oxidation:

Adapting a reported procedure,⁴ a flame-dried Schlenk equipped with a magnetic stirring bar was charged with potassium *tert*-butoxide (98.7 mg, 0.88 mmol, 2.2 eq.) and THF (1.4 mL). *Tert*-butyl hydroperoxide (5.5 M in decane, 146 μ L, 0.8 mmol, 2 eq.) and **21a** (121 mg, 0.4 mmol, 1 eq.) in THF (1 mL) were then added at 0 °C and the resulting mixture was stirred at 60 °C for ca. 16 h. To the mixture were then added a saturated aqueous solution of NaHSO₃

(5 mL), HCl (2 M, 5 mL) and water (10 mL). The aqueous layer was extracted with AcOEt (3 × 10 mL), the combined organic phases were dried over MgSO₄, filtrated and evaporated. Purification by column chromatography on silica gel using PE/AcOEt (95:5 \rightarrow 90:10 v/v) as eluent afforded compound **37** (60.5 mg, 0.32 mmol, 80%) as a white solid.

¹H NMR (400 MHz, CDCl₃): δ /ppm = 7.59 – 7.51 (m, 2H), 7.49 – 7.43 (m, 2H), 7.42 – 7.36 (m, 1H), 7.10 (td, *J* = 7.9, 1.3 Hz, 1H), 7.05 – 6.93 (m, 2H), 5.26 (br s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ /ppm = 148.2 (d, *J* = 238.0 Hz), 144.2 (d, *J* = 15.3 Hz), 135.5, 129.7 (d, *J* = 11.3 Hz), 129.1 (d, *J* = 2.9 Hz), 128.6, 128.0, 124.7 (d, *J* = 4.7 Hz), 122.0, 116.2 (d, *J* = 1.8 Hz). ¹⁹F{¹H} NMR (376 MHz, CDCl₃): δ /ppm = -147.09. The spectroscopic data match the reported literature.¹³

Ipso-iodination:

A flame-dried and argon flushed round-bottomed flask, equipped with a magnetic stirring bar and a rubber septum, was charged with **21a** (106 mg, 0.35 mmol, 1 eq.) and CH_2Cl_2 (3.5 mL). To the resulting solution was then dropwise iodide monochloride (1.05 mL (1M in CH_2Cl_2),1.05 mmol, 3 eq.). After stirring for ca. 16 h, a solution of saturated aqueous NaHSO₃ (3 mL) was added and the aqueous layer was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were dried over MgSO4, filtered and concentrated under *vacuo*. Purification by column chromatography on silica gel using petroleum ether as eluent afforded compound **38** (103.1 mg, 0.35 mmol, 99%) as a white solid.

M.p (CHCl₃) = 73-75 °C. ¹**H NMR** (300 MHz, CDCl₃): δ /ppm = 7.74 (ddd, J = 7.7, 5.7, 1.7 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.49 – 7.43 (m, 2H), 7.43 – 7.36 (m, 2H), 6.97 (td, J = 7.8, 0.7 Hz, 1H). ¹³C{¹H} **NMR** (75 MHz, CDCl₃): δ /ppm = 158.5 (d, J = 246.8 Hz), 138.6 (d, J = 1.6 Hz), 135.3 (d, J = 1.7 Hz), 131.2 (d, J = 3.1 Hz), 130.1 (d, J = 16.2 Hz), 129.1 (d, J = 2.9 Hz), 128.6, 128.2, 126.0 (d, J = 4.3 Hz), 82.6 (d, J = 27.1 Hz). ¹⁹F{¹H} **NMR** (282 MHz, CDCl₃): δ /ppm = -96.72. *Note*: HRMS could not be obtained for this compound as ionization using ESI or APCI techniques coupled with MeCN elution did not occur.

Figure S8: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **3a**.

Figure S9: ¹H NMR (300 MHz, CDCl₃) of compound **3b**.

Figure S10: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **3b**.

Figure S11: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **3b**.

Figure S12: ¹H NMR (300 MHz, CDCl₃) of compound **3c**.

Figure S13: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **3c**.

Figure S14: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **3c**.

Figure S15: ¹H NMR (300 MHz, CDCl₃) of compound **3d**.

Figure S16: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **3d**.

S61

Figure S17: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **3d**.

Figure S18: ¹H NMR (300 MHz, CDCl₃) of compound **3e**.

Figure S19: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **3e**.

Figure S20: ²⁹Si{¹H} NMR (60 MHz, CDCl₃) of compound **3e**.

Figure S21: ¹H NMR (300 MHz, CDCl₃) of compound **4a**.

Figure S22: ¹³C{¹H} NMR (75 MHz, CDCI₃) of compound **4a**.

Figure S23: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **4a**.

Figure S24: ¹H NMR (300 MHz, CDCl₃) of compound **4b**.

Figure S25: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **4b.**

S70

Figure S26: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **4b**.

Figure S27: ¹H NMR (300 MHz, CDCl₃) of compound **4d**.

Figure S28: ¹³C{¹H} NMR (75 MHz, CDCI₃) of compound **4d**.

Figure S29: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **4d**.

Figure S30: ¹H NMR (300 MHz, CDCl₃) of compound **4e**.

Figure S31: ${}^{13}C{}^{1}H$ NMR (75 MHz, CDCl₃) of compound **4e**.

Figure S32: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **4e**.

Figure S33: ¹H NMR (300 MHz, CDCl₃) of compound **5**.

Figure S34: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **5**.

Figure S35: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **5**.

Figure S36: ¹H NMR (400 MHz, CDCl₃) of compound **6a**.

Figure S37: ¹³C{¹H} NMR (101 MHz, CDCl₃) of compound **6a**.

S82

Figure S38: ¹H/²⁹Si HMQC NMR (400/75 MHz, CDCl₃) of compound **6a**.

Figure S39: ¹H NMR (400 MHz, CDCl₃) of compound **7a**.

Figure S40: ¹³C{¹H} NMR (101 MHz, CDCl₃) of compound **7a**.

S85

Figure S41: ¹H/²⁹Si HMQC NMR (400/75 MHz, CDCl₃) of compound **7a**.

Figure S42: ¹H NMR (400 MHz, CDCl₃) of compound **8a**.

S87

Figure S43: ¹³C{¹H} NMR (101 MHz, CDCl₃) of compound **8a**.

Figure S44: ¹H/²⁹Si HMQC NMR (400/75 MHz, CDCl₃) of compound **8a**.

Figure S45: ¹H NMR (300 MHz, CDCl₃) of compound **9a**.

Figure S46: ¹³C{¹H} NMR (75 MHz, CDCI₃) of compound **9a**.

Figure S47: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **9a**.

Figure S48: ¹H NMR (300 MHz, CDCl₃) of compound **10a.**

Figure S49: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **10a.**

Figure S50: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **10a.**

Figure S51: ¹H NMR (300 MHz, CDCl₃) of compound **11a.**

Figure S52: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **11a.**

Figure S53: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **11a.**

Figure S54: ¹H NMR (400 MHz, CDCl₃) of compound **12a.**

Figure S55: ¹³C{¹H} NMR (101 MHz, CDCI₃) of compound **12a.**

S100

Figure S56: ¹H/²⁹Si HMQC NMR (400/75 MHz, CDCl₃) of compound **12a.**

Figure S57: ¹H NMR (400 MHz, CDCl₃) of compound **13a.**

S102

Figure S58: ¹³C{¹H} NMR (101 MHz, CDCI₃) of compound **13a.**

Figure S59: ¹H/²⁹Si HMQC NMR (400/75 MHz, CDCl₃) of compound **13a.**

Figure S60: ¹H NMR (300 MHz, CDCl₃) of compound **14a.**

Figure S61: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **14a.**

Figure S62: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **14a.**

Figure S63: ¹H NMR (300 MHz, CDCl₃) of compound **15d₂.**

Figure S64: ¹³C{¹H} NMR (75 MHz, CDCI₃) of compound **15d₂.**

Figure S65: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **15d₂.**

Figure S66: ¹H NMR (300 MHz, CDCl₃) of compound **16a**₂.

Figure S67: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **16a**₂.

S112

Figure S68: ¹⁹F{¹H} NMR (282 MHz, CDCl₃) of compound 16a₂.

Figure S69: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound 16a₂.

Figure S70: ¹H NMR (300 MHz, CDCl₃) of compound **16e**.

Figure S71: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **16e**.

S116

Figure S73: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **16e**.

Figure S74: ¹H NMR (300 MHz, CDCl₃) of compound **17a**₃.

Figure S75: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **17a**₃.

S120

Figure S76: ¹⁹F{¹H} NMR (282 MHz, CDCl₃) of compound **17a**₃.

Figure S77: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **17a**₃.

Figure S78: ¹H NMR (300 MHz, CDCl₃) of compound **18a**₂.

Figure S79: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **18a**₂.

Figure S 80: ¹⁹F{¹H} NMR (282 MHz, CDCl₃) of compound **18a**₂.

Figure S81: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **18a**₂.

Figure S82: ¹H NMR (300 MHz, CDCl₃) of compound **19a**.

Figure S83: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **19a**.

S128

Figure S85: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **19a**.

Figure S86: ¹H NMR (300 MHz, CDCl₃) of compound **20a**₂.

Figure S87: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **20a**₂.

S132

Figure S88: ¹⁹F{¹H} NMR (282 MHz, CDCl₃) of compound **20a**₂.

Figure S89: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **20a₂**.

Figure S90: ¹H NMR (300 MHz, CDCl₃) of compound **21a**.

Figure S91: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound 2**1a**.

Figure S92: ¹⁹F{¹H} NMR (282 MHz, CDCI₃) of compound **21a**.

Figure S93: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **21a**.

Figure S 94: ¹H NMR (300 MHz, CDCl₃) of compound **22a**.

Figure S95: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound 2**2a**.

Figure S96: ¹⁹F{¹H} NMR (282 MHz, CDCI₃) of compound **22a**.

Figure S97: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **22a**.

Figure S98: ¹H NMR (300 MHz, CDCl₃) of compound **23a**.

Figure S 99: $^{13}C{^{1}H}$ NMR (75 MHz, CDCl₃) of compound **23a**.

Figure S 100: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCI₃) of compound **23a**.

Figure S101: ¹H NMR (300 MHz, CDCl₃) of compound **23d**.

Figure S102: ¹³C{¹H} NMR (75 MHz, CDCI₃) of compound **23d**.

Figure S103: $^{1}H/^{29}Si$ HMQC NMR (300/60 MHz, CDCl₃) of compound **23d**.

Figure S104: ¹H NMR (300 MHz, CDCl₃) of compound **24a**.

Figure S105: ¹³C{¹H} NMR (75 MHz, CDCI₃) of compound **24a**.

Figure S106: $^{1}H/^{29}Si$ HMQC NMR (300/60 MHz, CDCl₃) of compound **24a**.

Figure S107: ¹H NMR (300 MHz, CDCI₃) of compound **26a**.

Figure S108: ¹³C{¹H} NMR (75 MHz, CDCI₃) of compound **26a**.

Figure S109: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **26a**.

Figure S110: ¹H NMR (400 MHz, CDCl₃) of compound **28a**.

Figure S111: ¹³C{¹H} NMR (101 MHz, CDCl₃) of compound **28a**.

Figure S 112: ³¹P{¹H} NMR (162 MHz, CDCl₃) of compound **28a**.

Figure S113: ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃) of compound **28a**.

Figure S114: ¹H NMR (400 MHz, CDCl₃) of compound **29a**.

Figure S115: ¹³C{¹H} NMR (101 MHz, CDCl₃) of compound **29a**.

Figure S116: ¹H/²⁹Si HMQC NMR (400/79 MHz, CDCl₃) of compound **29a**.

Figure S117: ¹H NMR (300 MHz, CDCI₃) of compound **30a**.

Figure S118: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **30a**.

Figure S119: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **30a**.

Figure S120: ¹H NMR (300 MHz, CDCI₃) of compound **31a**.

Figure S121: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **31a**.

Figure S 122: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **31a**.

Figure S123: ¹H NMR (300 MHz, CDCl₃) of compound **32a**.

Figure S124: ¹³C{¹H} NMR (75 MHz, CDCI₃) of compound **32a**.

Figure S125: $^{1}H/^{29}Si$ HMQC NMR (300/60 MHz, CDCl₃) of compound **32a**.

Figure S126: ¹H NMR (300 MHz, CDCl₃) of compound **33a**.

8.0

-10

9.0

Figure S130: ¹³C{¹H} NMR (101 MHz, CDCl3) of compound **34**.

Figure S131: ¹H/²⁹Si HMQC NMR (300/79 MHz, CDCl₃) of compound **34**

Figure S132: ¹H NMR (300 MHz, CDCl₃) of compound **35.**

Figure S133: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **35**.

Figure S134: ¹⁹F{¹H} NMR (282 MHz, CDCI₃) of compound **35**.

Figure S135: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **35**.

Figure S136: ¹H NMR (300 MHz, CDCl₃) of compound **36**.

Figure S137: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **36**.

S182

Figure S138: ¹⁹F{¹H} NMR (282 MHz, CDCI₃) of compound **36**.

Figure S139: ¹H/²⁹Si HMQC NMR (300/60 MHz, CDCl₃) of compound **36**.

Figure S140: ¹H NMR (300 MHz, CDCl₃) of compound **38**.

Figure S141: ¹³C{¹H} NMR (75 MHz, CDCl₃) of compound **38**.

S186

Figure S142: ${}^{19}F{}^{1}H$ NMR (282 MHz, CDCI₃) of compound **38**.

8. References

- 1 F. Turnu, A. Luridiana, A. Cocco, S. Porcu, A. Frongia, G. Sarais and F. Secci, *Org. Lett.*, 2019, **21**, 7329–7332.
- 2 B. Neil, L. Saadi, L. Fensterbank and C. Chauvier, *Angew. Chem. Int. Ed.*, 2023, **62**, e202306115.
- 3 S. Som, J. Choi, D. Katsoulis and K. L. Lee, *Chem. Sci.*, 2022, **13**, 10759–10764.
- 4 H. Saito, J. Shimokawa and H. Yorimitsu, *Chem. Sci.*, 2021, **12**, 9546–9555.
- 5 C. Cheng and J. F. Hartwig, J. Am. Chem. Soc., 2015, 137, 592–595.
- 6 Y. Ma, R. A. Woltornist, R. F. Algera and D. B. Collum, J. Org. Chem., 2019, 84, 9051–9057.
- 7 B. Neil, F. Lucien, L. Fensterbank and C. Chauvier, ACS Catal., 2021, **11**, 13085–13090.
- 8 S. R. Docherty, D. P. Estes and C. Copéret, *Helv. Chim. Acta*, 2018, **101**.
- 9 K. Ando, T. Wada, M. Okumura and H. Sumida, Org. Lett., 2015, 17, 6026–6029.
- 10 M. Yoshikawa, R. Wakabayashi, M. Tamai and K. Kuroda, New J. Chem., 2014, 38, 5362–5368.
- 11 S. E. Denmark and J. D. Baird, *Tetrahedron*, 2009, **65**, 3120–3129.
- 12 R. Wakabayashi, K. Kawahara and K. Kuroda, Angew. Chem. Int. Ed., 2010, 49, 5273–5277.
- 13 S. Roesner and S. L. Buchwald, *Angew. Chem. Int. Ed.*, 2016, **55**, 10463–10467.